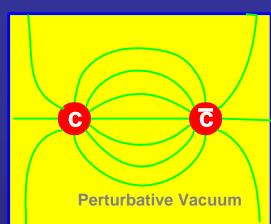
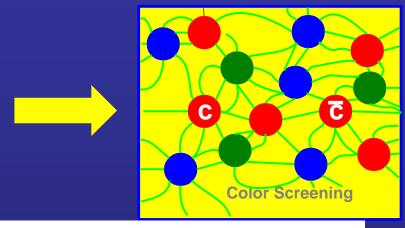
Quarkonium production: results from LHC run-1

E. Scomparin (INFN-Torino)

Santa Fe Jets and Heavy Flavor Workshop

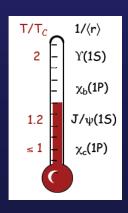

January 11-13, 2016

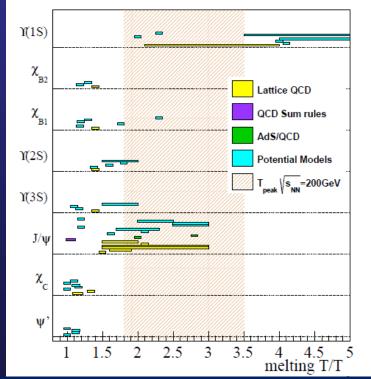

- Short introduction (color screening, regeneration...)
- □ Results from LHC run-1 (hot vs cold matter effects)
- ☐ Open points and prospects for run-2

Quarkonia: from color screening...

Screening of strong interactions in a QGP

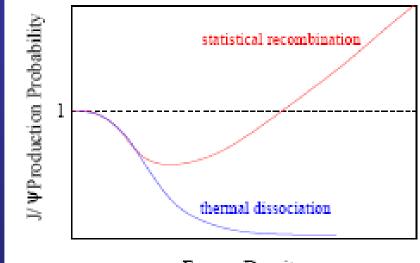
T. Matsui and H. Satz, PLB178 (1986) 416




- Screening stronger at high T
- $\lambda_D \rightarrow$ maximum size of a bound state, decreases when T increases
- Different states, different sizes

Resonance melting

QGP thermometer



A. Adare et al. (PHENIX), arXiv:1404.2246

...to regeneration (charmonium!)

At sufficiently high energy, the cc pair multiplicity becomes large

Central AA collisions	SPS	RHIC	LHC
	20 GeV	200 GeV	2.76TeV
N _{ccbar} /event	~0.2	~10	~85

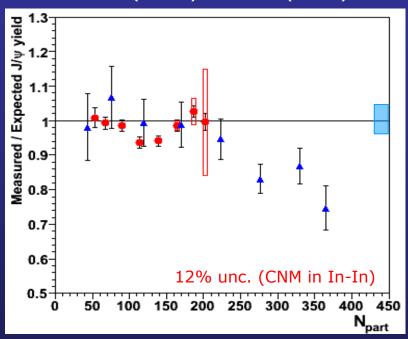
Energy Density

Statistical approach:

- Charmonium fully melted in QGP
 - Charmonium produced, together with all other hadrons, at chemical freeze-out, according to statistical weights

Kinetic recombination:

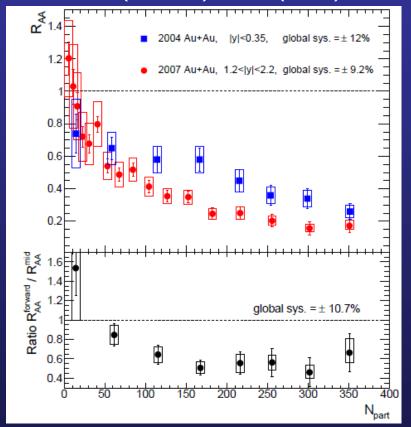
Continuous dissociation/regeneration over QGP lifetime P. Braun-Munzinger and J. Stachel, PLB490 (2000) 196 Thews, Schroedter and Rafelski, PRC63 054905 (2001)


Contrary to the color screening scenario this mechanism can lead to a charmonium enhancement

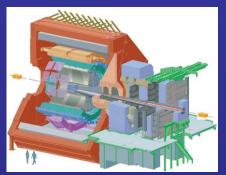
if supported by data, charmonium looses status as "thermometer" of QGP ...and gains status as a powerful observable for the phase boundary

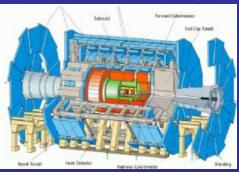
Low energy results: J/ψ from SPS & RHIC

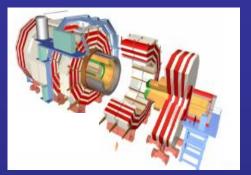
SPS (NA38, NA50, NA60) $\sqrt{s_{NN}} = 17 \text{ GeV}$

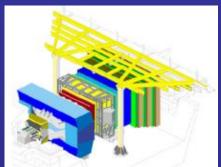

R.Arnaldi et al.(NA60) NPA830 (2009) 345c

- ☐ First evidence of anomalous suppression (i.e. beyond CNM expectations) in Pb-Pb collisions
- \rightarrow ~30% J/ ψ suppression compatible with suppression of ψ (2S) and χ_c decays


RHIC (PHENIX, STAR) $\sqrt{s_{NN}} = 39, 62.4, 200 \text{ GeV}$


A. Adare et al. (PHENIX) PRC84(2011) 054912




□ Suppression, with strong rapidity dependence, in Au-Aµ at \sqrt{s} = 200 GeV

Moving to LHC

- □ All the four experiments have investigated quarkonium production
 - □ Pb-Pb collisions → mainly ALICE + CMS
 - □ p-Pb collisions → all the 4 experiments
- ☐ Complementary kinematic ranges → excellent phase space coverage

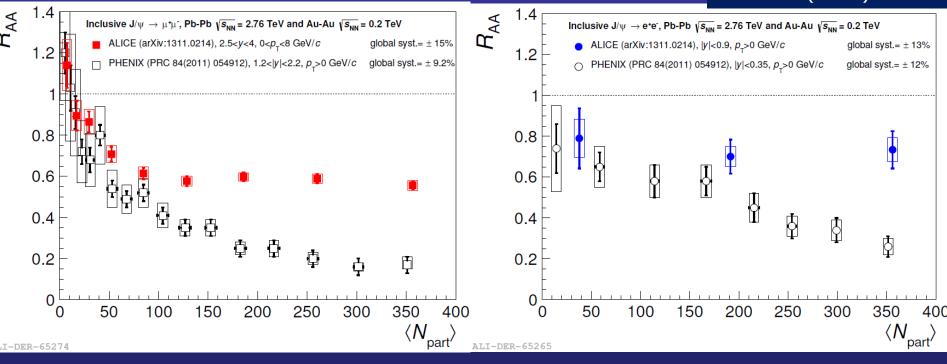
```
ALICE \rightarrow forward-y (2.5<y<4, dimuons) and mid-y (|y|<0.9, electrons)

LHCb \rightarrow forward-y (2<y<4.5, dimuons)
```

CMS \rightarrow mid-y (|y|<2.4, dimuons)

ATLAS \rightarrow mid-y (|y|<2.25, dimuons)

(N.B.: y-range refers to symmetric collisions →rapidity shift in p-Pb!)


