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The Deep Underground Neutrino 
Experiment  

➔ September 2015 collaboration meeting at FNAL
➔ 886 Collaborators
➔ 153 institutions

➔ 26+ countries
➔ Members from LBNE, LBNO and more
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Potential of Current Experiments 
● T2K and NOA will continue to run over next 

several years

– measure e appearance and  disappearance

– Run in both  mode and  mode

– Provide sensitivity to CPV and MH determination

– A combined analysis has “indication” potential

● Reactor experiments

– Continue to constrain 13 from e disappearance

– Constraints help T2K and NOA 

● MH determination may come from several 
sources like INO, PINGU, JUNO, and 0

● SK will continue to asymptotically approach 
limits on nucleon decay, and atmospheric 
neutrino measurements PTEP 2015 (2015) 4, 043C01
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– Constraints help T2K and NOA 

● MH determination may come from several 
sources like INO, PINGU, JUNO, and 0

● SK will continue to asymptotically approach 
limits on nucleon decay, and atmospheric 
neutrino measurements PTEP 2015 (2015) 4, 043C01

To measure 
cp

 and determine 
the MH to high precession in a single

experiment will require a next generation 
long-baseline neutrino experiment



  5

The DUNE Experimental Setup

● DUNE is designed to provide a broad program of:

–  oscillation physics

–  interaction physics 

– Proton decay

– Supernova physics 

– BSM physics
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The DUNE Experimental Setup

● Oscillation Physics:
– Baseline of 1300 km

– A megawatt class beam covering 
the 1st and 2nd oscillation maxima

– A highly capable ND to constrain 
the FD event rate prediction
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The DUNE Experimental Setup

● Oscillation Physics:
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the FD event rate prediction

1300 km

Phys.Rev. D91 (2015) 5, 052015 
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The DUNE Experimental Setup

● Oscillation Physics:
– Baseline of 1300 km

– A large (~ 40 kt), high resolution 
FD deployed deep underground

– Exposure of 6-12 yr with             
~ 50% / 50% /  running
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The DUNE Experimental Setup

D
U

N
E

 
e 

ap
pe

ar
an

ce



  10

The DUNE Experimental Setup

1300 km

Phys.Rev. D91 (2015) 5, 052015 

Number of events in the 0.5 < E < 8.0 GeV range, assuming 150 kt-MW-yr in each of 

the  and  beam modes, 
cp

 = 0.0, and the NuFit 2014 oscillation parameters.
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The Physics of DUNE:
Long-Baseline Physics: 

cp
 and CPV

● DUNE measurement of cp

– Resolution on cp gets better as sin(cp)→0

– Range on cp resolution from 6°-10°     
(~10 yr exposure) 

● Sensitivity to CPV strongly depends on:
– Statistics (thus the beam intensity, detector 

mass, run time)

– The true value of sin223, cp, and the MH

– Resolution on cp near sin(cp) = 0

– Ability to constrain systematic 
uncertainties 

1
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The Physics of DUNE:
Long-Baseline Physics: MH and the Rest

● DUNE will exclude the wrong MH at 
the 99% C.L. for all values of cp

● The 99% C.L. result will come sooner 
for more favorable cp values

● DUNE will also constrain sin2(13), 
sin2(23), and M2

31

● And has the potential to determine the 
23 octant, and measure  appearance

● DUNE long-baseline physics goals 
also include: 
– Over-constrain the PMNS matrix

– Search for exotic physics like NSI, LRI, 
CPT/Lorentz violation, compact extra 
dimensions, and sterile neutrinos
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The Physics of DUNE:
Underground Physics: Proton Decay

● Signature of Baryon number violation
● Superior detection efficiency for K production modes

– K PID through dE/dx

– High spatial resolution and low energy thresholds → rejection atmospheric 
backgrounds

– High Efficiency (>90%), high purity selections for p → +K+ and p → +K0

● Requires suitable triggering systems
● Efficiencies and background rates per Mt-yr:
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The Physics of DUNE:
Underground Physics: Atmospheric 

