

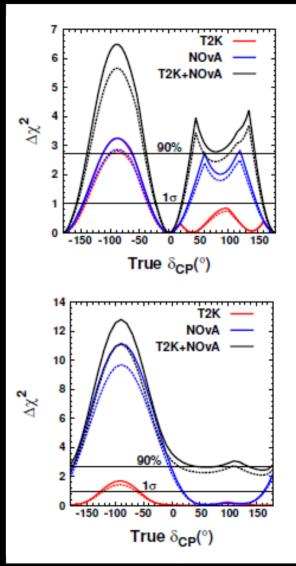
An Experimental Program in Neutrinos, Nucleon Decay and Astroparticle Physics Enabled by the Fermilab Long-Baseline Neutrino Facility

Daniel Cherdack

Colorado State University For the DUNE Collaboration

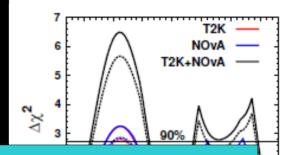
FNAL User's Meeting

June 15 - 16, 2016 Fermi National Accelerator Laboratory

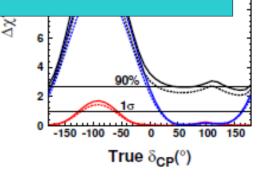

The Deep Underground Neutrino Experiment

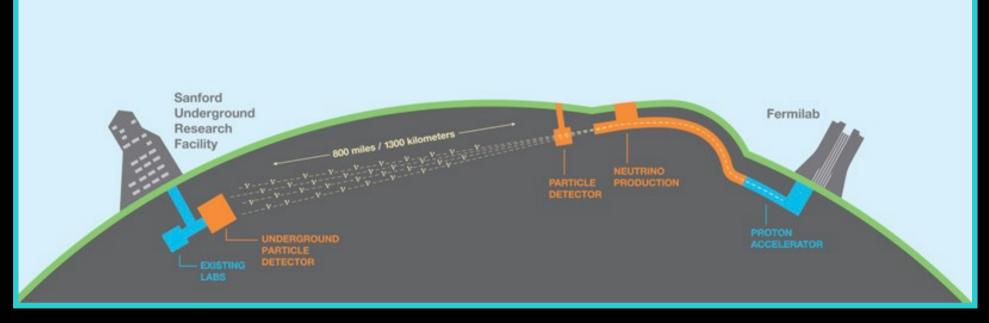
- September 2015 collaboration meeting at FNAL
- → 886 Collaborators → 26+ countries
- → 153 institutions → Members from LBNE, LBNO and more 2

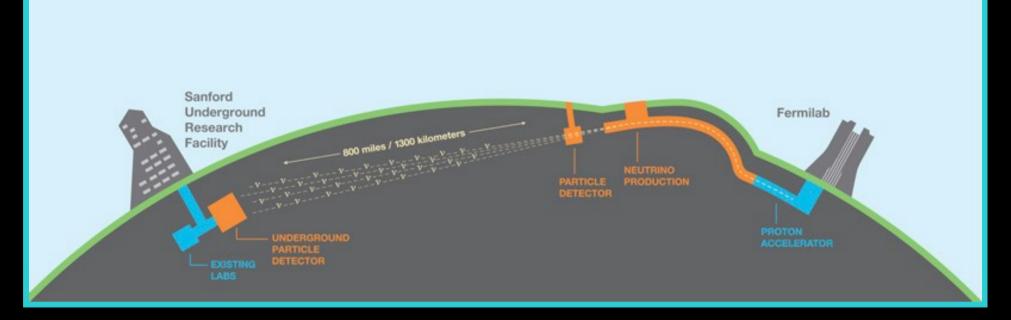
Potential of Current Experiments


- T2K and NOvA will continue to run over next several years
 - measure $\nu_{\rm e}$ appearance and ν_{μ} disappearance
 - Run in both v mode and \overline{v} mode
 - Provide sensitivity to CPV and MH determination
 - A combined analysis has "indication" potential
- Reactor experiments
 - Continue to constrain $\theta_{\mbox{\tiny 13}}$ from $\overline{\nu}_{\rm e}$ disappearance
 - Constraints help T2K and NOvA
- MH determination may come from several sources like INO, PINGU, JUNO, and $0\nu\beta\beta$
- SK will continue to asymptotically approach limits on nucleon decay, and atmospheric neutrino measurements

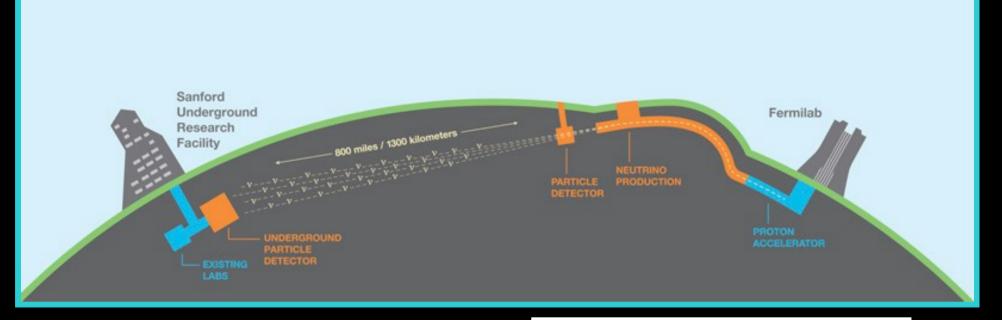
PTEP 2015 (2015) 4, 043C01


Potential of Current Experiments

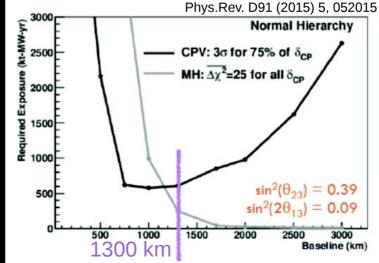

- T2K and NOvA will continue to run over next several years
 - measure $\nu_{\rm e}$ appearance and ν_{μ} disappearance
 - Run in both v mode and \overline{v} mode

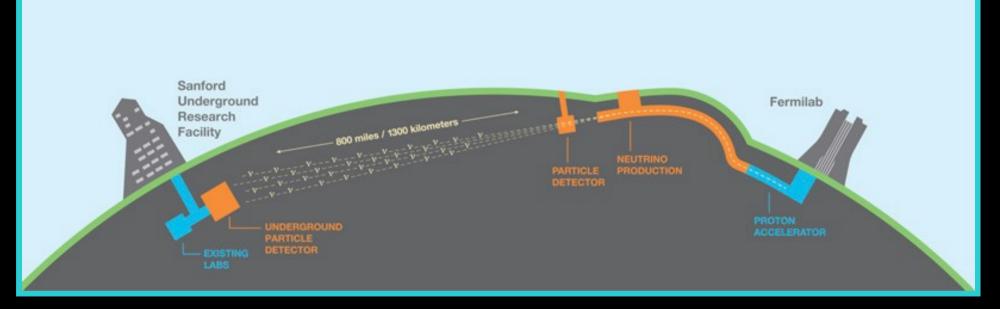

To measure δ_{cp} and determine the MH to high precession in a single experiment will require a next generation long-baseline neutrino experiment