Data samples

```
Pb-Pb, \sqrt{s_{NN}} = 2.76 TeV, 2010 (9.7 \mu b^{-1}) + 2011 (184 \mu b^{-1}) p-Pb, \sqrt{s_{NN}} = 5.02 TeV, 2013 (36 nb<sup>-1</sup>) ref. p-p, \sqrt{s} = 2.76 TeV, 2011 (250 nb<sup>-1</sup>) + 2013 (5.6 \rlap{/}6b^{-1})
```

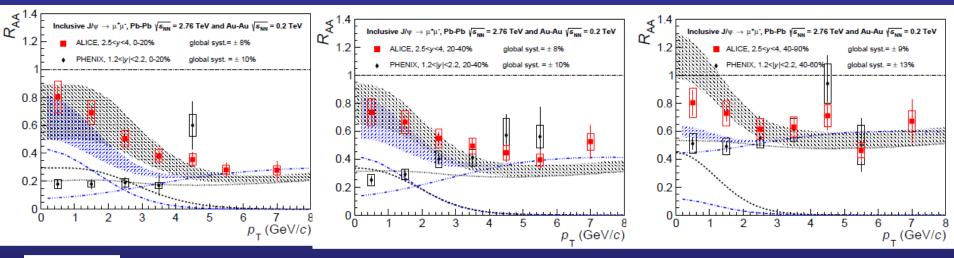
Charmonium $(J/\psi, \psi(2S))$

Low $p_T J/\psi$: ALICE

B. Abelev et al., ALICE PL B 734 (2014) 314

- \Box Compare J/ ψ suppression, RHIC ($\sqrt{s_{NN}}$ =0.2 TeV) vs LHC ($\sqrt{s_{NN}}$ =2.76 TeV)
- \square Results dominated by low- p_T J/ ψ
 - Stronger centrality dependence at lower energy
 - ☐ Systematically larger R_{AA} values for central events in ALICE

Possible interpretation:


RHIC energy → suppression effects dominate

LHC energy → suppression + regeneration

How can this picture be validated?

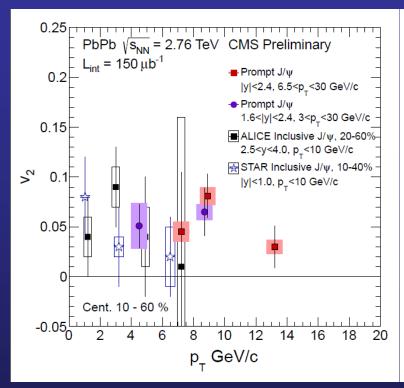
R_{AA} vs p_T

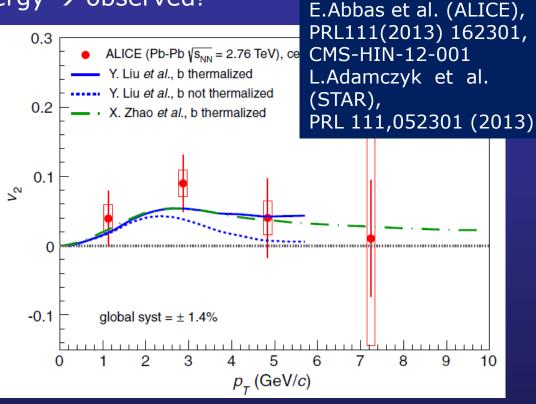
- ☐ Charm-quark transverse momentum spectrum peaked at low-p_T
- \square Recombination processes expect to mainly enhance low-p_T J/ ψ
 - \rightarrow Expect smaller suppression for low-p_T J/ ψ \rightarrow observed!

//// TM1

Zhao et al., Nucl.Phys.A859 (2011) 114 Zhou et al. Phys.Rev.C89 (2014)054911 ALICE, arXiv:1506.08804

- Primordial J/ ψ (TM1)
 Regenerated J/ ψ (TM1)
 Primordial J/ ψ (TM2)
 Regeneration J/ ψ (TM2)
- Models provide a fair description of the data, even if with different balance of primordial/regeneration components

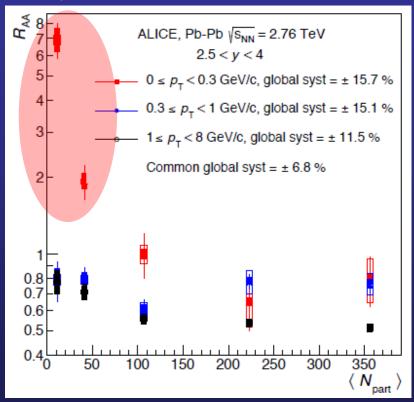

Still rather large theory uncertainties: models will benefit from precise measurement of σ_{cc} and CNM effects


☐ Opposite trend with respect to lower energy experiments

Non-zero v_2 for J/ψ at the LHC

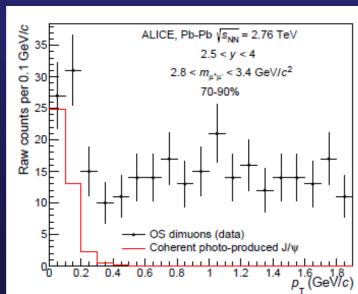
 \Box The contribution of J/ ψ from (re)combination could lead to a significant

elliptic flow signal at LHC energy -> observed!

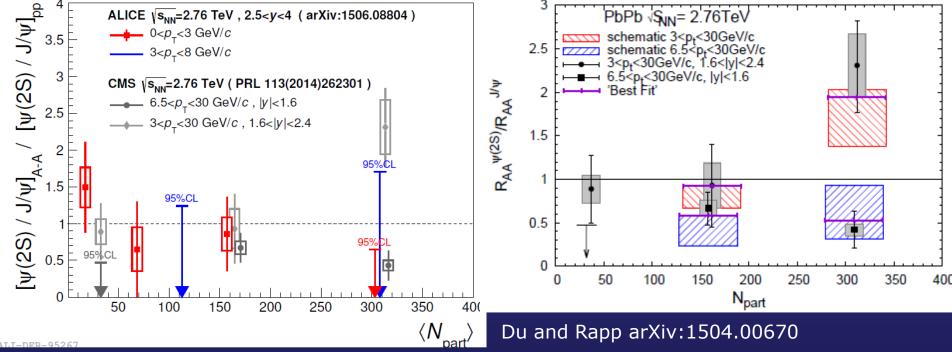


- A significant v₂ signal is observed by BOTH ALICE and CMS
- Fair agreement between ALICE data and transport models
- v₂ remains significant even in the region where the contribution of (re)generation should be negligible
 - → Due to path length dependence of energy loss?
- In contrast to these observations STAR measures $v_2 \sim 0$

J/ψ at very low p_T

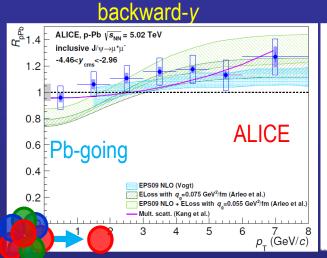

 \square Strong R_{AA} enhancement in peripheral collisions for $0 < p_T < 0.3$ GeV/c

