# Jet Substructures and Cross Sections in Proton and Heavy Ion Collisions

Yang-Ting Chien

Los Alamos National Laboratory, Theoretical Division, T-2

January 12, 2016 Santa Fe Jets and Heavy Flavor Workshop

References: JHEP 1412 (2014) 061, arXiv:1509.07257, arXiv:1512.06851 and work in progress

#### Outline

- Heavy ion collisions compared to proton collisions
  - Quark-gluon plasma (QGP)
  - Hard Probes with jets
  - Precision jet modification studies
- Resummation using Soft-Collinear Effective Theory (SCET)
  - Factorization theorem
  - Renormalization group evolution
- Medium Modification using SCET with Glauber gluons (SCET<sub>G</sub>)
  - Medium induced splitting functions
- Results

# Jet quenching in heavy ion collisions

- Hard probes of the QGP: the study of how various hard processes are affected by the presence of the medium. Traditionally,
  - $J/\psi$  and charged hadron suppression
    - Debye screening and energy loss
    - $-R_{AA} = \frac{\sigma_{AA}}{\langle N_{coll} \rangle \ \sigma_{pp}} < 1$
  - jet quenching and dijet asymmetry
- Initial and final state energy loss can both contribute to the suppression of cross sections
- Kinematics of charged particles and jets contain limited information about the QGP
- How to disentangle the hot QGP from the cold nuclear matter effects?







#### Jet modifications

- Jet substructure contains more information about the QGP
- Isolate final state effects
  - ullet jet shape: how energies are distributed in r
  - jet fragmentation function: how particles are distributed in z (or  $\ln 1/z$ )
  - Jet X modification factor: X<sub>AA</sub>/X<sub>pp</sub>





#### Jet shape, a classic jet substructure observable (Ellis, Kunszt, Soper)



$$\Psi_J(r,R) = \frac{\sum_{r_i < r} E_{T_i}}{\sum_{r_i < R} E_{T_i}}$$

$$\langle \Psi \rangle = \frac{1}{N_J} \sum_{J}^{N_J} \Psi_J(r, R)$$
 
$$\psi(r, R) = \frac{d\langle \Psi \rangle}{dr}$$

$$\psi(r,R) = \frac{d\langle \Psi \rangle}{dr}$$

- Jet shapes probe the averaged energy distribution inside a jet
- The infrared structure of QCD induces Sudakov logarithms
- Fixed order calculation breaks down at small r
- Large logarithms of the form  $\alpha_s^n \log^m r/R \ (m \le 2n)$  need to be resummed





#### Soft-Collinear Effective Theory (SCET)

- Effective field theory techniques are most useful when there is clear scale separation
- SCET separates physical degrees of freedom in QCD by a systematic expansion in power counting
  - Match SCET with QCD at the hard scale by integrating out the hard modes
  - Integrating out the off-shell modes gives collinear Wilson lines which describe the collinear radiation
  - The soft sector is described by soft Wilson lines along the jet directions
  - Soft-collinear decoupling holds at leading power in the Lagrangian, which leads to the factorization theorems of cross sections



### Power counting in SCET

The scaling of modes:

$$p_h: Q(1,1,1), p_c: Q(1,\lambda^2,\lambda) \text{ and } p_s: Q(\lambda,\lambda,\lambda)$$

- Q is at the hard scale which is the energy of the jet
- $\lambda$  is the power counting parameter ( $\lambda \approx m_J/Q$ )
- QCD =  $\mathcal{O}(\lambda^0) + \mathcal{O}(\lambda^1) + \cdots$  in SCET
- $Q\lambda$  is the jet scale which is significantly lower than Q



Jet shapes have dominant contributions from the collinear sector

$$\Psi(r) = \frac{E_c^{< r} + E_s^{< r}}{E_c^{< R} + E_s^{< R}} = \frac{E_c^{< r}}{E_c^{< R}} + \mathcal{O}(\lambda)$$

