Resummation of Jet Rates

In collaboration with Y. Chien, C. Lee (arXiv:1509.04287)

What is a Jet?

* high-energy event:

* organizing principle (beyond fixed-order calculation)?

What is a Jet?

* (soft \& collinear) singularities \rightarrow organize through factorization

* can be achieved via Effective Field Theory (in particular, SoftCollinear Effective Theory, or SCET)

SCET \& Factorization: Thrust

* thrust measures "jettiness" of $\mathrm{e}^{+} \mathrm{e}^{-}$events:

$$
\tau=\tau_{L}+\tau_{R}
$$

$$
1-\tau_{L, R}=\sum_{i \in L, R} E_{i} \cos \theta_{i}^{L, R}
$$

* small thrust \Rightarrow all particles close to thrust axis (very jetty)
* fixed order calculation not possible in this region:

$$
\frac{1}{\sigma_{0}} \frac{d \sigma}{d \tau}=1+\alpha_{s}\left(a_{12} \frac{\ln \tau}{\tau}+a_{11} \frac{1}{\tau}+a_{10}\right)+\alpha_{s}^{2}\left(a_{23} \frac{\ln ^{3} \tau}{\tau}+a_{22} \frac{\ln ^{2} \tau}{\tau}+a_{21} \frac{\ln \tau}{\tau}+a_{20}\right)+\cdots
$$

SCET \& Factorization: Thrust

* factorization:

* resummation via RGE:

Factorization of Jet Rates

* "unmeasured jets" : tagged with algorithm but unprobed

$\sigma(R, \Lambda) \quad$ record rate (count events)
* "measured jets" : probed with mass, angularity, etc

"jet shapes" (not the jet shape $\Psi(\mathrm{r} / \mathrm{R})$) Ellis, Kunszt, Soper '91, '92
$\frac{d \sigma(R)}{d m_{J}} \quad$ bin in (e.g.) mass

Factorization of Jet Rates

* "unmeasured jets" : tagged with algorithm but unproved

$$
\sigma(R, \Lambda) \stackrel{?}{=} \mu(Q) * J^{\mathrm{ummeas}}(Q R) * S^{\operatorname{unmeas}(R, \Lambda / Q)}
$$

* "measured jets" : probed with mass, angularity, etc

$\frac{d \sigma(R)}{d m_{J}} \xlongequal{?} \underbrace{}_{\text {valid for } \mathrm{R} \ll 1} \mu(Q) * J^{\text {meas }}(m, R) * S^{\text {meas }}\left(R, \Lambda / Q, m_{J}\right)$

Jet Rates from Integrating Shapes to $\boldsymbol{\alpha}_{s}{ }^{1}$

* can get rates directly from integrating shapes:

$$
\begin{gathered}
\sigma(R)=\int_{0}^{\tau^{\max }(R)} d \tau \frac{d \sigma}{d \tau}=\left\{\begin{array}{l}
\sigma_{c}^{\text {cone }}\left(\tau=R^{2}\right)=1+\frac{\alpha_{s} C_{F}}{2 \pi}\left(-8 \ln R \ln \frac{2 \Lambda}{Q}-6 \ln R+6 \ln 2-1\right) \\
\sigma_{c}^{k_{c}}\left(\tau=\frac{R^{2}}{4}\right)=1+\frac{\alpha_{s} C_{F}}{2 \pi}\left(-8 \ln R \ln \frac{2 \Lambda}{Q}-6 \ln R+5-\frac{2 \pi^{2}}{3}\right)
\end{array}\right. \\
\longrightarrow=H * J^{\text {meas }}(\tau, R) * S^{\text {meas }}(R, \Lambda / Q, \tau) \\
\longrightarrow=H(Q) * J^{\text {unmeas }}(Q R) * S^{\text {unmeas }}(R, \Lambda / Q)
\end{gathered}
$$

note: $\int_{0}^{\tau^{\max }(R)} d \tau J^{\text {meas }}(\tau, R) \neq J^{\text {unmeas }}(Q R)$
\rightarrow part of $S^{\text {meas }}(\tau)$ is needed (more later!)

Jet Shapes to $\boldsymbol{\alpha}_{\mathrm{s}}{ }^{1}$

* jet function with a jet algorithm (R dependence needed!):

$$
\begin{aligned}
& J_{n}^{\text {alg. }}\left(t_{n}, R, \mu\right)= J^{\mathrm{incl}}\left(t_{n}, \mu\right)+\Delta J^{\text {alg. }}\left(t_{n}, R\right) \\
& \Delta J^{\text {cone }}(t, R)=\frac{\alpha_{s} C_{F}}{4 \pi}\left[\theta(t) \theta\left(Q^{2} R^{2}-t\right) \frac{6}{t+Q^{2} R^{2}}+\frac{\theta\left(t-Q^{2} R^{2}\right)}{t}\left(4 \ln \frac{t}{Q^{2} R^{2}}+3\right)\right] \\
& \rightarrow \text { power correction for } \tau \ll \mathrm{R}, \\
& \quad \text { but needed in general! }
\end{aligned}
$$