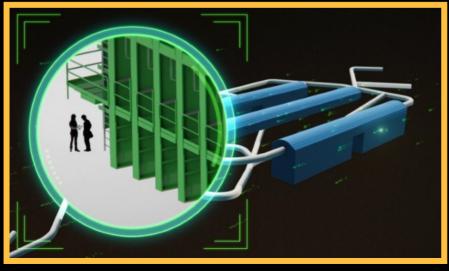
- MH determination may come from several sources like INO, PINGU, JUNO, and $0\nu\beta\beta$
- SK will continue to asymptotically approach limits on nucleon decay, and atmospheric neutrino measurements

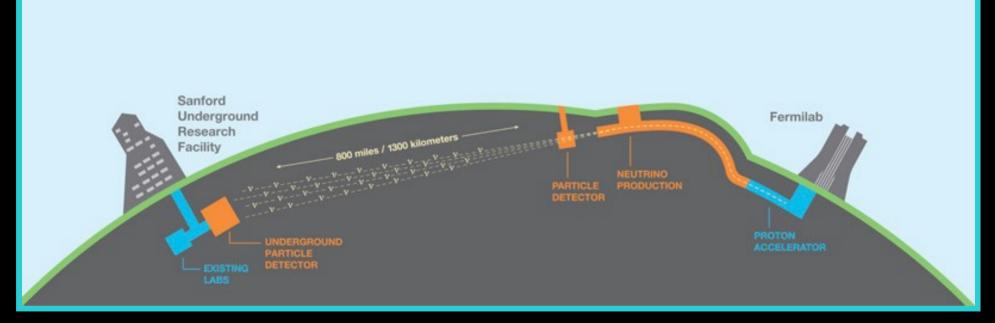


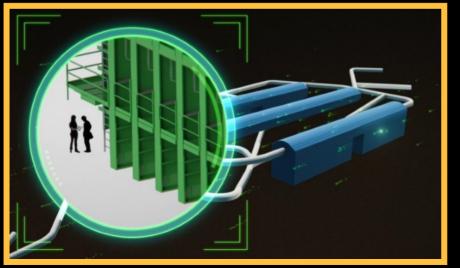
- DUNE is designed to provide a broad program of:
 - v oscillation physics
 - v interaction physics
 - Proton decay
 - Supernova physics
 - BSM physics

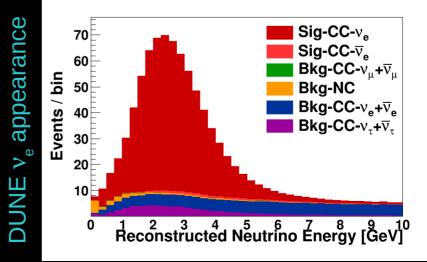



- Oscillation Physics:
 - Baseline of 1300 km
 - A megawatt class beam covering the 1st and 2nd oscillation maxima
 - A highly capable ND to constrain the FD event rate prediction

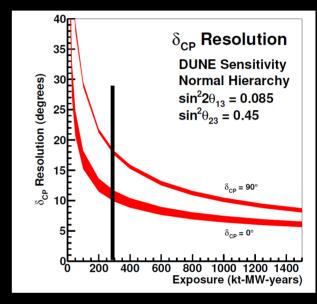


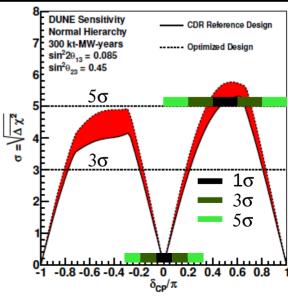

- Oscillation Physics:
 - Baseline of 1300 km
 - A megawatt class beam covering the 1st and 2nd oscillation maxima
 - A highly capable ND to constrain the FD event rate prediction





- Oscillation Physics:
 - Baseline of 1300 km
 - A large (~ 40 kt), high resolution
 FD deployed deep underground
 - Exposure of 6-12 yr with
 ~ 50% / 50% v / v running

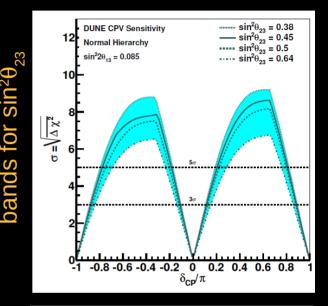

9

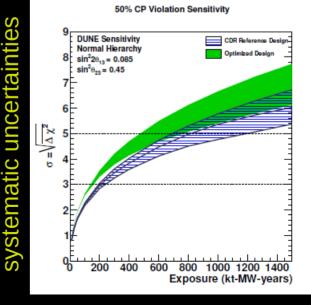

	CDR Reference Design	Optimized Design	
$ u$ mode (150 kt \cdot MW \cdot year)			
ν_e Signal NH (IH)	861 (495)	945 (521)	
$ar{ u}_e$ Signal NH (IH)	13 (26)	10 (22)	
Total Signal NH (IH)	874 (521)	955 (543)	
Beam $ u_e + ar{ u}_e$ CC Bkgd	159	204	
NC Bkgd	22	17	V
$ u_ au + ar u_ au$ CC Bkgd	42	19	
$ u_{\mu} + \bar{ u}_{\mu} CC Bkgd $	3	3	
Total Bkgd	226	243	
$\bar{\nu}$ mode (150 kt \cdot MW \cdot year)			
ν_e Signal NH (IH)	61 (37)	47 (28)	
$ar{ u}_e$ Signal NH (IH)	167 (378)	168 (436)	
Total Signal NH (IH)	228 (415)	215 (464)	
Beam $ u_e + ar{ u}_e$ CC Bkgd	89	105	
NC Bkgd	12	9	v
$ u_ au + ar u_ au$ CC Bkgd	23	11	
$ u_{\mu} + ar{ u}_{\mu}$ CC Bkgd	2	2	
Total Bkgd	126	127	

Number of events in the $0.5 < E_v < 8.0 \text{ GeV}$ range, assuming 150 kt-MW-yr in each of the v and \overline{v} beam modes, $\delta_{co} = 0.0$, and the NuFit 2014 oscillation parameters.