- Soft contributions are power suppressed
- For high  $p_T$  and narrow jets, power corrections are small and the leading power contribution is a very good approximation of the full QCD result

#### Factorization theorem for jet shapes in proton collisions (Chien et al)

 Without loss of generality, we demonstrate the calculation in e<sup>+</sup>e<sup>-</sup> collisions since the initial state radiation in proton collisions contributes as power corrections



 The factorization theorem for the differential cross section of the production of N jets with p<sub>Ti</sub>, y<sub>i</sub>, the energy E<sub>r</sub> inside the cone of size r in one jet, and an energy cutoff Λ outside all the jets is the following,

$$\frac{d\sigma}{dp_{T_i}dy_idE_r} = H(p_{T_i}, y_i, \mu)J_1^{\omega_1}(E_r, \mu)J_2^{\omega_2}(\mu)\dots S_{1,2,\dots}(\Lambda, \mu)$$

For the differential jet rate (without measuring E<sub>r</sub>)

$$\frac{d\sigma}{dp_{T_{i}}dy_{i}} = H(p_{T_{i}}, y_{i}, \mu)J_{1}^{\omega_{1}}(\mu)J_{2}^{\omega_{2}}(\mu)\dots S_{1,2,\dots}(\Lambda, \mu)$$

- $J_1^{\omega}(E_r, \mu) = \sum_{X_c} \langle 0|\bar{\chi}_{\omega}(0)|X_c\rangle \langle X_c|\chi_{\omega}(0)|0\rangle \delta(E_r \hat{E}^{< r}(X_c, \text{algorithm}))$ 
  - X<sub>c</sub> is constrained within jets by the corresponding jet algorithm
  - the energy outside jets is power suppressed
- The factorization theorem has a product form instead of a convolution

### Factorization theorem for jet shapes (continued)

The averaged energy inside the cone of size r in jet 1 is the following,

$$\langle E_r \rangle_{\omega} = \frac{1}{\frac{d\sigma}{dp_{T_i}dy_i}} \int dE_r E_r \frac{d\sigma}{dp_{T_i}dy_i dE_r} = \frac{H(p_{T_i}, y_i, \mu) J_{E, T_1}^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)}{H(p_{T_i}, y_i, \mu) J_1^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots S_{1,2,\dots}(\Lambda, \mu)} = \frac{J_{E, r_1}^{\omega_1}(\mu) J_{E, r_2}^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)}{J_1^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_{E, r_2}^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)}{J_1^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_{E, r_2}^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)}{J_1^{\omega_2}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)}{J_1^{\omega_2}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)}{J_1^{\omega_2}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)}{J_1^{\omega_2}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)}{J_1^{\omega_2}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)}{J_1^{\omega_2}(\mu) J_2^{\omega_2}(\mu) \dots J_{1, r_2, \dots}(\Lambda, \mu)} = \frac{J_{E, r_2}^{\omega_1}(\mu) J_2^{\omega_2}(\mu) J_$$

- $J^{\omega}_{E,r}(\mu)=\int dE_r E_r J^{\omega}(E_r,\mu)$  is referred to as the jet energy function
- Nice cancelation between the hard, unmeasured jet and soft functions
- The integral jet shape, averaged over all jets, is the following

$$\langle \Psi \rangle = \frac{1}{\sigma_{\rm total}} \sum_{i=q,g} \int_{PS} dp_T dy \frac{d\sigma}{dp_T dy} \Psi^i_\omega \ , \ \text{where} \ \Psi_\omega = \frac{J_{E,r}(\mu)/J(\mu)}{J_{E,R}(\mu)/J(\mu)} = \frac{J_{E,r}(\mu)}{J_{E,R}(\mu)}$$

- ratio of sums equals weighted ratios (not sum of ratios)
- $\frac{a_1+a_2+...}{b_1+b_2+...} = \frac{1}{\sum_i b_i} (b_1 \frac{a_1}{b_1} + b_2 \frac{a_2}{b_2} + ...)$
- Using the collinear SCET Feynman rules, the jet energy function  $J_{E,r}(\mu)$  and its anomalous dimension are calculated at  $\mathcal{O}(\alpha_s)$  for both quark jets and gluon jets

