DUNE Requirements for LArSoft

Tom Junk, Amir Farbin

Context

- There seems to be general anxiety regarding the readiness and effectiveness of automatic reconstruction for LArTPC.
 - Not necessarily accounting for the incredible progress in the past year...
 - Easy topic to point to during reviews...
- LArSoft Requirements workshop (Oct 19-20) https://indico.fnal.gov/conferenceDisplay.py?confld=10394
 - We should differentiate between:
 - Technical requirements: e.g. OS support, Memory, etc...
 - Physics requirement: e.g. tracking or PID efficiency, energy resolution. Disambiguation?
 - My opinion: Not clear if these are really software or detector requirements. SW should do as well as the detector allows.
 - Note that LArSoft already meets many requirements. Nonetheless we need to identify them.
- While LArSoft team has provided core and technical elements, reconstruction algorithms have been developed inside experiments.
 - Need to understand the model of developing reconstruction within multiple experiments.
 - Who ensures that alg from experiment X is properly incorporated into LArSoft and used by other experiments?
 - Where does the experiment/LArSoft boundary lie? What do we expect from LArSoft?
 - How do we properly give credit where it's due? Essential to the health of the long term project.

Context/Scope...

- My perspective: Coming from the LHC I need to constantly renormalize my vision.
- Keep in mind: Data sizes and reconstruction rates are not the necessarily the appropriate metrics to assess the software performance.
 - Roughly speaking, DUNE data will be ~ LHC Run 1... we will not be hardware limited in 2025.
 - With zero-suppression, cosmic and ³⁹Ar rejection, DUNE beam spill data is few TB/ year.
 - Caveats are:
 - protoDUNE and Near Detector will have much higher data rates.
 - We may adopt some ambitious Supernovae/low energy plan.

					Turn on ROOT
		reduce	DAQ	reduce	compressio
		beam	group's	drifts, <1	n, DC
	Nominal	intensity	#drifts	duty	readout
drift time (ms)	2.25	2.25	2.25	2.25	2.25
spill time per rep (s)	9	9	9	9	9
beam rep (s)	45	45	45	45	45
particles per second	200	148	200	200	200
drifts readout	3	3	2.4	2.2	2.2
cosmic size (MB)	1	1	1	1	0.1
cosmic rate (/ms)	10	10	10	10	10
trig eff	1	1	1	1	1
det duty	1.35	0.999	1.08	0.99	0.99
muon/RO	67.5	67.5	54	49.5	49.5
RO size (MB)	67.5	67.5	54	49.5	4.95
inst rate (GB/s)	13.5	9.99	10.8	9.9	0.99
spill size (GB/spill)	121.5	89.91	97.2	89.1	8.91
avg rate (GB/s)	2.7	1.998	2.16	1.98	0.198
24h volume (TB)	233.28	172.6272	186.624	171.072	17.1072

- Analysis is really reconstruction: Unlike colliders, different physics will likely requires it's own fine-tuned reconstruction chain.
- Very different software development model that is distributed across many experiments.

Requirements

- Tom produced a first list of requirements...
- I'm presenting here my first attempt to organize and iterate. Needs a lot more input, thinking, work...
- Let's use this meeting to identify what we missed...
- Fundamental requirement:
 - Store, Simulate, Reconstruct, and Analyze Data from 35t, protoDUNE, Near Detector, and Far Detector all within same software framework.
- Where is LArSoft used? Online/offline...
 - ArtDAQ provides an online environment for DAQ and triggering(?)
 - Zero-Suppression probably done online,
 - But any higher-level triggering based on reconstruction is probably better suited for offline.
 - Running offline software online???

Data Requirements

- All data always readable: from first test beam to the end of the experiment plus post-experiment analysis time (estimated: 30 years for DUNE)...
 - Schema evolution: ability to evolve data products over time, yet still read old data. We should understand what ROOT supports.
 - Transient/Persistent Separation- Different representations of stored and in-memory data?
 - at some point we may need to review the underlying storage technology.
- Ability to fine-tune data content, for example:
 - raw::RawDigit entries only on a portion of channel, perhaps associated to specific tracks/clusters or with cosmics or Ar removed.
 - Support multiple data tiers e.g. Raw, Reco (aka ESD), Analysis (aka AOD)...
 - We will likely need the ability to (excuse the horrible ATLAS nomen-culture here)
 - Skim: store subset of events
 - Thin: store subset of objects in events
 - Slim: store subset of info inside objects
 - Augment: add arbitrary higher-level data to events and data products
- Store Object Association: e.g. Reco<->Truth map.

Data Requirements

- Flexibility to handle different data compression techniques like Huffman coding, Zero suppression, and other future ideas.
- Event-pick facility- ability to identify and navigate to events based on small set of parameters.
- Ability to split (in time/region), stitch, mix/overlay Events
- Ability to evolve and expand the Event Data Model, example
 - Wire cell needs a data product capable of holding charge+point info and which is not tied to a track
 - New data objects, perhaps composed of others, e.g. electron, pion, neutrino, ...
- Store *Truth* and associate Info at different levels (hit, tracks, electron, ...)
- Data instrumentation/monitoring: Keep track (for optimization?) of event counts and i/o statistics -- file counts, compression, bytes in/out, time used, data accessed (?)
- Ability to optimize data storage for speed and size.

Simulation & Reco

- Simulate and reconstruct a wide range of detectors within same framework:
 - Single-phase, dual-phase, and Gaseous TPC's.
 - Multiple TPCs: be able to stitch events spanning multiple TPCs.
 - Non-TPC detectors: Near Detector, Auxiliary Detectors
- Associate across (sub-)detectors (and performance metrics)
 - TPC/Photon
 - External Auxiliary Detectors
- Additional Features:
 - Space-charge sim/reco
 - Photon detector flash sim/reco
 - Space, time, and charge resolutions
 - Disambiguation
 - T0 finding/matching across detectors.
- No detector fiducial cuts should be made during the reconstruction, i.e. hits, tracks, or other objects should not be required to be within the TPC volume in the reconstruction stage.