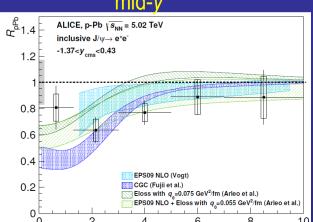
ALICE, arXiv:1509.08802

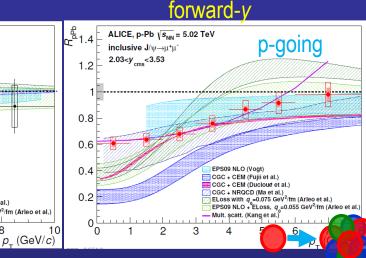

- □ Significance of the excess is 5.4 $(3.4)\sigma$ in 70-90% (50-70%)
- □ Behaviour not predicted by transport models
- Excess might be due to coherent
 J/ψ photoproduction in PbPb (as measured also in UPC)

$\psi(2S)$ in Pb-Pb: ALICE "vs" CMS

- \square $\psi(2S)$ production modified in Pb-Pb with a strong kinematic dependence
- \square CMS \rightarrow suppression at high p_T, enhancement at intermediate p_T

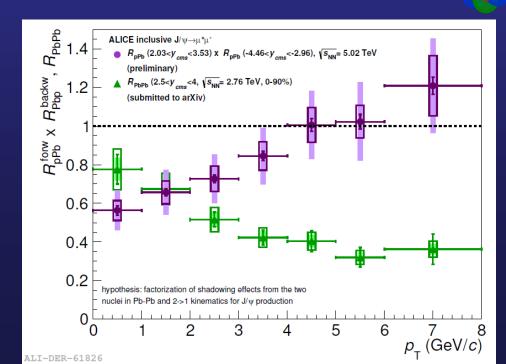



CMS, PRL113 (2014) 262301 ALICE, arXiv:1506.08804

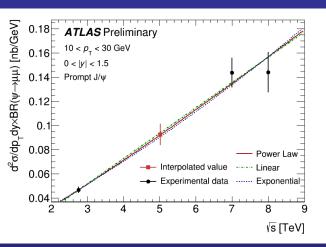

- \square Possible interpretation (Rapp et al.) \rightarrow Re-generation for $\psi(2S)$ occurs at later times wrt J/ ψ , when a significant radial flow has built up, pushing the re-generated $\psi(2S)$ at a relatively larger p_T
- ☐ Small tension, between ALICE and CMS, for central events?

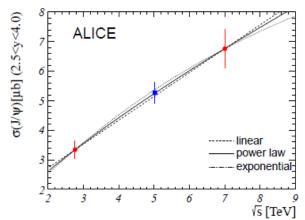
CNM effects are not negligible!

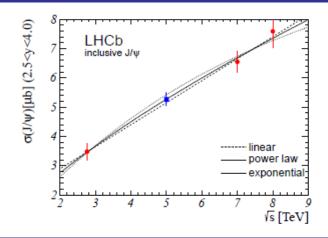
 \Box p-Pb collisions, $\sqrt{s_{NN}}$ =5.02 TeV, R_{pPb} vs p_T



ALICE, JHEP 1506 (2015) 055


- □ Suppression at backward + central rapidity
- No suppression (enhancement?) at forward rapidity
- ☐ Fair agreement with models (shadowing + energy loss)
- □ (Rough) extrapolation of CNM effects to Pb-Pb $R_{PbPb}^{cold} = R_{pPb} \times R_{Pbp}$
- → evidence for hot matter effects!




Building a reference $\sigma_{pp} \rightarrow$ interpolation

☐ Simple empirical approach adopted by ALICE, ATLAS and LHCb

CERN-LHCb-CONF-2013-013; ALICE-PUBLIC-2013-002.

Example: ALICE result

$$\sigma_{\rm incl} = 5.28 \pm 0.40_{\rm exp} \pm 0.10_{\rm inter} \pm 0.05_{\rm theo} \mu b = 5.28 \pm 0.42 \; \mu b \; .$$

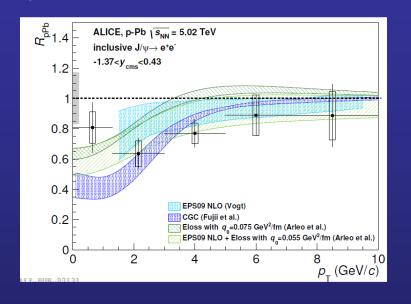
inter: spread of interp. with

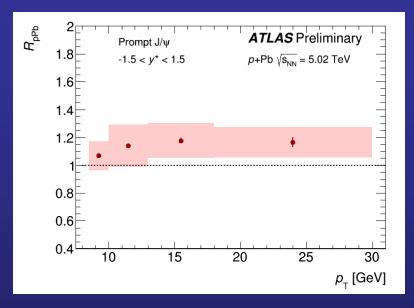
empirical functions

theo: spread of interp. with

theory estimates

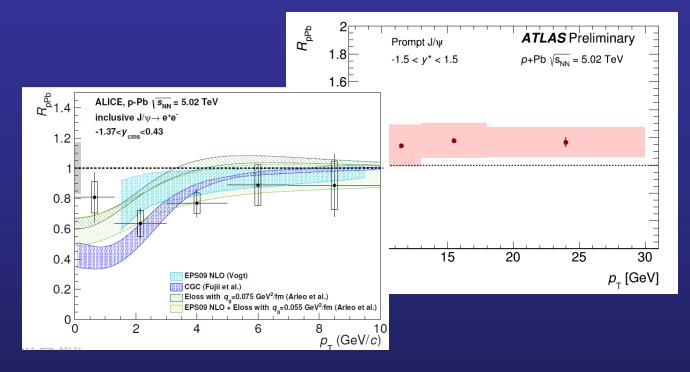
- \square $\psi(2S) \rightarrow$ interpolation difficult, small statistics at $\sqrt{s}=2.76$ TeV
- □ Ratio $\psi(2S)$ / J/ ψ → ALICE uses $\sqrt{s}=7$ TeV pp values (weak \sqrt{s} -dependence)


$$R_{pA}^{\psi(2S)} = R_{pA}^{J/\psi} imes rac{\sigma_{pA}^{\psi(2S)}}{\sigma_{pA}^{J/\psi}} imes rac{\sigma_{pp}^{J/\psi}}{\sigma_{pp}^{\psi(2S)}}$$


ALICE estimate (conservative)

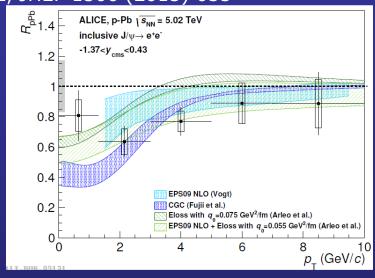
→ 8% syst. unc. due to different √s
(using CDF/ALICE/LHCb results)