* soft function:

$$
S\left(k_{n}, k_{\bar{n}}, \Lambda, R, \mu\right)=\delta(k)[1+\underbrace{\frac{\alpha_{s} C_{F}}{4 \pi}\left(4 \ln R \ln \frac{\mu^{2}}{4 \Lambda^{2} R}-\frac{\pi^{2}}{3}\right.})]-\sum_{i=n, \bar{n}} \frac{2 \alpha_{s} C_{F}}{\pi} \frac{1}{\mu R}\left[\frac{\theta\left(k_{i}\right) \mu R}{k_{i}} \ln \frac{k_{i}}{\mu R}\right]_{+}
$$

part associated with veto:
minimized for $\mu \sim 2 \Lambda R^{1 / 2}$
CLUE??

The $\alpha_{s}{ }^{2}$ Result

$$
\begin{align*}
& \bar{K}_{T C}^{(2)}\left(\tau_{\omega}, \omega, r \rightarrow 0, \mu\right)=C_{A} C_{F}\left[-\frac{176}{9} \ln ^{3}\left(\frac{\mu}{Q \tau_{\omega}}\right)+\left(-\frac{88 \ln (r)}{3}+\frac{8 \pi^{2}}{3}-\frac{536}{9}\right)\right. \\
& \quad \times \ln ^{2}\left(\frac{\mu}{Q \tau_{\omega}}\right)+\left(-\frac{44}{3} \ln ^{2}(r)+\frac{8}{3} \pi^{2} \ln (r)-\frac{536 \ln (r)}{9}+56 \zeta_{3}+\frac{44 \pi^{2}}{9}-\frac{1616}{27}\right) \\
& \quad \times \ln \left(\frac{\mu}{Q \tau_{\omega}}\right)+\left(-\frac{44}{3} \ln ^{2}(r)-\frac{8}{3} \pi^{2} \ln (r)+\frac{536 \ln (r)}{9}-\frac{44 \pi^{2}}{9}\right) \ln \left(\frac{\mu}{2 \omega}\right)+\frac{88}{3} \ln (r) \\
& \quad \times \ln ^{2}\left(\frac{\mu}{2 \omega}\right)-\frac{8}{3} \pi^{2} \ln ^{2}\left(\frac{Q \tau_{\omega}}{2 r \omega}\right)+\left(-16 \zeta_{3}-\frac{8}{3}+\frac{88 \pi^{2}}{9}\right) \ln \left(\frac{Q \tau_{\omega}}{2 r \omega}\right)+\frac{4}{3} \pi^{2} \ln ^{2}(r) \\
& \left.\quad-\frac{268 \ln ^{2}(r)}{9}-\frac{682 \zeta_{3}}{9}+\frac{109 \pi^{4}}{45}-\frac{1139 \pi^{2}}{54}-\frac{1636}{81}\right]+C_{F} n_{f} T_{F}\left[\frac{64}{9} \ln ^{3}\left(\frac{\mu}{Q \tau_{\omega}}\right)\right. \\
& \quad+\left(\frac{32 \ln (r)}{3}+\frac{160}{9}\right) \ln ^{2}\left(\frac{\mu}{Q \tau_{\omega}}\right)+\left(\frac{16 \ln ^{2}(r)}{3}+\frac{160 \ln (r)}{9}-\frac{16 \pi^{2}}{9}+\frac{448}{27}\right) \ln \left(\frac{\mu}{Q \tau_{\omega}}\right) \\
& \quad-\frac{32}{3} \ln (r) \ln ^{2}\left(\frac{\mu}{2 \omega}\right)+\left(\frac{16 \ln ^{2}(r)}{3}-\frac{160 \ln (r)}{9}+\frac{16 \pi^{2}}{9}\right) \ln \left(\frac{\mu}{2 \omega}\right)+\left(\frac{16}{3}-\frac{32 \pi^{2}}{9}\right) \\
& \left.\quad \times \ln \left(\frac{Q \tau_{\omega}}{2 r \omega}\right)+\frac{80 \ln ^{2}(r)}{9}+\frac{248 \zeta_{3}}{9}+\frac{218 \pi^{2}}{27}-\frac{928}{81}\right] . \tag{5.14}
\end{align*}
$$

* large logs at $\mu \sim 2 \Lambda \mathrm{R}^{1 / 2}$
* "refactorization??" (but not clear any set of scales will work)

SCET $_{+}$

* originally used for when jets get close:

(a) All jets equally separated.

(b) Two jets close to each other.
* requires a new "csoft" mode

$$
\begin{gathered}
p_{c s} \sim Q\left(\lambda^{2}, \eta^{2}, \eta \lambda\right) \\
\lambda=\frac{m}{Q} \quad \eta=\frac{\lambda}{\lambda_{t}}=\frac{m}{\sqrt{t}} .
\end{gathered}
$$

SCET + for Jet Rates

* we also fix small component and decrease \perp

$$
\left.\begin{array}{cc}
p^{+}=Q \tau & \text { fixed by } \tau \text { meas } \\
p^{\perp} \propto p^{-} / R & \text { inside R (the jet) }
\end{array}\right\} \quad \begin{gathered}
p=Q \tau\left(1,1 / R^{2}, 1 / R\right) \\
\quad \text { virtuality increased due to R! }
\end{gathered}
$$

The Soft-Collinear Mode (new!)