The Physics of DUNE: Long-Baseline Physics: δ_{cD} and CPV

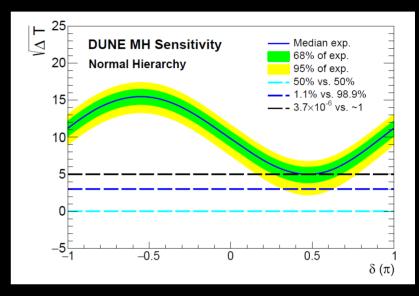
- DUNE measurement of $\delta_{\mbox{\tiny cp}}$
 - Resolution on δ_{cp} gets better as $sin(\delta_{cp}) \rightarrow 0$
 - Range on δ_{cp} resolution from 6°-10° (~10 yr exposure)
- Sensitivity to CPV strongly depends on:
 - Statistics (thus the beam intensity, detector mass, run time)
 - The true value of $\sin^2\theta_{23}$, δ_{cp} , and the MH
 - Resolution on δ_{cp} near sin(δ_{cp}) = 0
 - Ability to constrain systematic uncertainties

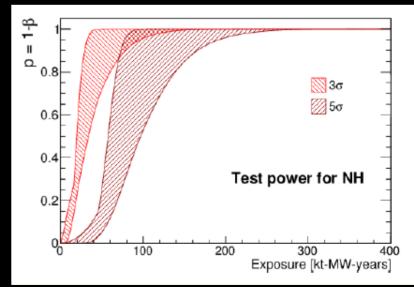



The Physics of DUNE: Long-Baseline Physics: δ_{co} and CPV

ariati

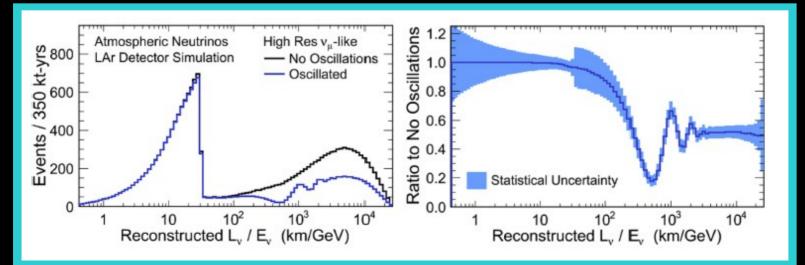
ensi


- DUNE measurement of $\delta_{\rm cp}$
 - Resolution on δ_{cp} gets better as $sin(\delta_{cp}) \rightarrow 0$
 - Range on δ_{cp} resolution from 6°-10° (~10 yr exposure)
- Sensitivity to CPV strongly depends on:
 - Statistics (thus the beam intensity, detector mass, run time)
 - The true value of $\sin^2\theta_{23}$, δ_{cp} , and the MH
 - Resolution on δ_{cp} near sin(δ_{cp}) = 0
 - Ability to constrain systematic uncertainties



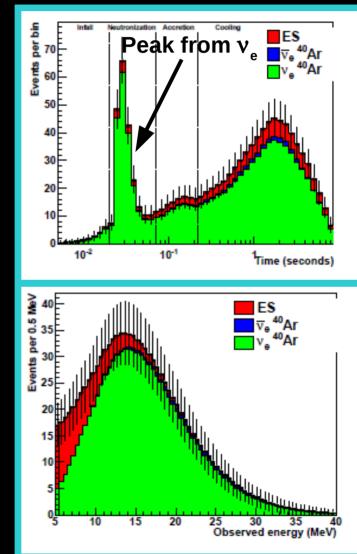
The Physics of DUNE: Long-Baseline Physics: MH and the Rest

- DUNE will exclude the wrong MH at the 99% C.L. for all values of $\delta_{\rm cp}$
- The 99% C.L. result will come sooner for more favorable δ_{cp} values
- DUNE will also constrain $\sin^2(\theta_{13})$, $\sin^2(\theta_{23})$, and ΔM^2_{31}
- And has the potential to determine the θ_{23} octant, and measure v_{τ} appearance
- DUNE long-baseline physics goals also include:
 - Over-constrain the PMNS matrix
 - Search for exotic physics like NSI, LRI, CPT/Lorentz violation, compact extra dimensions, and sterile neutrinos

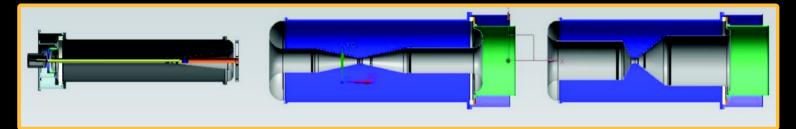

The Physics of DUNE: Underground Physics: Proton Decay

- Signature of Baryon number violation
- Superior detection efficiency for K production modes
 - K PID through dE/dx
 - High spatial resolution and low energy thresholds $\rightarrow\,$ rejection atmospheric backgrounds
 - High Efficiency (>90%), high purity selections for $p \rightarrow \nu + K^{*}$ and $p \rightarrow \mu + K^{0}$
- Requires suitable triggering systems
- Efficiencies and background rates per Mt-yr:

Decay Mode	Water Cherenkov		Liquid A	Liquid Argon TPC	
	Efficiency	Background	Efficiency	Background	
$p \to K^+ \overline{\nu}$	19%	4	97%	1	
$p \rightarrow K^0 \mu^+$	10%	8	47%	< 2	
$p \rightarrow K^+ \mu^- \pi^+$			97%	1	
$n \rightarrow K^+ e^-$	10%	3	96%	< 2	
$n \rightarrow e^+ \pi^-$	19%	2	44%	0.8	

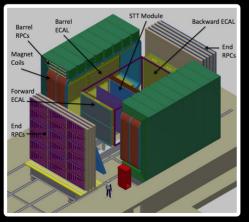

The Physics of DUNE: Underground Physics: Atmospheric v

- Low energy thresholds gives superior L/E resolution
 - Fully reconstruct hadronic system
 - Low missing $p_{\scriptscriptstyle T}$ improves angular resolution
- Good sensitivity to MH and θ_{23} octant
- Combine with accelerator v data to improve oscillation physics measurements
- Sensitive to PMNS extensions / new physics
- Expect ~14k contained $\nu_e\text{-}$ like events, and ~20k contained $\nu_\mu\text{-}$ like events for a 350kt-yr exposure

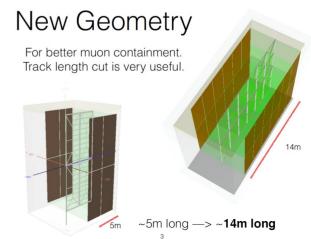

The Physics of DUNE: Underground Physics: Supernova Bursts

- Requires suitable triggering systems
- Other experiments rely on $\overline{\nu}_{e}$ capture via inverse β decay
- DUNE will be able to observe the $\nu_{\rm e}$ flux through capture on Ar40
 - Unique sensitivity to the electron flavor component of the flux
 - Provides information on time, energy and flavor structure
 - Rates depend on core collapse model, v oscillation models, and distance.
 - Expect >3,000 events from a supernova at 10 kpc

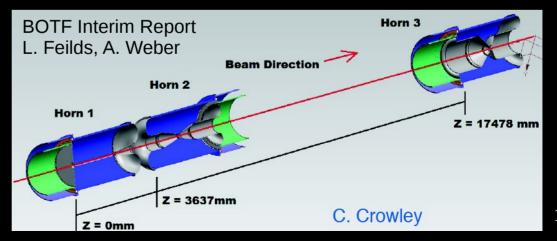
DUNE Task Forces

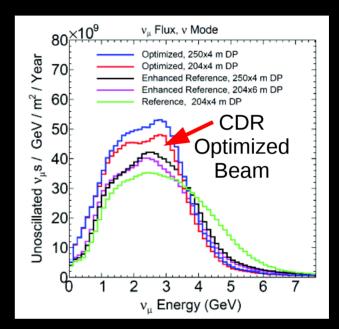

- Cross-working-group teams charged with simulating, evaluating, and optimizing the performance of the three main components of the experimental design
- Beam Optimization

