

The SeaQuest Experiment

Michelle M. Medeiros for the SeaQuest Collaboration

49th Fermilab Users Meeting - Jun. 15, 2016

Nucleons \rightarrow valence quarks + gluons + **sea quarks**

PARTONS

Nucleons \rightarrow valence quarks + gluons + **sea quarks**

proton

Michelle M. Medeiros - The SeaQuest Experiment

Nucleons \rightarrow valence quarks + gluons + **sea quarks**

Nucleons \rightarrow valence quarks + gluons + **sea quarks**

THE NUCLEON STRUCTURE

Up quark: Down quark: 2.3 MeV/c² x 2 4.8 MeV/c²

 9.4 MeV/c^2

THE NUCLEON STRUCTURE

What contributes to the spin?

THE NUCLEON STRUCTURE

x

EMC effect

- nuclear dependence of the structure function
- nuclear dependence of the EMC effect
 - "Everyone's Model is Cool"

PROBING THE NUCLEON SEA

PROBING THE NUCLEON SEA

11

PROBING THE NUCLEON SEA

Cross-section:

$$\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{9x_b x_t} \frac{1}{s} \sum_q e_q^2 \left[\bar{q}_t(x_t) q_b(x_b) + \bar{q}_b(x_b) q_t(x_t) \right]$$

q_{beam} y* µ⁻ q_{target} µ⁺ Can extract relative number of $\overline{\mathbf{d}}$ and $\overline{\mathbf{u}}$ in the sea by comparing cross-sections of proton beam with hydrogen (pp) and deuterium (pd).

$$\left. \frac{\sigma_{\textit{pd}}}{2\sigma_{\textit{pp}}} \right|_{\scriptscriptstyle x_{\textit{beam}} > > x_{\textit{target}}} \approx \frac{1}{2} \left[1 + \frac{\bar{d}_{\textit{target}}}{\bar{u}_{\textit{target}}} \right]$$

◆ Deuterium → free proton + free neutron.
◆ Proton and neutron → isospin particles:

$$\sigma_{\textit{pd}}\approx\sigma_{\textit{pn}}+\sigma_{\textit{pp}}$$

- Cross-section in different nuclei targets *
- Dimuon angular distribution \rightarrow Boer-* Mulders
- EMC effect in different nuclei targets *

$$\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{9x_b x_t} \frac{1}{s}$$
$$\sum_q e_q^2 \left[\bar{q}_t(x_t) q_b(x_b) + \bar{q}_b(x_b) q_t(x_t) \right]^{\sim 0}$$

- Cross-section in different nuclei targets
- ♦ Dimuon angular distribution → Boer-Mulders
- EMC effect in different nuclei targets

- Fast colored parton interactions in cold nuclear matter
- Dark photon search

- Cross-section in different nuclei targets
- ♦ Dimuon angular distribution → Boer-Mulders
- EMC effect in different nuclei targets

- Fast colored parton interactions in cold nuclear matter
- Dark photon search

- Cross-section in different nuclei targets
- ♦ Dimuon angular distribution → Boer-Mulders
- EMC effect in different nuclei targets

- Fast colored parton interactions in cold nuclear matter
- Dark photon search
- Flavor asymmetry in the sea

NON-PERTURBATIVE EFFECT

PREVIOUS FLAVOR ASYMMETRY RESULTS

INSTANTON MODEL:

$$\mathbf{u}\uparrow +\mathbf{I} \rightarrow \mathbf{u}\downarrow + \mathbf{d}\mathbf{d}(\mathbf{s}\mathbf{s})$$

Michelle M. Medeiros - The SeaQuest Experiment

INSTANTON MODEL:

$$\mathbf{u}\uparrow +\mathbf{I} \longrightarrow \mathbf{u}\downarrow + \mathbf{d}\mathbf{d}^{-}(\mathbf{s}\mathbf{s})$$

INSTANTON MODEL:

$$\mathbf{u}\uparrow +\mathbf{I} \longrightarrow \mathbf{u}\downarrow + \mathbf{d}\mathbf{d}^{-}(\mathbf{s}\mathbf{s})$$

0.6

THE SEAQUEST EXPERIMENT

EVENT SELECTION & RECONSTRUCTION

"Roadsets" of possible dimuons coming from Drell-Yan interactions in the target.

EVENT SELECTION & RECONSTRUCTION

THE COOL STUFF ...