Geometry

- Flexible geometry -- new experiments and configurations must be easy to model.
 - Easily establish and integrate non-LArTPC detectors.
 - Currently some things are a little hard-coded like the maximum number of wire planes in drift ionizaiton electrons and the number of different electric fields
 - Allow for alignment shifts (as-built and calibrated with cosmic or other alignment techniques)

Event Display

- Need different Event Displays:
 - Fast 2D event display, features
 - TPC navigation: next/prev TPC navigation thumbnails of TPC's (for fast drill-down), automatic selection of most active TPC, views with the most activity
 - Zoom, adjustable color palette, ...
 - Adjustable Noise cut?
 - 2D display w/ reconstructed objects
 - Display all levels of data: raw waveforms, intermediate "fixed" waveforms, deconvoluted/calibrated waveforms, hits, clusters, tracks, showers, vertices
 - Photon detector event display -- alongside TPC event display
 - 3D event display showing 3D space points and reconstructed objects
 - Scanning tools (recording user classification)

Infrastructure

- Documentation, tutorials, training, ...
- Build tools: Speed, Portability (multiple OSs), Optimized and Debug versions (debuggers)
- Code repository: Public availability. Backed up. Reliable (i.e. not susceptible to long downtime due to hardware failure or misconfiguration)
- Debugging tools.
- Be able run on laptops, GRID, ...
 - Code/release distribution
 - Access to databases
 - Access to data sources (e.g. xrootd)
- Book keeping and error reporting...

Databases

- We need implementations and/or interfaces for (not necessarily distinct)
 - Geometry? We'll eventually have survey and alignments.
 - Configuration- how we configured detector/trigger
 - Conditions- e.g. calibration parameters
 - Ambient- temperature, purity, ...
 - Meta-data- data type, ...

The Long view

- We are designing a experiment that will start in early/mid 2020s and run for decades... hardware/software will significantly evolve until then and during running.
 - Ideally we would be architecture independent- always be able to use newest tech
 - And optimizable for specific architectures.
 - Suggests perhaps decoupling high-level code from back-end.
- Significant increase of cores/CPU will affect us
 - Multi-core CPUs: we are quickly approaching 100's of cores/CPU. Running an instance of same job on each core, each processing it's own events won't work.
 - Not practical to have 4 GB/core...
 - Not enough bandwidth to memory...
 - Task Parallelization: e.g. lots of threads sharing same memory, but each processing a single event through an algorithm
 - Many-core Co-processors (possibly within CPU dye): GPUs/MiCs, FPGA, ASICs
 - Optimized for high throughput not low latency.
 - Requires different Parallelization model (Data Parallel) where many events are simultaneously processed in single algorithm.

The Long view

- HEP won't be able to rely on the embarrassingly parallel nature of our data processing...
 - We just many instance of same software processing different events.
 - DUNE computing requirements may minimal enough that we can not worry too much ...
 - Caveats are Wirecell and efficient use of HPCs
- Concurrency (simultaneously processing many events) is a hot topic. 2 types
 - Many threads processing one different event each
 - Algorithms processing many events at once.
- The LHC experiments are confronting this issue. Current focus on Task Parallelism:
 - CMS already has multi-threaded ART.
 - ATLAS using plans to build on Gaudi-Hive for Run 3.
 - There are schemes to push some algs to co-processors... but not fundamental in the design.
 - Data Parallelism is hard and rapidly evolving... strategy is not yet clear.
- We may think about making sure that the fundamental design of LArSoft is not incompatible with threading.
- We should consider that we may have to build completely new framework on the time-scale of DUNE and HL-LHC (ie early 2020s) and rewrite everything in order to be able to take advantage of latest hardware.

Physics Requirements

- Ideally we physics groups should provide he performance required for each physics measurement.
- Again, it is clear that these are not strictly software requirements... not clear if they should be LArSoft requirements or DUNE Reco requirements.

Basics:

- Tracking efficiency > 95%
- Vertex position resolution: 2.5 cm in all three dimensions (probably need better than this in order to have e-gamma separation topology performance)
- Short-sub finding efficiency (10 hits or more, all views together): > 90%
- e/gamma separation: 90% efficiency for electrons, 99% rejection of photons from pi0 decays using both dE/dx and topology

Physics Requirements

- Assumptions from the DUNE CDR Volume
 Table 3.3
 - Stopping Track: energy resolution of 5%
 - Showering or exiting energy resolution of 30%
 - Muon detection threshold of 30 MeV, angular resolution of 1 degree
 - Charged Pion detection threshold 100 MeV, angular resolution of 1 degree
 - Electron and photon detection threshold: 30 MeV
 - EM shower energy resolution: 2%
 ± 15%/sqrt(E) where E is in GeV
 - EM shower angular resolution: 1 degree
 - EM energy scale uncertainty: <5%

- Proton detection threshold: 50 MeV
 - energy resolution: 10% for p<400 MeV, 5% ± 30%/sqrt(E) for p>400 MeV (E is in GeV)
 - angular resolution: 5 degrees
- Neutron detection threshold: 50 MeV (KE)
 - energy resolution: 40%/sqrt(E) where E is in GeV
 - angular resolution: 5 degrees
- Other particles (K, Lambda, Sigma, deuteron) detection threshold: 50 MeV (KE)
 - energy resolution: 5% ± 30%/ sqrt(E)
 - angular resolution: 5 degrees