● Low energy thresholds gives superior L/E resolution
– Fully reconstruct hadronic system

– Low missing pT improves angular resolution

● Good sensitivity to MH and 23 octant

● Combine with accelerator  data to improve oscillation physics measurements

● Sensitive to PMNS extensions / new physics

● Expect ~14k contained e- like events, and ~20k contained - like events for a 
350kt-yr exposure
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The Physics of DUNE:
Underground Physics: Supernova Bursts

● Requires suitable triggering systems

● Other experiments rely on e capture via 
inverse  decay

● DUNE will be able to observe the e flux 
through capture on Ar40
– Unique sensitivity to the electron flavor 

component of the flux

– Provides information on time, energy and 
flavor structure

– Rates depend on core collapse model,  
oscillation models, and distance.

– Expect >3,000 events from a supernova at 
10 kpc 

Peak from 
e
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DUNE Task Forces
● Cross-working-group teams charged with simulating, evaluating, and 

optimizing the performance of the three main components of the 
experimental design 

● Beam Optimization

● Near Detector Optimization                • Far Detector Optimization

Fine-Grained 
Tracker

High-Pressure
 GAr TPC
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Beam Optimization Task Force

● Physics sensitivities
● Optimal run plan (/)
● Cost implications
● Alternate metrics 
● Alternate optimization 

routines

● Charge: 
– Physics driven optimization of the beam line (target, horns, etc)

– Study alternate designs and develop a cost benefit analysis

● Status:
– Design has been optimized for multiple component sets (2 vs. 3 horns, 

multiple target designs, etc)

– Realistic design based optimizations in advanced stages

– Detailed studies of the design are in progress:

BOTF Interim Report
L. Feilds, A. Weber
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Beam line Genetic Optimization
● Optimizations studies conducted for 

the DUNE CDR
● Genetic optimization of:

– Target and horn dimensions

– Proton momentum

– Decay pipe length

● Metric based on CPV sensitivity

CDR
Optimized 

Beam

Horn 1



  20

Beam line Genetic Optimization
● Task force is building on the 

success of the CDR studies
● Optimization of 2 vs 3 horn design 
● Studies of several target designs
● Shifted focus to engineering 

feasibility and design flexibility

Preliminary

Preliminary

Horn 1 Horn 2 Horn 3

BOTF Interim Report

BOTF Interim Report
BOTF Interim Report
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Near Detector Task Force

● Charge:
– Develop full GEANT4 simulation of 3 technology options

● Fine-Grained Tracker (FGT)
● Modular Liquid Argon TPC (LAr TPC / ArgonCube)
● High-Pressure Gaseous Argon TPC (HP GAr TPC)

– Develop end-to-end simulation and analysis chain to                         
evaluate the impact of each ND on CPV sensitivity

● Status:
– Each step in the simulation and analysis chain, and                         

interfaces between each step, have been developed

– Full GEANT4 simulations have been completed

– The VALOR framework is used for ND fits and a DUNE                       
specific oscillation analysis has been developed

– Progress on event reconstruction is hard fought

– Detector uncertainties represent the next (and last) big challenge

ArgonCube

SPSC-I-243
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VALOR Fits to ND Samples
● Inputs (examples below):

– Covariance matrix of priors on flux, xsec, and detector uncertainties

– Topologically classified event samples

● Fit ND event samples to toy data ( > 150 parameters )
● Output: covariance matrix containing constraints on  input 

parameters → FD oscillation fits
Preliminary Preliminary

T
he

 V
A

LO
R

 G
ro

up

T
he

 V
A

LO
R

 G
ro

u
p



  23

Far Detector Optimization

● Charge:
– Full GEANT4 simulation and reconstruction for reference and 

alternate designs

– Optimization studies for FD components and configurations

– Evaluate full range of FD physics topics 
● Oscillation: accelerator, atmospheric
● Non-oscillation: proton decay, supernova bursts