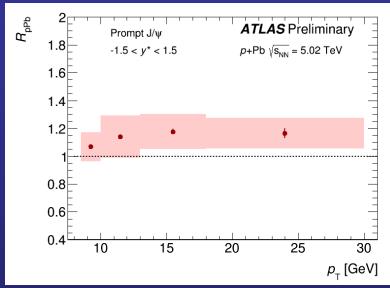
J/ψ R_{pPb}: ATLAS "vs" ALICE "vs" LHCb


 \square R_{pPb} vs p_T around midrapidity \rightarrow fair agreement ATLAS vs ALICE

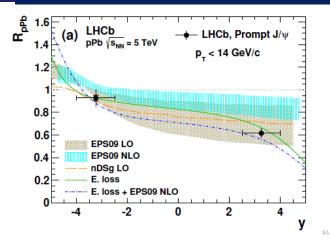
J/ψ R_{pPb}: ATLAS "vs" ALICE "vs" LHCb

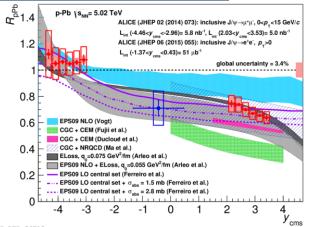
 \square R_{pPb} vs p_T around midrapidity \rightarrow fair agreement ATLAS vs ALICE

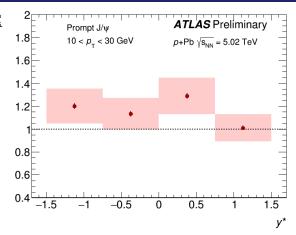



J/ψ R_{pPb}: ATLAS "vs" ALICE "vs" LHCb

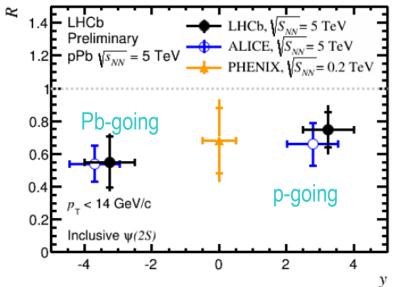
 \square R_{pPb} vs p_T around midrapidity \rightarrow fair agreement ATLAS vs ALICE

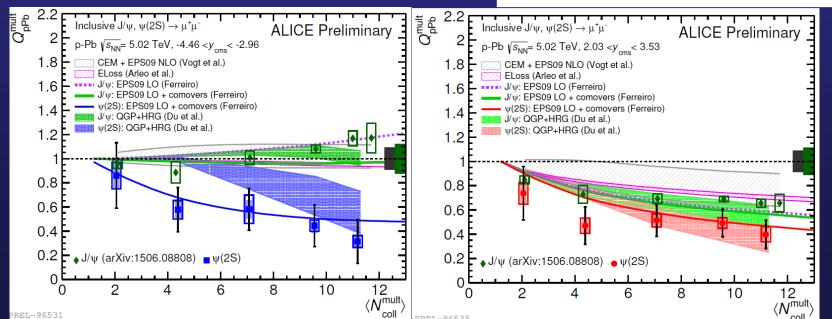

ALICE, JHEP 1506 (2015) 055


ATLAS-CONF-2015-023

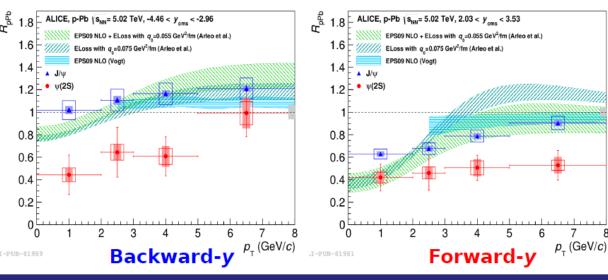


□ R_{pPb} vs y \rightarrow fair agreement ALICE vs LHCb, ATLAS refers to $p_T > 10$ GeV/c LHCB, JHEP 02 (2014) 72, ALICE, JHEP 02 (2014) 73

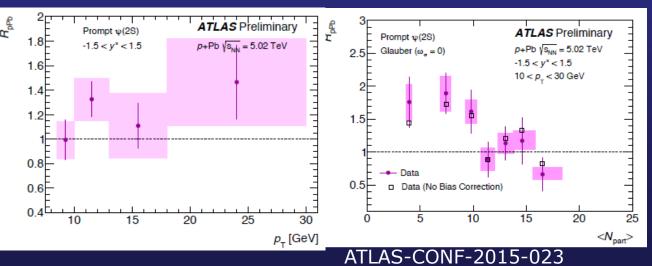




$\psi(2S)$ in p-Pb collisions


- \rightarrow shadowing and energy loss, almost identical for J/ ψ and ψ (2S), do not account for the different suppression
- \rightarrow time spent by the cc pair in the nucleus (τ_c) is smaller than charmonium formation time (τ_f) implies identical final state nuclear effects
- → Only QGP+hadron resonance gas (Rapp) or comovers (Ferreiro) models describe the stronger ψ(2S) suppression

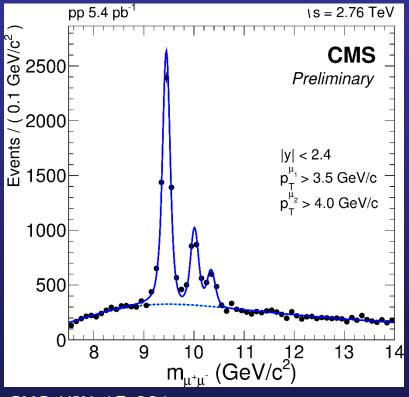
ALICE, JHEP 1412(2014)073, LHCb-CONF-2015-005 PHENIX, PRL 111 (2013) 202301



$\psi(2S)$ in p-Pb: p_T dependence

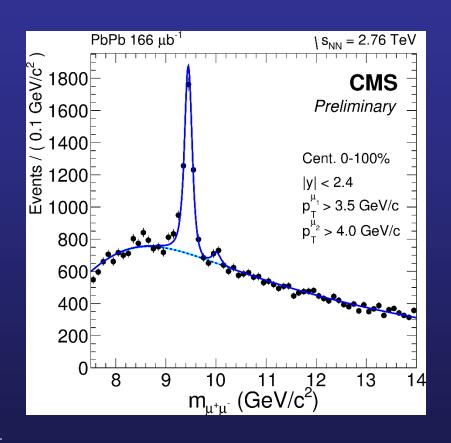
ALICE, JHEP 12 (2014) 073

□ ALICE (low p_T): rather strong suppression, possibly vanishing at backward y and p_T> 5 GeV/c


□ ATLAS (high p_T):
larger uncertainties,
hints for strong
enhancement,
concentrated in
peripheral events

- □ Possible tension between ALICE and ATLAS results ?
- Wait for final results from ATLAS

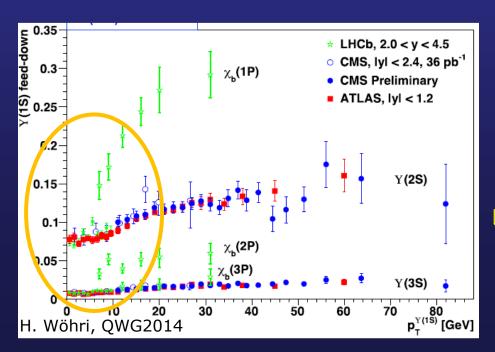
Bottomonium ($\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$)