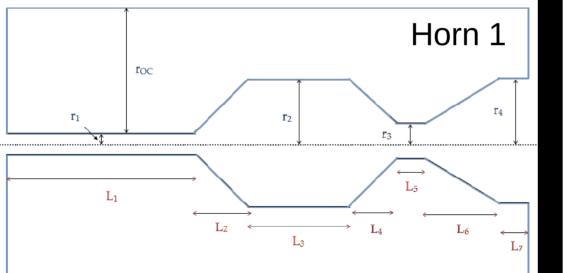
• Near Detector Optimization

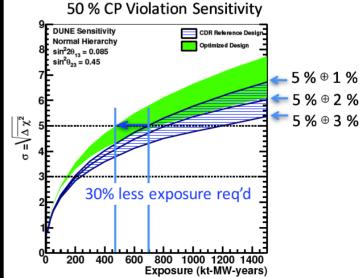


High-Pressure GAr TPC


Fine-Grained Tracker

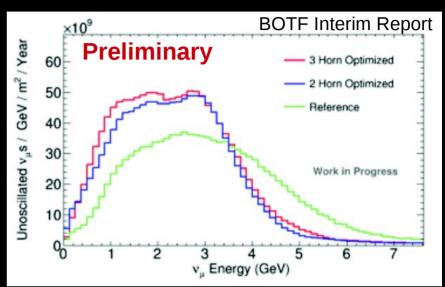

Beam Optimization Task Force

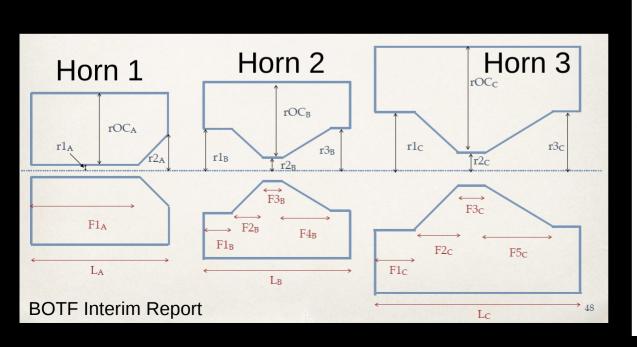

- Charge:
 - Physics driven optimization of the beam line (target, horns, etc)
 - Study alternate designs and develop a cost benefit analysis
- Status:
 - Design has been optimized for multiple component sets (2 vs. 3 horns, multiple target designs, etc)
 - Realistic design based optimizations in advanced stages
 - Detailed studies of the design are in progress:
 - Physics sensitivities
 - Optimal run plan (v/v)
 - Cost implications
 - Alternate metrics
 - Alternate optimization routines

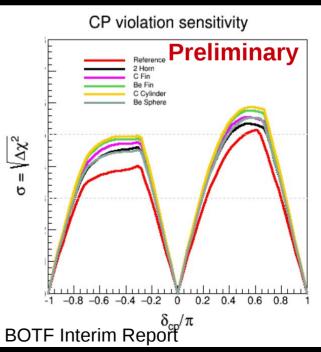


Beam line Genetic Optimization

- Optimizations studies conducted for the DUNE CDR
- Genetic optimization of:
 - Target and horn dimensions
 - Proton momentum
 - Decay pipe length
- Metric based on CPV sensitivity

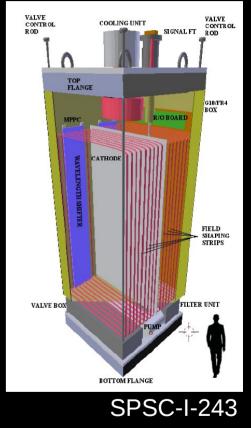






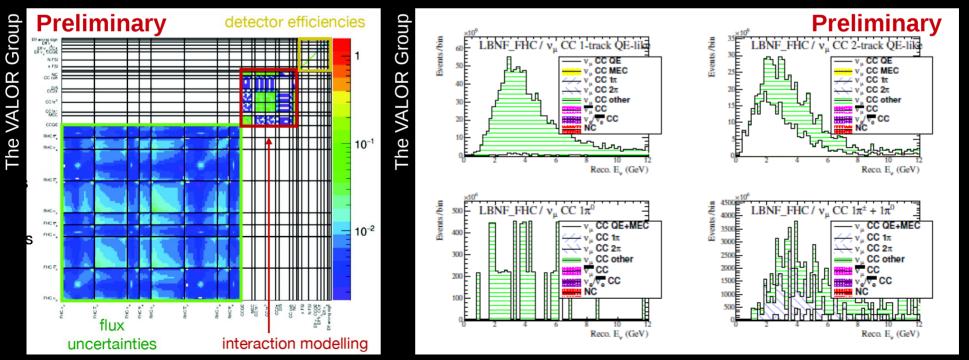
Beam line Genetic Optimization

- Task force is building on the success of the CDR studies
- Optimization of 2 vs 3 horn design
- Studies of several target designs
- Shifted focus to engineering feasibility and design flexibility



Near Detector Task Force

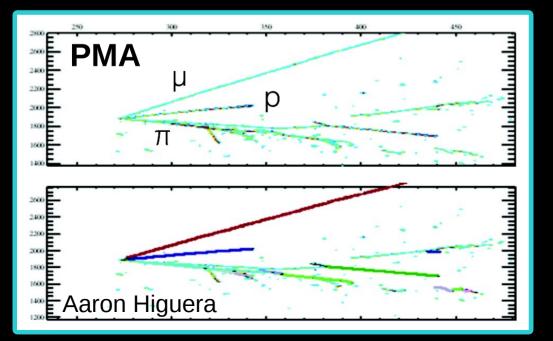
• Charge:

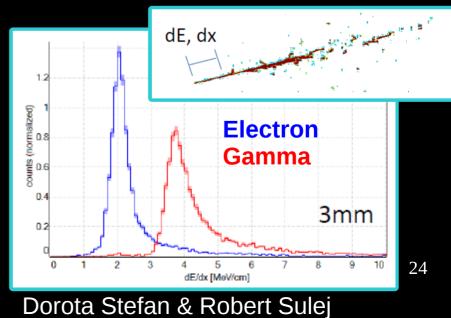

- Develop full GEANT4 simulation of 3 technology options
 - Fine-Grained Tracker (FGT)
 - Modular Liquid Argon TPC (LAr TPC / ArgonCube)
 - High-Pressure Gaseous Argon TPC (HP GAr TPC)
- Develop end-to-end simulation and analysis chain to evaluate the impact of each ND on CPV sensitivity
- Status:
 - Each step in the simulation and analysis chain, and interfaces between each step, have been developed
 - Full GEANT4 simulations have been completed
 - The VALOR framework is used for ND fits and a DUNE specific oscillation analysis has been developed
 - Progress on event reconstruction is hard fought
 - Detector uncertainties represent the next (and last) big challenge

ArgonCube

VALOR Fits to ND Samples

- Inputs (examples below):
 - Covariance matrix of priors on flux, xsec, and detector uncertainties
 - Topologically classified event samples
- Fit ND event samples to toy data (> 150 parameters)
- Output: covariance matrix containing constraints on input parameters → FD oscillation fits