● Status:
– Detector simulation in advanced stages, including 2-phase

– Recent non-accelerator event generation improvements

– Reconstruction and PID algorithms in development

– First round of optimization studies using full simulation tools underway

– More progress on reconstruction required to draw conclusions 
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LAr TPC Reconstruction
● Full simulation of beam , atmospheric , PDK, and Supernova events

● Huge progress has been made on reconstruction
– Three reconstruction packages (PMA, Pandora, WireCell)

– Exploring other options including machine learning techniques

– Shower / track selection, particle ID, momentum and angle reconstruction

● Use of centralized software tools and infrastructure is crucial
– LArSoft allows for easy collaboration with other LAr TPC experiments

PMA

Aaron Higuera

Electron
Gamma

Dorota Stefan & Robert Sulej
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Far Detector Options and R&D
● Two FD detector options:
● Single Phase                        • Dual Phase

– 35 ton (completed)                    –  311 (coming soon)

– ProtoDune (2018)                     –  ProtoDune (2018)

– Far Detector (1st module)           –  Far Detector

● Important contribution from SBN Program detectors

DUNE CDR Volume 4 (http://arxiv.org/pdf/1601.02984v1.pdf)

Single phase, 2 modules Dual phase, 1 module
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Conclusions
● LBNF will include:

– A megawatt class  beam

– Conventional facilities for near and far detectors 

● The DUNE experiment will build 4 x 10 kt LAr TPCs and a 
highly capable ND at LBNF

● DUNE will determine the MH and measure cp

● DUNE will provide a broad physics program including a 
wide variety of topics, including:
● Conventional neutrino oscillations
● Exotic neutrino oscillations
● Neutrino interaction physics
● Precision weak physics

● Nucleon decay
● Core collapse supernovae
● Nuclear physics
● Physics beyond the SM

● Optimization of the DUNE experimental design in progress
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Overview

● Physics potential of current  oscillation 
experiments

● The DUNE experimental setup
● The physics of DUNE
● The plan for DUNE infrastructure
● Inputs from the intermediate neutrino program
● Conclusions
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Unanswered Questions

● What are the  masses?

● Are  their own 
antiparticle?

● What is the  mass 
ordering?

● Is there CP violation 
(CPV) in the lepton 
sector, and what is the 
value of cp?

● What is the 23 octant?

● Do protons decay?
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DUNE and LBNF

● Detectors and science collaboration will be managed separately from 
the neutrino facility and infrastructure

● Long-Baseline Neutrino Facility (LBNF)
– Neutrino beam line

– Near detector complex (but not the ND)

– Far site (Sanford Lab) conventional facilities; detector hall, cryogenic systems

– Operating costs for all of the above 

● Deep-Underground Neutrino Experiment (DUNE)
– Definition of scientific goals and design requirements for all facilities

– The Near and Far Detectors

– The scientific research program

● Close and continuous coordination between DUNE and LBNF will be 
required
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The DUNE Experimental Setup

● Oscillation Physics:
– Baseline of 1300 km

– A megawatt class beam covering 
the 1st and 2nd oscillation maxima

– A highly capable ND to constrain 
the FD event rate prediction

– A large (40 kt), high resolution 
FD deployed deep underground

– Exposure of 6-12 yr with    
~50% / 50% /  running

– Sensitivity to cp and the MH in 
the same experiment

● DUNE is designed to provide a broad program of  oscillation 
physics,  interaction physics, proton decay, supernova physics, 
and BSM physics

1300 km

Phys.Rev. D91 (2015) 5, 052015 
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The Physics of DUNE:
Underground Physics: Proton Decay

● Signature of Baryon number asymmetry
● Superior detection efficiency for K production modes

– K PID through dE/dx

– High spatial resolution and low energy thresholds → rejection atmospheric 
backgrounds

– High Efficiency (>90%), high purity selections for p → +K+ and p → +K0

● Requires suitable triggering systems
● Efficiencies and background rates per Mt-yr:
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● Low energy thresholds gives superior L/E resolution
– Fully reconstruct hadronic system