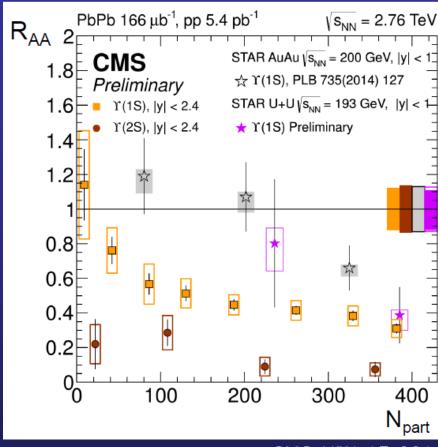

Y suppression in Pb-Pb collisions

- □ Relatively low beauty cross section → weak regeneration effects
- \square Kinematic coverage down to $p_T=0$ for all experiments

CMS-HIN-15-001

Strong relative suppression of more loosely bound states

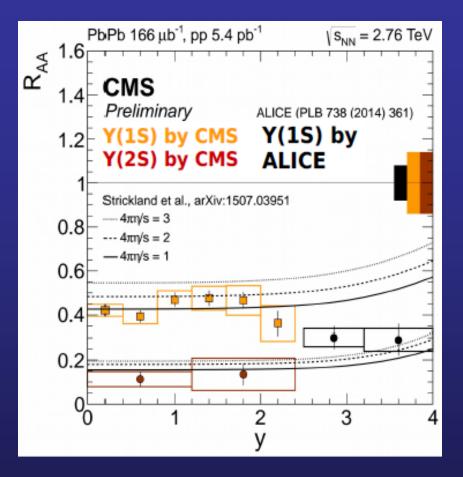

```
R_{AA}(\Upsilon(1S)) = 0.43 \pm 0.03 \pm 0.07
R_{AA}(\Upsilon(2S)) = 0.13 \pm 0.03 \pm 0.02
R_{\Delta\Delta}(\Upsilon(3S)) < 0.14 \text{ at } 95\% \text{ CL}
```

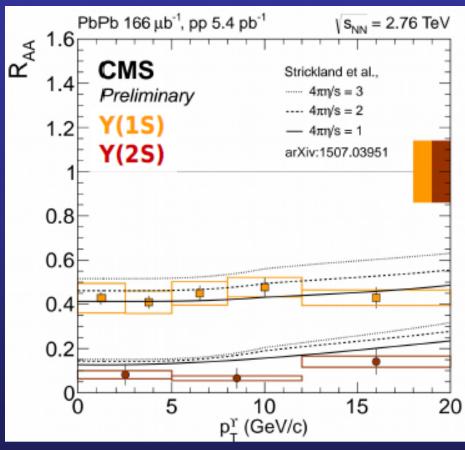

Y suppression in Pb-Pb collisions

- Reanalysis of 2011 CMS data:
 - Improved reconstruction
 - \Box High statistics pp reference (x20)

CMS, PRL109 (2012) 222301 and HIN-15-001 STAR, PLB735 (2014) 127 and preliminary U+U

□ Feed-down from excited states seems not enough to explain the observed Y(1S) suppression

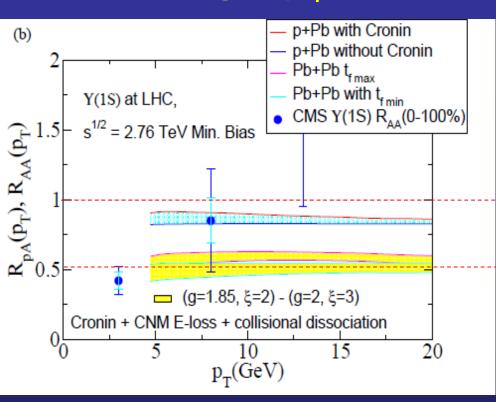


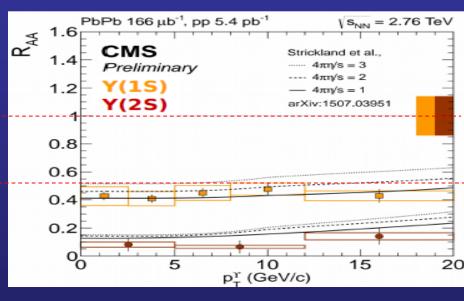


CMS-HIN-15-001

- Υ(2S) binding energy similar to that of the J/ψ, but bottomonium suppression much larger
 - → recombination effects negligible

R_{AA} vs p_T and y, comparison with models



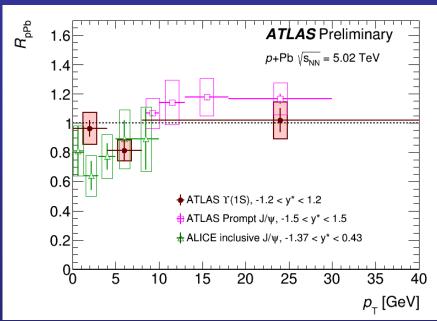

CMS-HIN-15-001

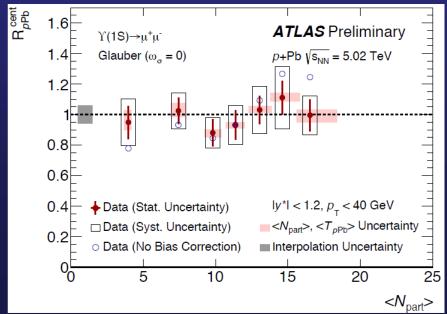
- \square No significant p_T dependence of R_{AA}
- \square Hints for a decrease of R_{AA} at large y (comparison ALICE CMS)
- □ Could suggest the presence of sizeable recombination effects at mid-rapidity (?)

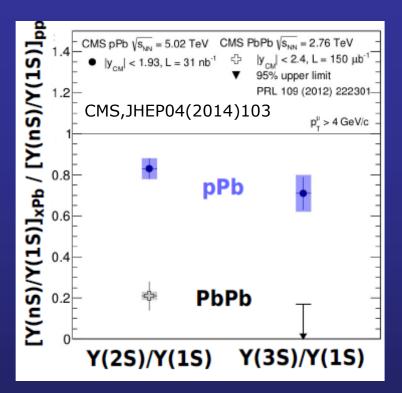
High $p_T \Upsilon$: model comparison

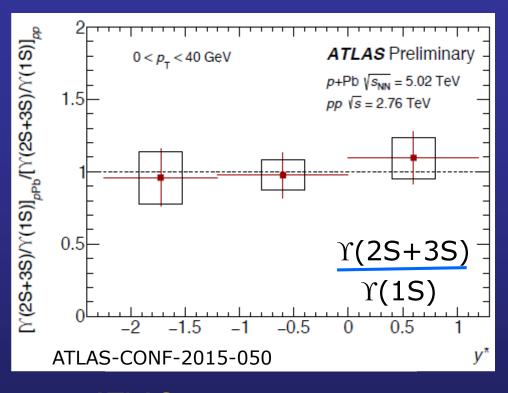
Sharma and Vitev, Phys. Rev. C 87, 044905 (2013)