(PRELIMINARY RESULTS)

EMC RATIO

CROSS-SECTION

CROSS-SECTION & FLAVOR ASYMMETRY

CROSS-SECTION & FLAVOR ASYMMETRY

BEYOND SEAQUEST: POLARIZED DRELL-YAN

BEYOND SEAQUEST: POLARIZED DRELL-YAN

SUMMARY

- Drell-Yan process has sensitivity to the structure of sea quarks inside nucleons.
- SeaQuest uses Drell-Yan to study sea antiquarks inside protons.
- Different physics/measurements being studied.
- Latest results show:
 - No significant EMC effect for sea antiquarks.
 - □ Flavor asymmetry $\overline{d/u} > 1$, for any x → interesting differences with previous results at high x.

EXCITING TIME AHEAD WITH SEAQUEST!

THANK YOU.

Michelle M. Medeiros - The SeaQuest Experiment

MODEL FOR THE PROTON

(Phys 741) Quarks, Nuclei, and the Cosmos: A Modern Introduction to Nuclear Physics, Prof. Xiangdong Ji

Michelle M. Medeiros - The SeaQuest Experiment

Parton energy loss in cold nuclear matter

- QCD partons (are thought to) lose energy while decelerating in a strongly interacting medium
- Drell Yan process is an ideal tool to study the interactions of fast partons traversing cold nuclei
- The dilepton pair doesn't interact strongly with the nuclear medium
- Significant implications for physics of relativistic heavy ion collisions (RHIC)

THE EMC EFFECT

A' sensitivity region for SeaQuest

$$l_o \approx \frac{0.8 \, cm}{N_{eff}} \left(\frac{E_o}{10 \, GeV}\right) \left(\frac{10^{-4}}{\varepsilon}\right)^2 \left(\frac{100 \, MeV}{m_{a'}}\right)^2$$

J. D. Bjorken et al, PRD 80 (2009) 075018

- E_o = energy of the A'
- N_{eff} = no. of available decay products
- I_o = distance that A' travels before decaying
- ε = coupling constant between standard model and dark sector
- m_{A'} = mass of A'

Michelle M. Medeiros - The SeaQuest Experiment

Q² evolution

- Differences in Q² according to CT10
- Difference between SeaQuest and E866 because of Q² evolution is small

Slide from Arun Tadepalli

BACKGROUND AND SYSTEMATICS

Background rejection:

- $m_{\mu\mu}$ < 4.5 GeV ightarrow J/ Ψ events
- 9.0< $m_{\mu\mu}$ < 10.7 GeV \rightarrow Y ressonance events.
- Systematic uncertainties:
 - empty target correction.
 - PDFs uncertainties.
 - hydrogen contamination of the deuterium target.
 - sources of rate dependence.

BJORKEN X

Fraction of longitudinal momentum (p_L) of the hadron carried by a given parton in the overall center of mass frame.

Consider lepton + hadron interaction.

Definition of x:	
$x = \frac{-q^2}{2p.q} =$	$= \frac{Q^2}{2M(E-E')}$

- $\bullet \ 0 < x < 1$
- $\bullet~q \rightarrow$ four momentum transfer between lepton and target nucleon.
- $\bullet \ p {\rightarrow} \ incident \ nucleon \ four \ momentum.$
- $\bullet~$ elastic scattering: $(p\,+\,q)^2=M^2\rightarrow x{=}1.$
- \bullet deep inelastic scattering: $Q^2 \gg M^2 \rightarrow x{<}1.$

Calculation of $\overline{D}/\overline{U}$

Iterative process in each bin of x_{target}:

1 Measurement of cross-section ratio from data:

-
$$\mathsf{R}_{\textit{data}} = \sigma_{\textit{pd}} / \sigma_{\textit{pp}}$$

- 2 Calculate a prediction from cross-section ratio:
 - Based on estimation of \bar{d}/\bar{u} .
 - Uses CT10 PDFs for other quarks and anitquarks.
 - Uses PDFs to fix $\overline{d} + \overline{u}$.
 - Call it R_{pred}
- 3 Adjust estimate oof $\overline{d}/\overline{u}$ based on R_{data} R_{pred} .
- 4 Repeat 2 and 3 until $R_{data} = R_{pred}$.

POLARIZED TARGET SYSTEM (E1039)