#### Jet energy function



- $J_{E,r}^{\omega}(\mu) = \sum_{X_c} \langle 0|\bar{\chi}_{\omega}(0)|X_c\rangle\langle X_c|\chi_{\omega}(0)|0\rangle \hat{E}^{< r}(X_c)$
- At O(α<sub>s</sub>), the phase space integrals in the jet energy function calculations are illustrated
- The axis is fixed and along the jet direction

$$\frac{dJ_{E,r}^g(r,R,\mu)}{d\ln\mu} = \left[ -C_F \Gamma_{\text{cusp}} \ln \frac{\omega^2 \tan^2 \frac{R}{2}}{\mu^2} - 2\gamma_{Jq} \right] J_{E,r}^q(r,R,\mu)$$

$$\frac{dJ_{E,r}^g(r,R,\mu)}{d\ln\mu} = \left[ -C_A \Gamma_{\text{cusp}} \ln \frac{\omega^2 \tan^2 \frac{R}{2}}{\mu^2} - 2\gamma_{Js} \right] J_{E,r}^g(r,R,\mu)$$

The anomalous dimensions of the jet energy functions are

$$\gamma_{Jq} = -3C_F$$
,  $\gamma_{Jg} = -\beta_0 = -\frac{11}{3}C_A + \frac{4}{3}T_F n_f$ 

•  $\langle E_r \rangle_{\omega}$  and  $\Psi_{\omega}$  are renormalization group invariant

$$\Psi_{\omega} = rac{J_{E,r}(\mu)}{J_{E,R}(\mu)} = rac{J_{E,r}(\mu_{j_r})}{J_{E,R}(\mu_{j_R})} U_J(\mu_{j_r}, \mu_{j_R})$$

- Identify the natural scale  $\mu_{j_r}$  to eliminate large logarithms in  $J_{E,r}(\mu_{j_r})$
- The RG evolution kernel  $U_J(\mu_{j_r},\mu_{j_R})$  resums the large logarithms

#### Natural scales

• The quark jet energy function at  $\mathcal{O}(\alpha_s)$  is the following

$$\begin{split} \frac{2}{\omega}J_{E,r}^q &= \frac{\alpha_s C_F}{2\pi} \left[ \frac{1}{2} \ln^2 \frac{\omega^2 \tan^2 \frac{r}{2}}{\mu^2} - \frac{3}{2} \ln \frac{\omega^2 \tan^2 \frac{r}{2}}{\mu^2} - 2 \ln X \ln \frac{\omega^2 \tan^2 \frac{r}{2}}{\mu^2} + 2 - \frac{3\pi^2}{4} \right. \\ &\quad + 6X - \frac{3}{2}X^2 - \left( \frac{1}{2}X^2 - 2X^3 + \frac{3}{4}X^4 + 2X^2 \log X \right) \tan^2 \frac{R}{2} \right], \text{ where } X = \frac{\tan \frac{r}{2}}{\tan \frac{R}{2}} \approx \frac{r}{R} \end{split}$$

• The scale  $\mu_{j_r} = \omega \tan \frac{r}{2} \approx E_J \times r$  eliminates large logarithms in  $J_{E,r}^q$  at  $\mathcal{O}(\alpha_s)$ 



RG evolution between  $\mu_{j_r}$  and  $\mu_{j_R}$  resums  $\log \mu_{j_r}/\mu_{j_R} = \log r/R$ 