- \Box High $p_T \Upsilon$ suppression
- Propagation effects through QGP
 - Quenching of the color octet component
 - Collisional dissociation model
- □ Approximation: initial wave function of the quarkonia well approximated by vacuum wavefunctions in the short period before dissociation
- CNM effects accounted for (shadowing + Cronin)

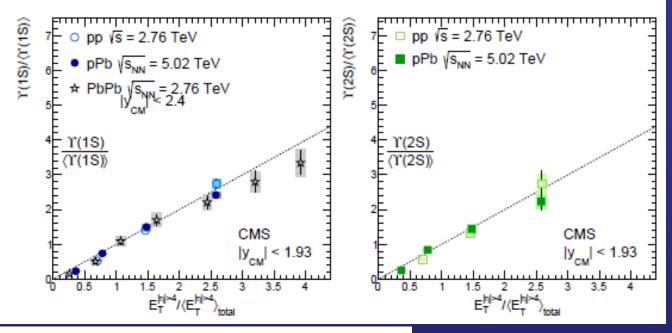

Weak CNM effects for bottomonium




☐ Fair agreement ALICE vs LHCb (within large uncertainties)

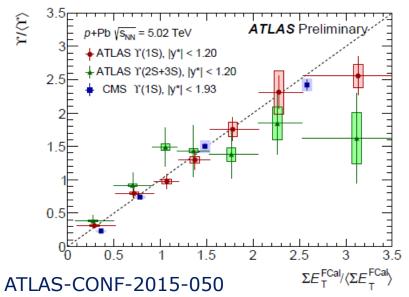

ALICE, Phys. Lett. B 740 (2015) 105 ATLAS-CONF-2015-050 LHCb, JHEP 07(2014)094

Yield ratios for bottomonium in p-Pb


CMS

- □ Excited states suppressed with respect to Υ(1S)
- □ Initial state effects similar for the various Y(ns) states

ATLAS

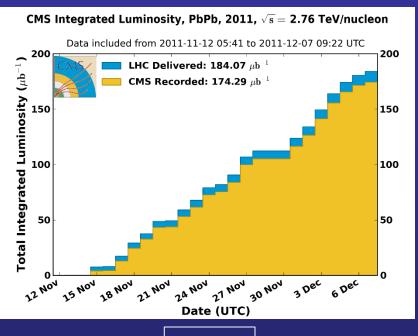

- \square no strong y (and p_T) dependence
- agreement with CMS within uncertainties

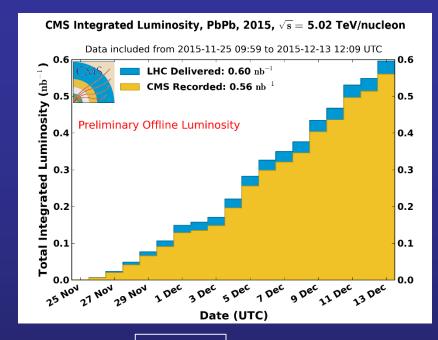
Self-normalized Y cross sections

Similar behaviour observed for J/ψ (ALICE) (PLB712 (2012) 165-175)

CMS, JHEP 04 (2014) 103

- ☐ All the ratios increase with increasing forward transverse energy
- When Pb nuclei are involved
 - → Increase partly due to larger number of N-N collisions
- Increase observed also in pp collisions
 - → multiple partonic interactions ?


From run-1 ro run-2

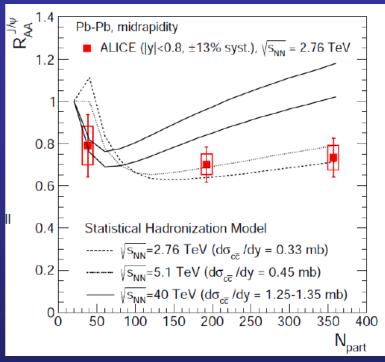

- □ Charmonium highlight → evidence for a new mechanism which enhances the J/ψ yield, in particular at low p_T , with respect to low-energy experiments
- ☐ In addition
 - \square Indications for J/ ψ azimuthal anisotropy (non-zero v_2)
 - \square Significant final state effects on $\psi(2S)$ in p-Pb, likely related to the (hadronic) medium created in the collision
- Bottomonium highlight → evidence for a stronger suppression of 2S and 3S states compared to 1S. Effect not related to CNM and compatible with sequential suppression of "bottomonium" states
- ☐ In addition
 - \square 1S is also suppressed (\sim 50-60%). Feed-down effect only?
 - y-dependence of 1S suppression to be understood

From run-1 to run-2

- ☐ Prospects for run-2
 - → Collect a ~1 order of magnitude larger integrated luminosity
- \Box High-statistics J/ψ sample
 - → Comparison with run-1 AND with theoretical predictions crucial to confirm/quantify our understanding in terms of regeneration
 - → more precise v₂ results also needed
- \square Significant $\psi(2S)$ sample
 - → Crucial: run-1 results "exploratory" (and interpretation not clear)
- \square High-statistics $\Upsilon(1S)$ sample
 - → A significant increase in 1S suppression with respect to run-1 might imply that a high-T QGP is formed ("threshold" scenario)
- \square Differential $\Upsilon(2S)$ and $\Upsilon(3S)$ results from run-1 are limited by statistics
 - → Centrality and p_T-dependent studies important to assess details of sequential suppression

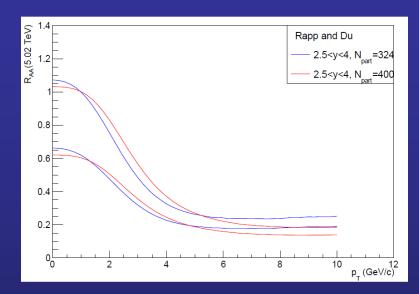
LHC performance run-2

Run 1

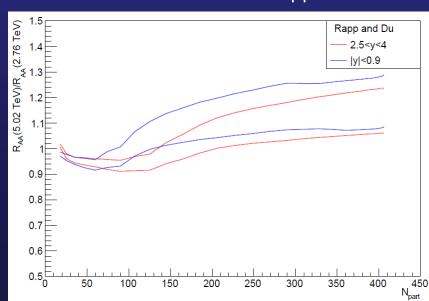

Run 2

- □ Integrated luminosity → more than a factor 3 delivered by the LHC with respect to run 1 (2011 Pb-Pb)
- □ Short pp run at $\sqrt{s} = 5.02$ TeV at the beginning of the HI period \rightarrow L_{int} = 30 pb⁻¹, good reference for BOTH Pb-Pb and p-Pb results
- Data analysis quickly progressing