– Low missing pT improves angular resolution

● Good sensitivity to MH and 23 octant

● Combine with accelerator  data to improve oscillation physics measurements

● Sensitive to PMNS extensions / new physics

● Expect ~14k contained e- like events, and ~20k contained - like events for a 
350kt-yr exposure

The Physics of DUNE:
Underground Physics: Atmospheric 
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The Current State of  Oscillation 
Measurements

● PMNS matrix, factorized
● Numu → nue oscillation 

probability
● NuFit14 results

NuFit: http://www.nu-fit.org/?q=node/92
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The Physics of DUNE:
Near Detector Physics

● The high resolution fine grained tracker (FGT) required for DUNE 
oscillation physics will allow for a multitude of  and other  weak 
interaction physics measurements

● High statistics with excellent particle ID and reconstruction will allow for 
World leading measurements

● Full phase space differential measurements from 4 coverage

● Precision cross section measurements of exclusive and inclusive 
channels, including many rare processes

● Variety of nuclear targets will help disentangle nuclear effects (both the 
nuclear initial state and final state interactions) from  interaction physics

● Precision electroweak and isospin measurements
● Exotic physics searches including heavy sterile neutrinos, light dark 

matter searches, and large m2 sterile  oscillations
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FGT dE/dx Profiles
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VALOR Fits to ND Samples

Lorena Escudero
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Experimental Infrastructure:
The DUNE Far Detector

● Heart of a deep underground neutrino and nucleon decay 
observatory

● Liquid Argon (LAr) Time Projection Chamber (TPC) with a 40 kt 
fiducial mass

● Staged construction with the goal of the first 10 kt by 2021/22
● Two potential designs:

➔ Single phase
– Current reference design

– Based on ICARUS design

– Horizontal drift ~3.6 m

– Wire pitch of 5 mm

– Detection and electronics in liquid

– Modular approach

– Well known cost and schedule

● Dual phase
– Alternate design

– New technique; signal amplification

– Vertical drift ~20 m

– Detection and electronics in gas

– Adaptable to cryostat shape

– Low thresholds, high S/N ratio

– Pitch of 3 mm or less
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Experimental Infrastructure:
The DUNE Far Detector

● Heart of a deep underground neutrino and nucleon decay 
observatory

● Liquid Argon (LAr) Time Projection Chamber (TPC) with a 40 kt 
fiducial mass

● Staged construction with the goal of the first 10 kt by 2021/22
● Two potential designs:

➔ Single phase
– Current reference design

– Based on ICARUS design

– Horizontal drift ~3.6 m

– Wire pitch of 5 mm

– Detection and electronics in liquid

– Modular approach

– Well known cost and schedule

➔ Dual phase
– Alternate design

– New technique; signal amplification

– Vertical drift ~20 m

– Detection and electronics in gas

– Adaptable to cryostat shape

– Low thresholds, high S/N ratio

– Pitch of 3 mm or less

The CERN Neutrino Platform is working to build ~6 m3 
prototype detectors for both designs, and deploy them 

in CERN a charged particle test beam
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Experimental Infrastructure:
The DUNE Far Detector

● Heart of a deep underground neutrino and nucleon decay 
observatory

● Liquid Argon (LAr) Time Projection Chamber (TPC) with a 40 kt 
fiducial mass

● Staged construction with the goal of the first 10 kt by 2021/22
● Two potential designs:

➔ Single phase
– Current reference design

– Based on ICARUS design

– Horizontal drift ~3.6 m

– Wire pitch of 5 mm

– Detection and electronics in liquid

– Modular approach

– Well known cost and schedule

➔ Dual phase
– Alternate design

– New technique; signal amplification

– Vertical drift ~20 m

– Detection and electronics in gas

– Adaptable to cryostat shape

– Low thresholds, high S/N ratio

– Pitch of 3 mm or less

MicroBooNE simulation of  interactions in a LArTPC

QE CC 
e

NC 0 Prodcution
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Experimental Infrastructure:
The DUNE Near Detector