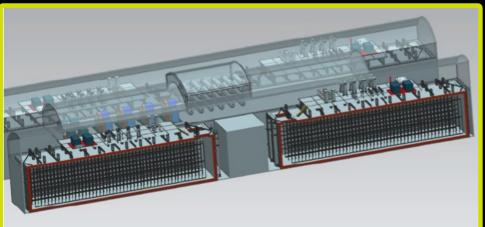


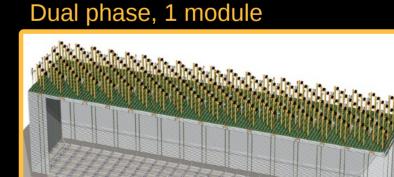

Far Detector Optimization

- Charge:
 - Full GEANT4 simulation and reconstruction for reference and alternate designs
 - Optimization studies for FD components and configurations
 - Evaluate full range of FD physics topics
 - Oscillation: accelerator, atmospheric
 - Non-oscillation: proton decay, supernova bursts
- Status:
 - Detector simulation in advanced stages, including 2-phase
 - Recent non-accelerator event generation improvements
 - Reconstruction and PID algorithms in development
 - First round of optimization studies using full simulation tools underway
 - More progress on reconstruction required to draw conclusions

LAr TPC Reconstruction

- Full simulation of beam v, atmospheric v, PDK, and Supernova events
- Huge progress has been made on reconstruction
 - Three reconstruction packages (PMA, Pandora, WireCell)
 - Exploring other options including machine learning techniques
 - Shower / track selection, particle ID, momentum and angle reconstruction
- Use of centralized software tools and infrastructure is crucial
 - LArSoft allows for easy collaboration with other LAr TPC experiments




Far Detector Options and R&D

- Two FD detector options:
- Single Phase
 - 35 ton (completed)
 - ProtoDune (2018)
 - Far Detector (1st module)

- Dual Phase
 - 311 (coming soon)
 - ProtoDune (2018)
- Far Detector
- Important contribution from SBN Program detectors

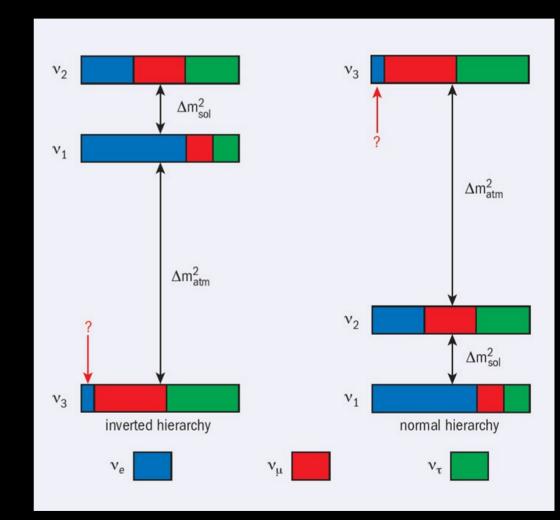
Single phase, 2 modules

DUNE CDR Volume 4 (http://arxiv.org/pdf/1601.02984v1.pdf)

Conclusions

- LBNF will include:
 - A megawatt class v beam
 - Conventional facilities for near and far detectors
- The DUNE experiment will build 4 x 10 kt LAr TPCs and a highly capable ND at LBNF
- DUNE will determine the MH and measure $\delta_{\mbox{\tiny cp}}$
- DUNE will provide a broad physics program including a wide variety of topics, including:
 - Conventional neutrino oscillations Nucleon decay
 - Exotic neutrino oscillations
 - Neutrino interaction physics
 - Precision weak physics

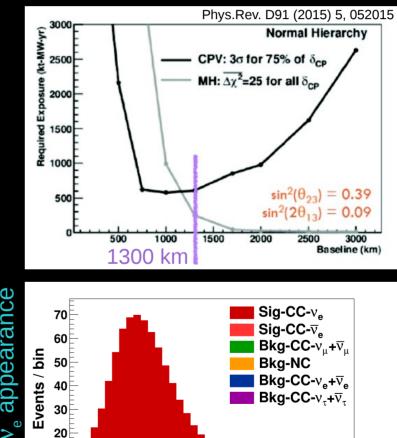
- Core collapse supernovae
- Nuclear physics
- Physics beyond the SM
- Optimization of the DUNE experimental design in progress²⁶


Backup Slides

Overview

- Physics potential of current v oscillation experiments
- The DUNE experimental setup
- The physics of DUNE
- The plan for DUNE infrastructure
- Inputs from the intermediate neutrino program
- Conclusions

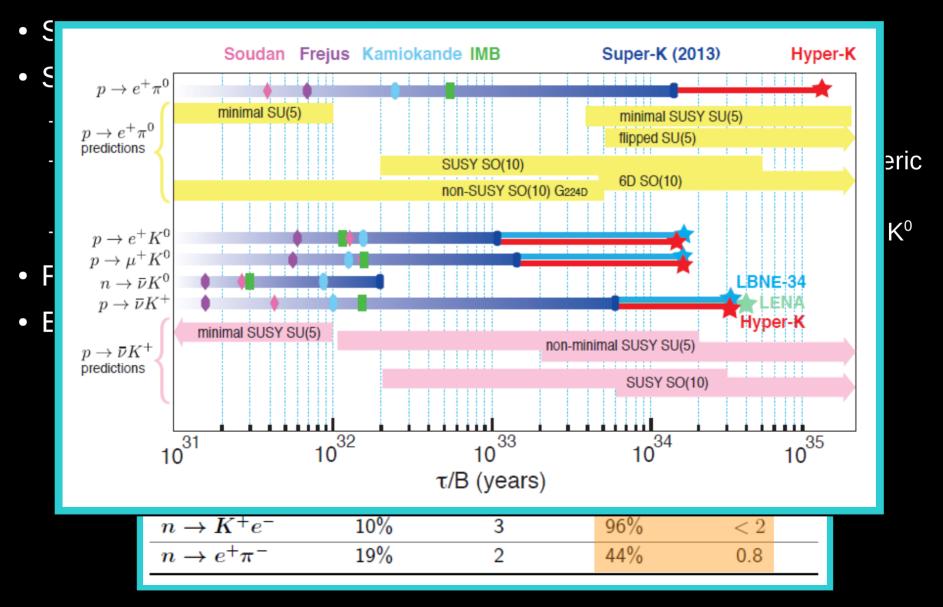
Unanswered Questions


- What are the v masses?
- Are v their own antiparticle?
- What is the v mass ordering?
- Is there CP violation (CPV) in the lepton sector, and what is the value of $\delta_{\rm cp}?$
- What is the θ_{23} octant?
- Do protons decay?