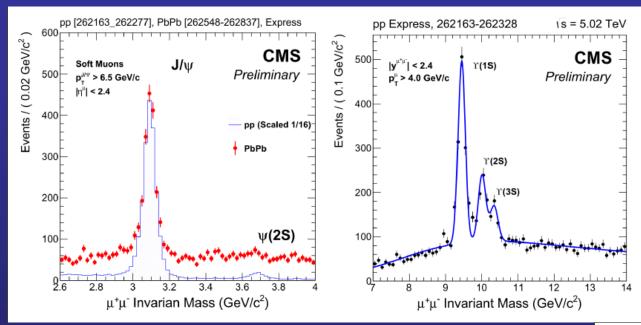
Some J/ψ predictions for run-2


mid-rapidity

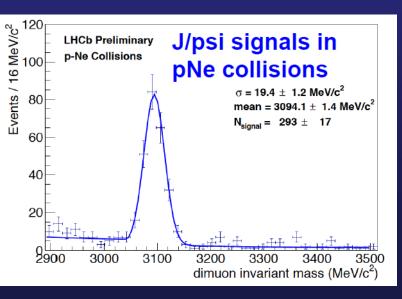
forward rapidity



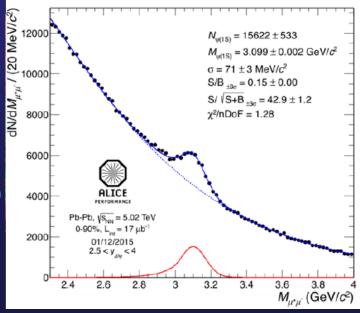
PBM, Andronic, Redlich and Stachel


- □ First predictions for (both statistical and transport models) indicate a moderate increase in R_{AA} , when comparing $\sqrt{s_{NN}}$ =5.02 and 2.76 TeV
- ☐ Theoretical uncertainties are larger than the predicted increase
 - → Provide quantities where at least a partial cancellation of uncertainties takes place (double ratios of R_{AA})

Rapp and Du

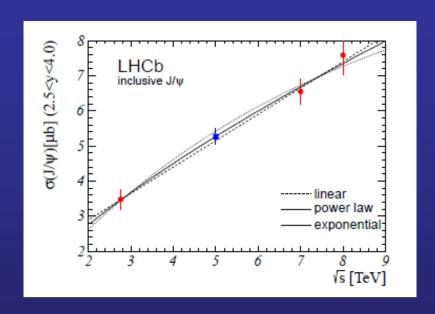


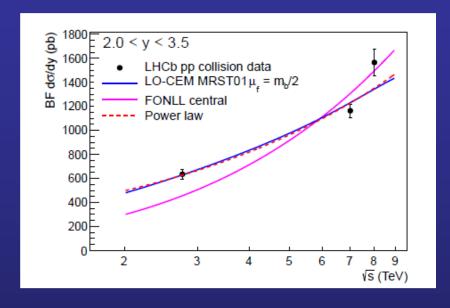
Some performance plots from run-2



Charmonia/bottomonia signals well visible!

Expect first results very soon!




LHCb:
first Pb-Pb run
and p-A
beam-gas
collisions
(√s_{NN}=110 GeV)

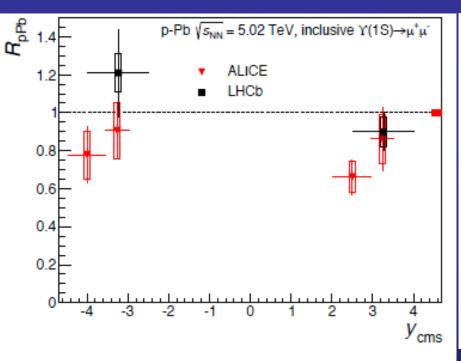
More info

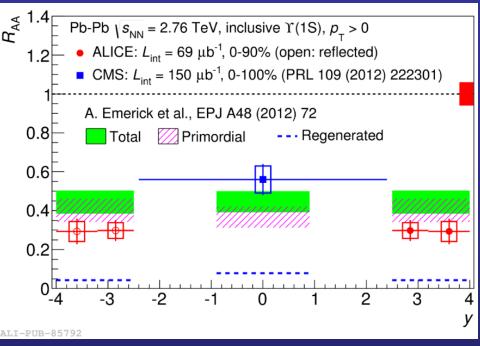
Other ingredients/caveats to the "puzzle"

 \Box Caveat: ALICE takes reference data from LHCb measurements Contrary to J/ ψ , these exhibit a \sqrt{s} -dependence which disagrees with FONLL expectations, and even with (usual) empirical shapes

On feed-down fractions

- \Box Usually they are not supposed to vary strongly with \sqrt{s} (or y)
- □ New LHCb pp results could alter the picture inherited by CDF (relative to p_{Υ} >8 GeV/c)


	$p_{\mathrm{T}}^{\Upsilon} (\mathrm{GeV}/c)$	$\mathcal{R}_{\Upsilon(nS)}^{\chi_b(1P)}$	$\mathcal{R}_{\Upsilon(nS)}^{\chi_b(2P)}$
Υ(1S)	6–8	$14.8 \pm 1.2 \pm 1.3$	$3.3 \pm 0.6 \pm 0.2$
	8-10	$17.2 \pm 1.0 \pm 1.4$	$5.2 \pm 0.6 \pm 0.3$
	10-14	$21.3 \pm 0.8 \pm 1.4$	$4.0 \pm 0.5 \pm 0.3$
	14-18	24.4 ± 1.3 ± 1.2	$5.2 \pm 0.8 \pm 0.4$
	18-22	$27.2 \pm 2.1 \pm 2.1$	$5.5 \pm 1.0 ^{+0.4}_{-1.0}$
	22-40	$29.2 \pm 2.5 \pm 1.7$	$6.0 \pm 1.2 ^{+0.4}_{-0.7}$


LHCb

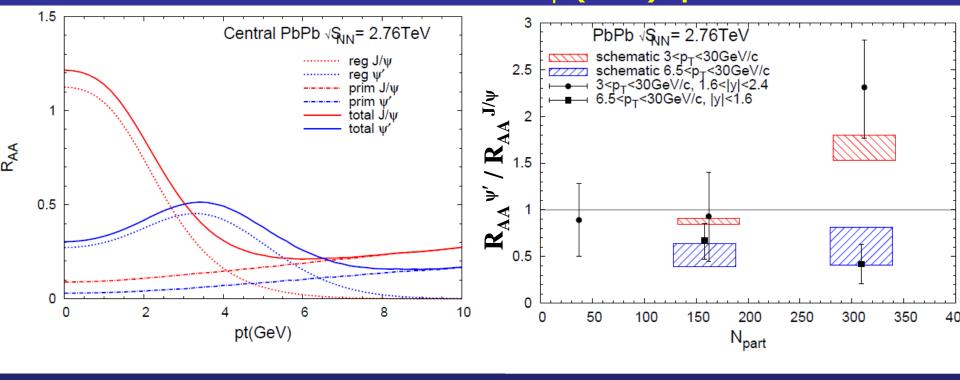
We have reconstructed the radiative decays $\chi_b(1P) \to \Upsilon(1S)\gamma$ and $\chi_b(2P) \to \Upsilon(1S)\gamma$ in $p\overline{p}$ collisions at $\sqrt{s} = 1.8$ TeV, and measured the fraction of $\Upsilon(1S)$ mesons that originate from these decays. For $\Upsilon(1S)$ mesons with $p_T^\Upsilon > 8.0$ GeV/c, the fractions that come from $\chi_b(1P)$ and $\chi_b(2P)$ decays are $[27.1 \pm 6.9(\text{stat}) \pm 4.4(\text{syst})]\%$ and $[10.5 \pm 4.4(\text{stat}) \pm 1.4(\text{syst})]\%$ respectively. We have derived the fraction of directly produced $\Upsilon(1S)$ mesons to be $[50.9 \pm 8.2(\text{stat}) \pm 9.0(\text{syst})]\%$.