### Resummed jet energy functions

•  $\log r/R$  are resummed using the RG kernels in SCET (i=q,g)

$$\begin{split} \Psi_{\omega}^{i}(r,R) &= \frac{J_{r}^{iE}(r,R,\mu_{j_{r}})}{J_{R}^{iE}(R,\mu_{j_{R}})} \exp[-2 C_{i} S(\mu_{j_{r}},\mu_{j_{R}}) + 2 A_{J^{i}}(\mu_{j_{r}},\mu_{j_{R}})] \left(\frac{\mu_{j_{r}}^{2}}{\omega^{2} \tan^{2} \frac{R}{2}}\right)^{C_{i} A_{\Gamma}(\mu_{j_{R}},\mu_{j_{r}})} \\ S(\nu,\mu) &= -\int_{\alpha_{s}(\nu)}^{\alpha_{s}(\mu)} d\alpha \frac{\Gamma_{\text{cusp}}(\alpha)}{\beta(\alpha)} \int_{\alpha_{s}(\nu)}^{\alpha} \frac{d\alpha'}{\beta(\alpha')}, \quad A_{X}(\nu,\mu) = -\int_{\alpha_{s}(\nu)}^{\alpha_{s}(\mu)} d\alpha \frac{\gamma_{X}(\alpha)}{\beta(\alpha)} \end{split}$$





### Comparison with the CMS data at 2.76 and 7 TeV



- The difference for jets reconstructed using different jet algorithms is of  $\mathcal{O}(r/R)$
- Bands are theory uncertainties estimated by varying  $\mu_{i_r}$  and  $\mu_{i_R}$
- In the region  $r \approx R$  we may need higher fixed order calculations and include power corrections



- NLL, anti- $k_T$ , R = 0.7
- For low  $p_T$  jets, power corrections have significant contributions

### Jet shapes in heavy ion collisions

More generally, the jet energy function can be calculated from integrating the splitting functions over appropriate phase spaces. At the leading-order splitting,

$$J_{E,r}^{i}(\mu) = \sum_{i,k} \int_{PS} dx dk_{\perp} \left[ \frac{dN_{i \to jk}^{vac}}{dx d^{2}k_{\perp}} + \frac{dN_{i \to jk}^{med}}{dx d^{2}k_{\perp}} \right] E_{r}(x, k_{\perp})$$

 The medium induced splitting functions are calculated numerically using SCET<sub>G</sub> with realistic hydrodynamic QGP models

### SCET with Glauber gluons (SCET<sub>G</sub>)

- The Glauber region of phase space is the other relevant mode
- SCET<sub>G</sub> was constructed from SCET bottom up (Idilbi et al, Vitev et al)
  - Glauber gluon momentum scales as  $p_G : Q(\lambda^2, \lambda^2, \lambda)$
  - Glauber gluons are off-shell modes providing momentum transfer transverse to the jet direction
  - Glauber gluons are treated as background fields generated from the colored charges in the QGP



- In principle, Glauber gluons interact with both the collinear and the soft modes
- However, jet shapes have dominant contributions from the collinear sector so the Glauber-collinear interaction is the most relevant

#### Jet shapes in heavy ion collisions (continued)

Jet shapes get modified through the modification of jet energy functions

$$\Psi(r) = \frac{J_{E,r}^{vac} + J_{E,r}^{mea}}{J_{E,R}^{vac} + J_{E,R}^{med}} = \frac{\Psi^{vac}(r)J_{E,R}^{vac} + J_{E,r}^{mea}}{J_{E,R}^{vac} + J_{E,R}^{med}}$$

- Large logarithms in  $\Psi^{vac}(r) = J_{E,r}^{vac}/J_{E,R}^{vac}$  have been resummed
- There are no large logarithms in  $J_{E,r}^{med}$  due to the LPM effect
- The RG evolution of medium-modified jet energy functions is unchanged
- However, with the use of small R's in heavy ion collisions, there is significant jet energy loss which leads to the suppression of jet production cross sections
- Jet-by-jet shapes are averaged with the jet cross sections

$$\frac{d\sigma^k}{d\eta dp_T} = \langle N_{\text{bin}} \rangle \sum_{ijX} \int dx_1 dx_2 f_i^A(x_1, \mu) f_j^A(x_2, \mu) \frac{d\sigma_{ij \to kX}}{dx_1 dx_2 d\eta dp_T}$$

$$\left. rac{d\sigma_{AA}^i}{d\eta dp_T} 
ight|_{p_T} = \left. rac{d\sigma_{pp}^i}{d\eta dp_T} 
ight|_{rac{p_T}{1-\epsilon_i}} rac{1}{1-\epsilon_i}$$