DUNE and LBNF

- Detectors and science collaboration will be managed separately from the neutrino facility and infrastructure
- Long-Baseline Neutrino Facility (LBNF)
 - Neutrino beam line
 - Near detector complex (but not the ND)
 - Far site (Sanford Lab) conventional facilities; detector hall, cryogenic systems
 - Operating costs for all of the above
- Deep-Underground Neutrino Experiment (DUNE)
 - Definition of scientific goals and design requirements for all facilities
 - The Near and Far Detectors
 - The scientific research program
- Close and continuous coordination between DUNE and LBNF will be required

- DUNE is designed to provide a broad program of v oscillation physics, v interaction physics, proton decay, supernova physics, and BSM physics Normal Hierarchy
- Oscillation Physics:
 - Baseline of 1300 km
 - A megawatt class beam covering the 1st and 2nd oscillation maxima
 - A highly capable ND to constrain the FD event rate prediction
 - A large (40 kt), high resolution
 FD deployed deep underground
 - Exposure of 6-12 yr with \sim 50% / 50% v / v running
 - Sensitivity to $\delta_{\rm cp}$ and the MH in the same experiment

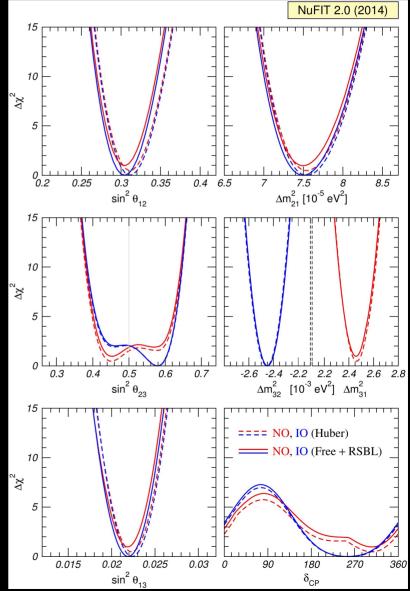


1 2 3 4 5 6 7 8 9 10 Reconstructed Neutrino Energy [GeV]

10

Ω

The Physics of DUNE: Underground Physics: Proton Decay

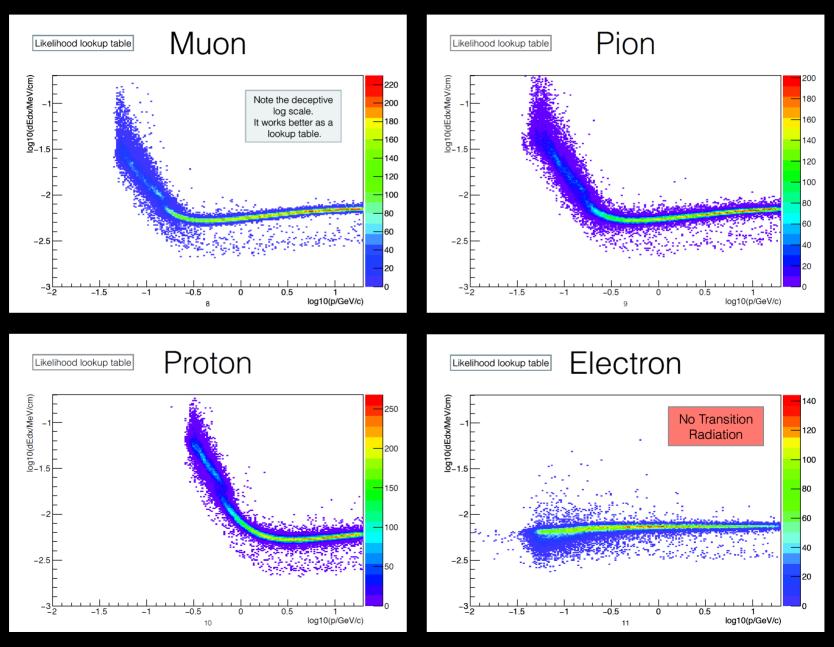

32

The Physics of DUNE: Underground Physics: Atmospheric v

- Low energy thresholds gives superior L/E resolution
- Fully reconstruct – Low missing p_{T} in Atmospheric Neutrinos Good sensitivity to LAr Detector Simulation Sensitivity (σ=√Δχ²) ο Φ ο Mass Hierarchy Determination Combine with acc 'sics measurements Sensitive to PMN: Expect ~14k cont $1 v_{u}$ - like events for a Normal Hierarchy Inverted Hierarchy 350kt-yr exposure Input Parameters: $\sin^2\theta_{23}=0.4$, $\sin^2\theta_{13}=0.0242$, $\delta_{CP}=\pi$ $1/2(\Delta m_{32}^2 + \Delta m_{31}^2) = \pm 2.4 \times 10^{-3} eV^2$ Atmospheric Ne Events / 350 kt-yrs 00 00 008 009 008 LAr Detector Si 0 200 400 600 800 0 Fiducial Exposure (kt-yrs) g 0.4 Catio Statistical Uncertainty 0.0 10^{4} 10^{2} 10^{2} 10 10^{3} 10^{3} 10 Reconstructed L, / E, (km/GeV) Reconstructed L, / E, (km/GeV)

The Current State of v Oscillation Measurements

- PMNS matrix, factorized
- Numu \rightarrow nue oscillation probability
- NuFit14 results



NuFit: http://www.nu-fit.org/?q=node/92

The Physics of DUNE: Near Detector Physics

- The high resolution fine grained tracker (FGT) required for DUNE oscillation physics will allow for a multitude of v and other weak interaction physics measurements
- High statistics with excellent particle ID and reconstruction will allow for World leading measurements
- Full phase space differential measurements from 4π coverage
- Precision cross section measurements of exclusive and inclusive channels, including many rare processes
- Variety of nuclear targets will help disentangle nuclear effects (both the nuclear initial state and final state interactions) from ν interaction physics
- Precision electroweak and isospin measurements
- Exotic physics searches including heavy sterile neutrinos, light dark matter searches, and large Δm^2 sterile v oscillations

FGT dE/dx Profiles

VALOR DUNE: Final state samples

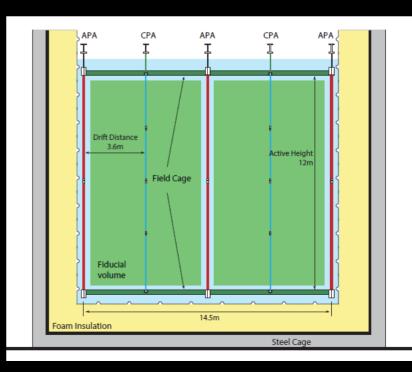
2016a (2nd pass-through)

- ν_{μ} CC
 - 1. 1-track QE enhanced $(\mu^{-} \text{ only})$ 2. 2-track QE enhanced $(\mu^{-} + p)$ 3. $1\pi^{\pm} (\mu^{-} + 1\pi^{\pm} + X)$ 4. $1\pi^{0} (\mu^{-} + 1\pi^{0} + X)$ 5. $1\pi^{\pm} + 1\pi^{0} (\mu^{-} + 1\pi^{\pm} + 1\pi^{0} + X)$ 6. Other
- Wrong-sign ν_{μ} CC
 - 7. Inclusive $(\mu^+ + X)$
- $\nu_e CC$
 - 8. Inclusive $(e^- + X)$
- NC
 - 9. Inclusive

2016b (3rd pass-through)