● Detector requirements
– Constrain flux rate and shape to the 

few % level

– Charge (/) separation

– Hadronic shower composition
● Ar40 & Ca40 nuclei
● / differences

– Constrain relevant cross sections 

– Provide a wealth of physics 
measurements

● Detector Options
– Fine Grained Tracker (reference)

– LArTPC

– High pressure GArTPC

– Hybrid detector (ArTPC + FGT)
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Experimental Infrastructure:
The FNAL → SURF Beam

● Beam requirements
– 1.2 MW, upgradeable to 2.3 MW 

(120GeV protons):
● POT/pulse: 7.5x1013 p
● Cycle time: 1.2 sec
● Uptime:       56%

– Direction 5.8° downward

– Wide-band spectrum covering the 
1st and 2nd oscillation maxima

● Upgrades from reference design
– PIPII: increase p throughput

– Horn current: 200 kA → 230 kA

– Target design: C → Be, shape

– Decay Pipe: 204 m → 250 m

– Horn design optimization

● Can use 60 - 80 GeV protons
– Increase flux at 2nd max

– Reduces high energy tail

– Need more POT to maintain power

Unoscillated
 flux at the

DUNE FD

With Horn 
Optimization
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The Path to the Full Exposure

● A “Conceptual Design Review” is being held next month
● Goal: Install the first 10 kt underground on the 2021/22 timescale

– Begin underground physics program, and engage collaboration

– Test all aspects of the the underground installation and detector performance

– Ready for beam physics program when beam turns on

● Remaining modules, up to 40 kt, installed in rapid succession
– Initial 10 kt installation provides infrastructure for required conventional facilities

– Opportunity for combination of multiple detector technologies

● Leverage intermediate neutrino program to inform design, and improve 
detector performance

● Construction of a fine grained near detector
● Collect beam data by 2024, and run for ~10 exposure-yr
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Input From the Intermediate  
Program

● In addition to the in-situ measurements from the beamline monitoring, and 
the DUNE ND and FD, many external measurements are required

● NA61/SHINE and MIPP will provide data for hadron production model tuning 
used in beamline simulations

● Electron scattering at JLab will provide data on the nuclear structure of Ar
● Test beam LArTPCs: CAPTAIN, LArIAT, ProtoDUNE (single & double phase) 

– High statistics data on detector response required for calibrations

– Allows for in-situ tests of detector components and comparison of detector 
technologies

● LArTPCs in neutrino beams: MicroBooNE, SBND, and ICARUS
– Test and refine reconstruction algorithms and calibration methods

– Measure cross sections and nuclear effects on Ar40

● Other cross section experiments like Minerva and ND280 (T2K) will map out 
cross sections over a wide energy range and nuclear targets

● Neutrino event generator development and tuning 
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Physics with the First 10 kt* 
*Assuming a 50 kt-yr exposure

● Baryon number violation

– 50 kt-yr will competitive limits / signal events for p → K+
– Early measurements of background rates for other decay channels

● Core-collapse supernova neutrinos

– Largest detector sensitive to e via e+Ar40 → e+K*40

– Prompt supernova alert due to early e production

– 100's to ~1,000 events at ~10 kpc

● Atmospheric neutrinos

– Provide ~2500 e CC events

– Test reconstruction and allow for leptonic and hadronic energy 
scale calibrations

● Accelerator neutrino (right)

– Expected events: e 94±23, e 23±5 (NH, cp = [-/2, 0, /2])

– Improved MH sensitivity over NOA+T2K, even better combined

– CPV sensitivity commensurate with NOA+T2K, better combined
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Novel Features of the Experimental 
Design

● DUNE calls for unprecedented precision in a  
experiment

● Achieving this precision will require hard work, 
innovation, and a start-of-the-art experimental design

● LArTPCs allows for high resolution of final state particle 
4-momenta

– The resolution cp largely limited by energy scale uncertainties 
which are limited by hadronic system reconstruction

– Nearly background free to proton decay searches

– Access to e flux from supernovas

● The DUNE FGT ND 
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