In-medium $Q\bar{Q}$ potential and Heavy-Quark Diffusion in the QGP

Shuai Liu

Advisor: Ralf Rapp

Cyclotron Institute + Department of Physics and Astronomy Texas A&M University

College Station

Santa Fe Jets & Heavy Flavor Workshop, Jan 13, 2016

<u>Outline</u>

1) Background and Motivation

2) New Way to Define Heavy-Quark Potential Based on Lattice Data

- Calculation of heavy-quark free energy from in-medium T matrix
- Application of the new method to extract a potential

3) Transport Model with the New Potential

- In-medium heavy-quark T-matrix and transport coefficient
- Langevin simulation and charm quark spectra

4) Conclusions

Heavy Quarks, Potential Model and Lattice QCD

Lattice Heavy-Quark Free Energy in Medium

In medium:
$$F_{Q\bar{Q}}(T,r)$$
=Change in Free Energy (Lattice)
 $F_{Q\bar{Q}}(T,r) = -T \ln(\tilde{Z}_{Q\bar{Q}}) = (-T \ln(Z_{Q\bar{Q}})) - (-T \ln(Z))$
 $\tilde{Z}_{Q\bar{Q}} = \frac{Z_{Q\bar{Q}}}{Z} = \frac{\sum_{n} \langle n | \chi(r_{2}) \psi(r_{1}) e^{-\beta H} \psi^{+}(r_{1}) \chi^{+}(r_{2}) | n \rangle}{Z}$
 $= G^{>}(-i\tau, r_{1}, r_{2} | r_{1}, r_{2}) |_{\tau=\beta} = \tilde{G}^{>}(-i\tau, r) |_{\tau=\beta}$
 $r = r_{1} - r_{2}, \quad \beta = 1/T$
 $F_{Q\bar{Q}}(T,r) = -T \ln(\tilde{G}^{>}(-i\tau,r)) |_{\tau=\beta}$
 $\tilde{G}^{>}(-i\beta,r)$: 4 point $Q\bar{Q}$ Green function
Calculate $\tilde{G}^{>}$ from in-medium T-matrix

Heavy-Quark Free Energy From In-medium T-matrix

Concrete Ansatz to Extract a Potential

$$F_{Q\bar{Q}}(T,r) = -T \ln\left(\tilde{G}^{>}(-i\beta,r)\right)$$
$$= -T \ln\left(\int_{-\infty}^{\infty} dE \frac{1}{\pi} \frac{(V+\Sigma)_{I}(E)}{(E-(V+\Sigma)_{R})^{2} + (V+\Sigma)_{I}^{2}(E)} e^{-\beta E}\right)$$

Screened Cornell V(r) with imaginary part

• Real part of the potential + self energy:

$$(V + \Sigma)_R = -\frac{4}{3}\alpha_s \frac{e^{-m_D r}}{r} - \frac{4}{3}\alpha_s m_D - \sigma \left(\frac{e^{-m_s r}}{m_s} - \frac{1}{m_s}\right)$$

• Imaginary part of the potential + self energy:

$$(V + \Sigma)_I(E) = D \exp\left(-\frac{E^2}{2(CT)^2}\right) \frac{4}{3} \alpha_s T \Phi(m_D r)$$

Large imaginary part make $(V + \Sigma)_R > F$

F. Riek, R. Rapp, New J. Phys 13 (2011)

Fit to Lattice Data:

Heavy-Light T-matrix and Heavy-Quark Transport in QGP

$$T(E|\mathbf{p},\mathbf{p}') = R(\mathbf{p},\mathbf{p}')V(\mathbf{p}-\mathbf{p}') + \int d^{3}\tilde{k} R(\mathbf{p},\mathbf{k})V(\mathbf{p}-\mathbf{k})G_{0}(E|\mathbf{k})T(E|\mathbf{k},\mathbf{p}')$$

 $R(\mathbf{p}, \mathbf{p}')$ • Relativistic correction for heavy-heavy potential for heavy-light scattering

F Riek+ Rapp, PRC 82

 $V(\mathbf{p} - \mathbf{p}')$ • Potential includes Non-perturbative string interaction

Friction Coefficient

V

$$A(p) = \frac{1}{2\omega_Q(p)} \sum \int d^3 \tilde{q} d^3 \tilde{q'} d^3 \tilde{p'} n_i(\omega_q) \cdot \frac{(2\pi)^4}{d_c} C_f |T(E_{cm}|\mathbf{p_{cm}},\mathbf{p'_{cm}})|^2 \delta^4(p+q-p'-q') \left(1 - \frac{p p'}{p^2}\right)$$

B Svetitsky, PRD 37 (1988)

Heavy-Quark Transport Coefficient

Langevin Simulation and Charm-Quark Spectra

11

Conclusions and Perspectives

Present Findings

- Developed approach to define in-medium ${\it V}$
- Extracted potential from lattice $F_{Q\bar{Q}}(T,r)$
- Potential generates large transport coefficient (strongly coupled)
- Langevin simulations indicate sensitivity of heavy-quark v_2 to underlying potential

Future work:

- Systematic self-consistent formalism to eliminate free parameters in fit to $F_{Q\bar{Q}}$
- Include off-shell (quantum) effects for heavy-quark transport coefficient