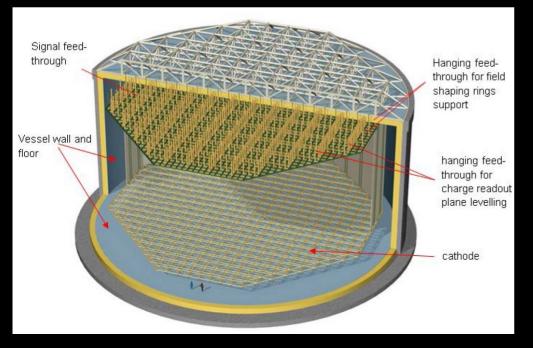
FHC

+ RHC


Lorena Escudero

VALOR DUNE, May 2016

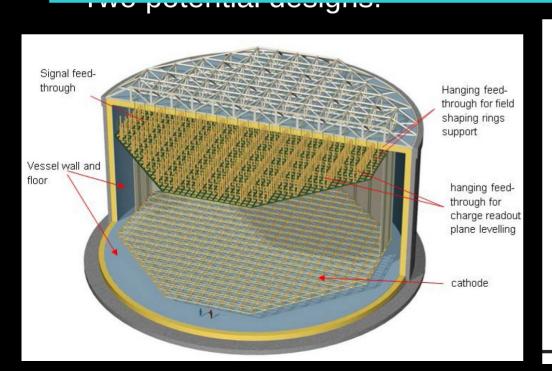
- v_u CC 1. 1-track 0π (μ^- only) 2. 2-track 0π (μ^- + nucleon) 3. N-track $0\pi (\mu^- + (>1))$ nucleons) 4. 3-track Δ -enhanced ($\mu^- + \pi^+ + p$, with $W_{reco} \approx 1.2$ GeV) 5. $1\pi^{\pm} (\mu^{-} + 1\pi^{\pm} + \mathbf{X})$ 6. $1\pi^0 (\mu^- + 1\pi^0 + X)$ 7. $1\pi^{\pm} + 1\pi^{0} (\mu^{-} + 1\pi^{\pm} + 1\pi^{0} + \mathbf{X})$ 8. Other • Wrong-sign ν_{μ} CC 9. $0\pi (\mu^+ + X)$ 10. $1\pi^{\pm} (\mu^{+} + \pi^{\pm} + X)$ 11. $1\pi^0 (\mu^+ + \pi^0 + \mathbf{X})$ 12. Other • v. CC 13. $0\pi (e^- + X)$ 14. $1\pi^{\pm} (e^{-} + \pi^{\pm} + X)$ 15. $1\pi^0 (e^- + \pi^0 + X)$ 16. Other NC 17. 0π (nucleon(s)) FHC 18. $1\pi^{\pm} (\pi^{\pm} + X)$ 19. $1\pi^0 (\pi^0 + X)$ + RHC 20. Other ve
 - 21. $\nu_e + e^-$ elastic
 - 22. Inverse muon decay $\bar{\nu}_e + e^- \rightarrow \mu^- + \bar{\nu}_\mu$

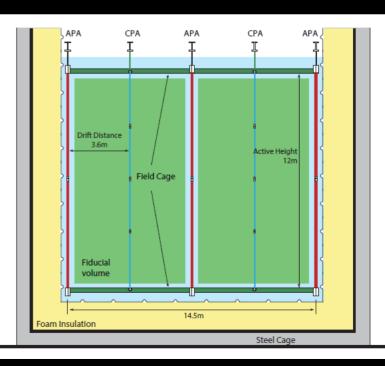

Experimental Infrastructure: The DUNE Far Detector

- Heart of a deep underground neutrino and nucleon decay observatory
- Liquid Argon (LAr) Time Projection Chamber (TPC) with a 40 kt fiducial mass
- Staged construction with the goal of the first 10 kt by 2021/22
- Two potential designs:
- Single phase
 - Current reference design
 - Based on ICARUS design
 - Horizontal drift ~3.6 m
 - Wire pitch of 5 mm
 - Detection and electronics in liquid
 - Modular approach
 - Well known cost and schedule

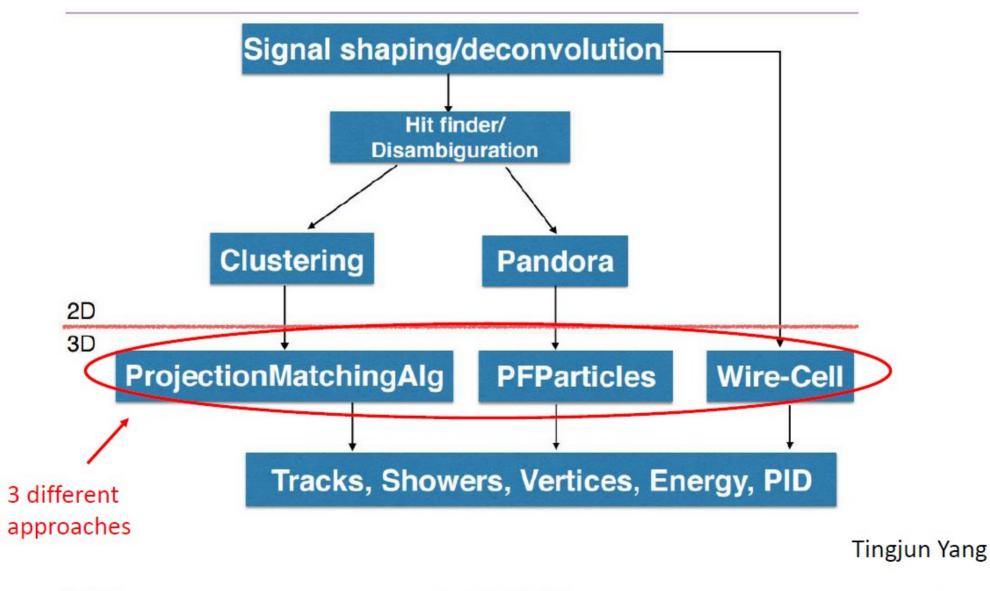
Experimental Infrastructure: The DUNE Far Detector

- Heart of a deep underground neutrino and nucleon decay observatory
- Liquid Argon (LAr) Time Projection Chamber (TPC) with a 40 kt fiducial mass
- Staged construction with the goal of the first 10 kt by 2021/22
- Two potential designs:

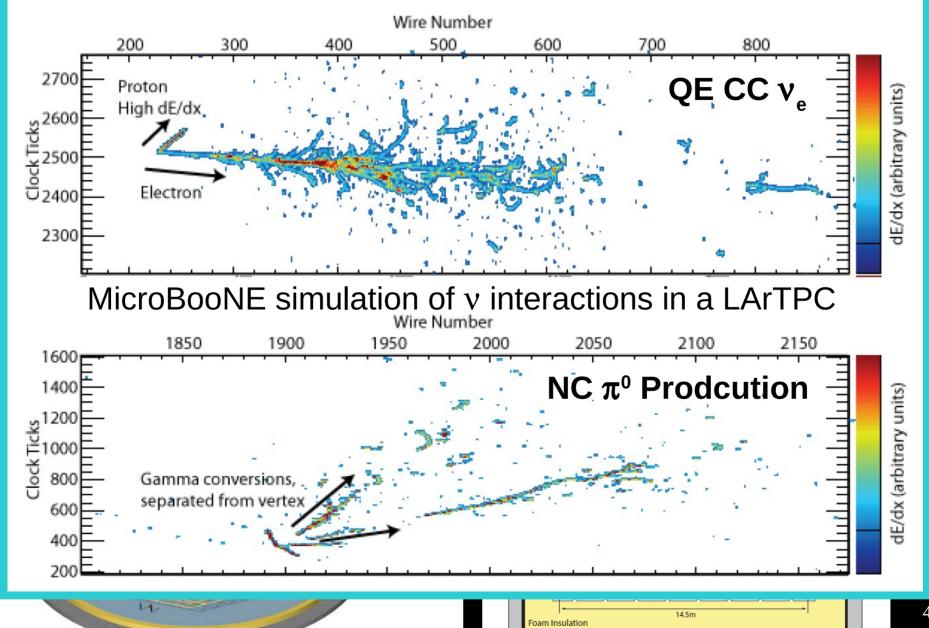



- Dual phase
 - Alternate design
 - New technique; signal amplification
 - Vertical drift ~10 20 m
 - Detection and electronics in gas
 - Adaptable to cryostat shape
 - Low thresholds, high S/N ratio
 - Pitch of 3 mm or less