• With cold nuclear matter effects in nuclear parton distributions

# Multiple scattering in a medium

- Coherent multiple scattering and induced bremsstrahlung are the qualitatively new ingredients in the medium parton shower
- Interplay between several characteristic scales:
  - Debye screening scale μ
  - $\bullet \ \ {\rm Parton \ mean \ free \ path \ } \lambda$
  - Radiation formation time  $\tau$
- From thermal field theory and lattice QCD calculations, an ensemble of quasi particles with debye screened potential and thermal masses is a reasonable parameterization of the medium properties



$$\frac{1}{\sigma_{el}} \frac{d\sigma_{el}}{d^2 q_\perp} = \frac{\mu^2}{\pi (q_\perp^2 + \mu^2)^2}$$

### Landau-Pomeranchuk-Migdal effect

• The hierarchy between  $\tau$  and  $\lambda$  determines the degree of coherence between multiple scatterings

$$au = rac{x \, \omega}{(q_{\perp} - k_{\perp})^2}$$
 v.s.  $\lambda$ 



• 
$$\tau \ll \lambda$$
: Bethe-Heitler incoherence limit



Medium induced splitting functions calculated using SCET<sub>G</sub> (Ovanesyan et al)

$$\frac{dN_{q\to qg}^{med}}{dxd^2k_{\perp}} = \frac{C_F\alpha_s}{\pi^2} \frac{1}{x} \int_0^L \frac{d\Delta z}{\lambda} \int d^2q_{\perp} \frac{1}{\sigma_{el}} \frac{d\sigma_{el}}{d^2q_{\perp}} \frac{2k_{\perp} \cdot q_{\perp}}{k_{\perp}^2(q_{\perp} - k_{\perp})^2} \left[ 1 - \cos\left(\frac{(q_{\perp} - k_{\perp})^2 \Delta z}{x\omega}\right) \right]$$

•  $\frac{dN^{med}}{dxd^2k_\perp} 
ightarrow$  finite as  $k_\perp 
ightarrow 0$ : the LPM effect

• 
$$\frac{dN^{vac}}{dxd^2k_{\perp}} 
ightarrow \frac{1}{k_{\perp}}$$
 as  $k_{\perp} 
ightarrow 0$ 

Large angle bremsstrahlung takes away energy, resulting parton energy loss

#### Jet energy loss



• For a parton shower constrained within radius  $R_0$  ( $\mathcal{O}(1)$ ), the averaged energy outside the leading anti- $k_T$  jet of size R is the jet energy loss

Medium Modifications using SCETG

 The jet axis is not necessarily along the original parton direction

#### Results



- The plots are the ratios between the jet cross sections and differential jet shapes in lead-lead and proton collisions
- Jet shapes are insensitive to cold nuclear matter effects
- Gluon jets are more suppressed which increases the quark jet fraction
- · Jet-by-jet the shape is broadened

#### Results



 The plots shows the dependence of jet cross section suppressions on centrality, jet rapidity and jet radius

#### Results



 Predictions for jet shapes and cross sections at 5 TeV for inclusive and photon-tagged jets

#### Conclusions and outlooks

- Jet shapes in proton and heavy ion collisions are calculated within the same framework
  - Promising agreement with data and phenomenological applications
- The modification of jet shapes is a combination of cross section suppression and jet-by-jet broadening
- · Work in progress and future work
  - Calculate jet fragmentation function modifications
  - Construct SCET at finite temperature
  - Modification of other jet substructure observables more sensitive to soft physics



- The physics of heavy ion collisions is a multi-disciplinary subject
- The study of jet quenching is a unique opportunity to probe non-perturbative QCD physics with perturbative objects
- SCET can make important contributions in these new territories!