Re-Factorization

Predicting the $\alpha_{s}{ }^{2}$ Result

$$
\begin{align*}
& S^{\mathrm{c}}(k, \Lambda, R, \mu)=S_{C_{F}}(k, \Lambda, R, \mu)+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2} S_{n A}^{(2)}(k, \Lambda, R, \mu) \\
& S_{C_{F}}(k, \Lambda, R, \mu)= 1+\frac{\alpha_{s}}{4 \pi}\left[2 \Gamma_{0}\left(-\ln ^{2} \frac{\mu R}{k}+\ln R \ln \frac{\mu^{2}}{4 \Lambda^{2} R}\right)-\frac{\pi^{2}}{3} C_{F}\right]+\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left\{2\left(\Gamma_{0}\right)^{2}\left(-\ln ^{2} \frac{\mu R}{k}+\ln R \ln \frac{\mu^{2}}{4 \Lambda^{2} R}\right)^{2}\right. \\
&\left.+2 \Gamma_{0} \frac{\pi^{2}}{3} C_{F}\left(\ln ^{2} \frac{\mu R}{k}-\ln R \ln \frac{\mu^{2}}{4 \Lambda^{2} R}\right)-\frac{4 \pi^{2}}{3}\left(\Gamma_{0}\right)^{2}\left(\ln ^{2} \frac{\mu R}{k}+\ln ^{2} R\right)-16 \zeta_{3} \Gamma_{0}^{2} \ln \frac{\mu R}{k}+c_{C_{F}}^{(2)}\right\}, \tag{65}\\
& S_{n A}^{(2)}(k, \Lambda, R, \mu)= \frac{4}{3} \Gamma_{0} \beta_{0}\left(-\ln ^{3} \frac{\mu R}{k}+\ln ^{3} \frac{\mu}{2 \Lambda}-\ln ^{3} \frac{\mu}{2 \Lambda R}\right)+2 \Gamma_{1}\left(-\ln ^{2} \frac{\mu R}{k}+\ln R \ln \frac{\mu^{2}}{4 \Lambda^{2} R}\right)+S_{n g}^{c(2)}(k, \Lambda, R, \mu) \\
&+2\left(\gamma_{\text {in }}^{1}+2 \beta_{0} c_{\text {in }}^{1}\right) \ln \frac{\mu R}{k}+\left(\gamma_{s s}^{1}+2 \beta_{0} c_{s s}^{1}\right) \ln \frac{\mu}{2 \Lambda}+2\left(\gamma_{s c}^{1}+2 \beta_{0} c_{s c}^{1}\right) \ln \frac{\mu}{2 \Lambda R}+c_{n A}^{(2)} .
\end{align*}
$$

* comparison to α^{2} result \Rightarrow all logs of $2 \Lambda, 2 \Lambda R$, and $Q \tau / R$!
* this also gives the anom. dimensions to α^{2} for free!!

$$
\begin{aligned}
\gamma_{s s}^{1} & =-2 \gamma_{\mathrm{in}}^{1}=-2 \gamma_{s c}^{1} \\
& =C_{F}\left[\left(\frac{1616}{27}-56 \zeta_{3}\right) C_{A}-\frac{448}{27} T_{F} n_{f}-\frac{2 \pi^{2}}{3} \beta_{0}\right]
\end{aligned}
$$

* can argue to all orders (ingredients known to α^{3})!!!

$$
\gamma_{\text {hemi }}=\gamma_{\text {in }}=\gamma_{s c}=-\frac{\gamma_{s s}}{2}
$$

How the Modes Integrate

* complete EFT over all physical values of τ

Jet Rate Factorization (Proof)

these modes coincide @ $\mathrm{T}^{\max } \sim \mathrm{R}^{2}$

* now we have: $\sigma(R, \Lambda) \rightarrow H(Q) J^{\text {unmeas }}(Q R) S_{s}(\Lambda) S_{c}(\Lambda R)$

$$
J^{\mathrm{unmeas}}(Q R)=\int_{0}^{\tau^{\max }(R)} d \tau J^{\mathrm{meas}}(\tau, R) S_{\mathrm{in}}\left(\frac{Q \tau}{R}\right)
$$

Plots

* reduced normalization and scale uncertainty:

Conclusions

* can resum logs or R with 2 additional modes:

$$
\left.\begin{array}{ll}
\text { 1. } & \text { "csoft" mode of } \text { SCET }_{+} \\
\text {2. } & \text { soft-collinear mode (new) }
\end{array}\right\} \text { SCET }_{++}
$$

* all anomalous dimensions known to α^{3}
* can integrate jet shapes to get jet rates

1. jet rate fact. thms now proven (with Junmeas)
2. understand relation of unmeas. and meas. funcs