- ☐ At the limit of uncertainties or do we have a problem here?
- □ Difficult to reach 50% including 2S and 3S

Can we take CNM into account?

- \square Apply the simple $R_{pPb} \times R_{Pbp}$ recipe on ALICE pPb
- ☐ Would give $0.78 \times 0.86 = 0.67$ for 3.25 < y < 4 $0.91 \times 0.66 = 0.60$ for 2.5 < y < 3.25(but see also LHCb result)

~0.5 "anomalous" suppression at forward-y

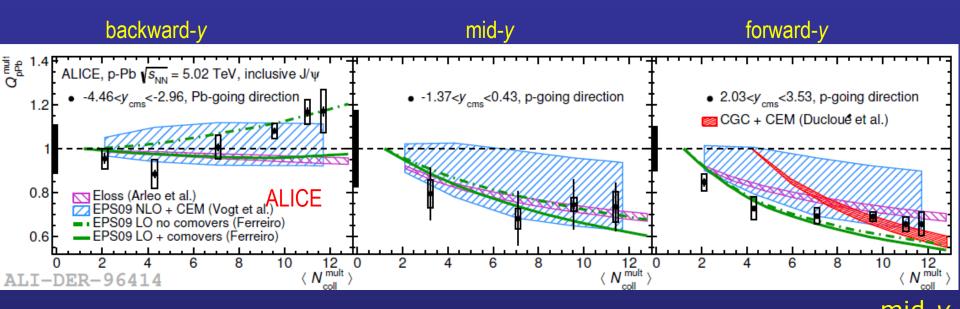

- No results from CMS (for the moment ?)
- □ Assuming a "smooth" y-interpolation of CNM

0.8-0.9 "anomalous" suppression at central-y

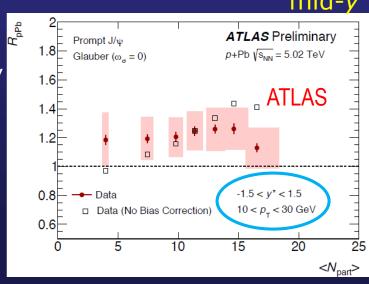
→ Need new/better pPb data ?

Charmonium: the $\psi(2S)$ puzzle

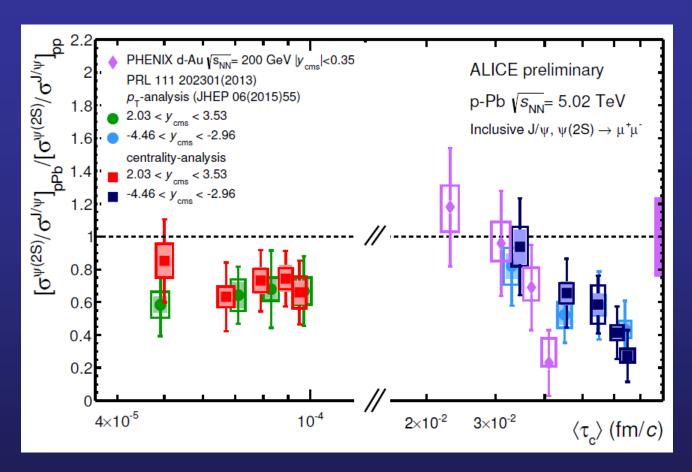
- \Box The regeneration of ψ' mesons occurs significantly later than for $J/\psi's$
- Despite a smaller total number of regenerated ψ' , the stronger radial flow at their time of production induces a marked enhancement of their R_{AA} relative to J/ψ' s in a momentum range pt $\simeq 3$ -6 GeV/c.


J/ψ in Pb-Pb: from run-1 to run-2

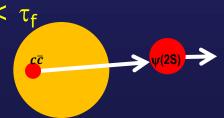
- □ Evidence for smaller suppression compared to RHIC
 - → Occurrence of recombination is at present the only explanation
- \square p_T-dependence of R_{PbPb} also compatible with recombination
- □ Although qualitative interpretation looks unambiguous, the quantitative assessment of the effects at play needs refinement
- \Box Values for $d\sigma_{cc}/dy$ evolved. At present, in the forw.-y ALICE domain:
 - \square SHM \rightarrow 0.15 0.25 mb (y=4 and y=2.5) no shadowing
 - \square Zhao and Rapp \rightarrow 0.5 mb "empirical" shad. vs no shad.
 - \square Zhuang et al. \rightarrow 0.4 0.5 mb EKS98 shadowing
 - □ Ferreiro et al. \rightarrow 0.4 0.6 mb + Glauber-Gribov shad. \sim nDSG(min.) > EKS98
- \square LHC run-2 \rightarrow (almost) a factor 2 gain in \sqrt{s}
 - \rightarrow would it be possible to extract $d\sigma_{cc}/dy$ which gives the best fit to run-1 results, extrapolate to run-2 energy (FONLL?) and give predictions ?
- □ Suppression persists up to the largest investigated p_T
 - \square Higher p_T reach in run-2 \rightarrow increase of R_{PhPh}? Predictions?
- ☐ Interesting indication for azimuthal anisotropies. Run-2 needs
 - \square Experiment \rightarrow (much) larger statistics
 - ☐ Theory → solid predictions

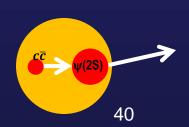

J/ψ in p-Pb: run-1 summary

- p-Pb data: characterization of CNM effects in terms of shadowing plus coherent energy loss (no break-up) looks satisfactory
- □ Uncertainties on shadowing calculations are large, could one use the LHC data to better constrain shadowing?
- \square Effects are strong, $R_{pPb} \sim 0.6$ at low p_T and central to forward rapidity
 - → Strong influence of CNM effects in Pb-Pb in the corresponding kinematic region
- □ The simple estimate $R_{PbPb}^{CNM} = R_{pPb} \times R_{Pbp}$ (inspired to a shadowing scenario) leads, once this effect is factorized out, to an even steeper p_T -dependence of R_{PbPb}
- □ Also for p-Pb, run-2 energy predictions (√s~8 TeV), with parameters TUNED on run-1 results, would allow a crucial test of our understanding of the involved mechanisms


J/ψ R_{pPb}: centrality dependence

- □ ALICE:
- mid and fw-y: suppression increases with centrality
- backward-y: hint for increasing Q_{pA} with centrality
- ☐ Shadowing and coherent energy loss models in fair agreement with data
- ATLAS
- \Box Flat centrality dependence in the high p_{T} range


Dependence of suppression on τ_c


$$\tau_{\rm c} = \frac{\langle L \rangle}{(\beta_z \gamma)}$$

D. McGlinchey, A. Frawley and R.Vogt, PRC 87,054910 (2013)

Forward-y: $\tau_c << \tau_f$ interaction with nuclear matter cannot play a role

Backward-y: $\tau_c \lesssim \tau_f$ indication of effects related to break-up in the nucleus?