Experimental Infrastructure: The DUNE Far Detector


Lloort of a doop updargraupd poutring and public doop'

The CERN Neutrino Platform is working to build ~6 m³ prototype detectors for both designs, and deploy them in CERN a charged particle test beam

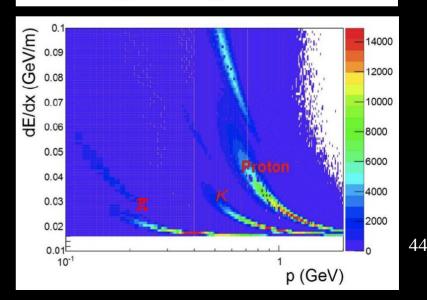


Reminder: Reconstruction Chain

Experimental Infrastructure:

Sig

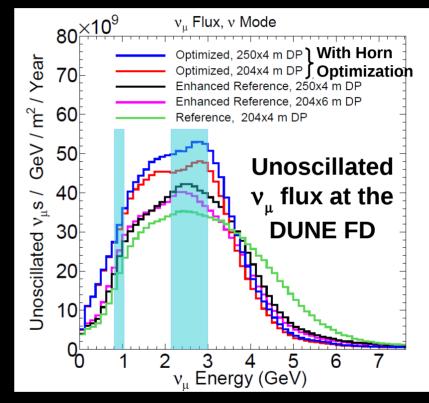

thro


Vesse floor

Steel Cage

Experimental Infrastructure: The DUNE Near Detector

- Detector requirements
 - Constrain flux rate and shape to the few % level
 - Charge (v/\overline{v}) separation
 - Hadronic shower composition
 - Ar40 & Ca40 nuclei
 - v/\overline{v} differences
 - Constrain relevant cross sections
 - Provide a wealth of physics measurements
- Detector Options
 - Fine Grained Tracker (reference)
 - LArTPC
 - High pressure GArTPC
 - Hybrid detector (ArTPC + FGT)


Experimental Infrastructure: The FNAL → SURF Beam

Beam requirements

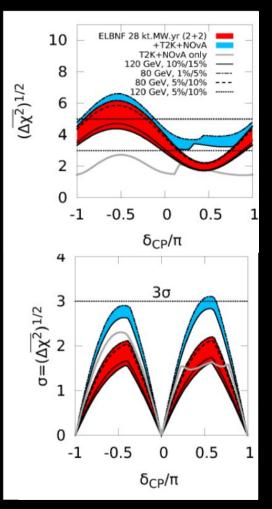
- 1.2 MW, upgradeable to 2.3 MW (120GeV protons):
 - POT/pulse: 7.5x10¹³ p
 - Cycle time: 1.2 sec
 - Uptime: 56%
- Direction 5.8° downward
- Wide-band spectrum covering the 1st and 2nd oscillation maxima

Upgrades from reference design

- PIPII: increase p throughput
- Horn current: 200 kA \rightarrow 230 kA
- Target design: C \rightarrow Be, shape
- Decay Pipe: 204 m \rightarrow 250 m
- Horn design optimization

- Can use 60 80 GeV protons
 - Increase flux at 2nd max
 - Reduces high energy tail
 - Need more POT to maintain power

The Path to the Full Exposure


- A "Conceptual Design Review" is being held next month
- Goal: Install the first 10 kt underground on the 2021/22 timescale
 - Begin underground physics program, and engage collaboration
 - Test all aspects of the the underground installation and detector performance
 - Ready for beam physics program when beam turns on
- Remaining modules, up to 40 kt, installed in rapid succession
 - Initial 10 kt installation provides infrastructure for required conventional facilities
 - Opportunity for combination of multiple detector technologies
- Leverage intermediate neutrino program to inform design, and improve detector performance
- Construction of a fine grained near detector
- Collect beam data by 2024, and run for ~10 exposure-yr

Input From the Intermediate v Program

- In addition to the in-situ measurements from the beamline monitoring, and the DUNE ND and FD, many external measurements are required
- NA61/SHINE and MIPP will provide data for hadron production model tuning used in beamline simulations
- Electron scattering at JLab will provide data on the nuclear structure of Ar
- Test beam LArTPCs: CAPTAIN, LArIAT, ProtoDUNE (single & double phase)
 - High statistics data on detector response required for calibrations
 - Allows for in-situ tests of detector components and comparison of detector technologies
- LArTPCs in neutrino beams: MicroBooNE, SBND, and ICARUS
 - Test and refine reconstruction algorithms and calibration methods
 - Measure cross sections and nuclear effects on Ar40
- Other cross section experiments like Minerva and ND280 (T2K) will map out cross sections over a wide energy range and nuclear targets
- Neutrino event generator development and tuning

Physics with the First 10 kt* *Assuming a 50 kt-yr exposure

- Baryon number violation
 - 50 kt-yr will competitive limits / signal events for p \rightarrow K+ \overline{v}
 - Early measurements of background rates for other decay channels
- Core-collapse supernova neutrinos
 - Largest detector sensitive to v_e via v_e +Ar⁴⁰ \rightarrow e+K^{*40}
 - Prompt supernova alert due to early $\nu_{\rm e}$ production
 - 100's to ~1,000 events at ~10 kpc
- Atmospheric neutrinos
 - Provide ~2500 $\nu_{\rm e}$ CC events
 - Test reconstruction and allow for leptonic and hadronic energy scale calibrations
- Accelerator neutrino (right)
 - Expected events: v_e 94±23, \overline{v}_e 23±5 (NH, δ_{cp} = [- π /2, 0, π /2])
 - Improved MH sensitivity over NOvA+T2K, even better combined
 - CPV sensitivity commensurate with NOvA+T2K, better combined

Novel Features of the Experimental Design

- DUNE calls for unprecedented precision in a $\boldsymbol{\nu}$ experiment
- Achieving this precision will require hard work, innovation, and a start-of-the-art experimental design
- LArTPCs allows for high resolution of final state particle 4-momenta
 - The resolution $\delta_{\rm cp}$ largely limited by energy scale uncertainties which are limited by hadronic system reconstruction
 - Nearly background free to proton decay searches
 - Access to v_e flux from supernovas
- The DUNE FGT ND