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What is a Jet?
❖ high-energy event:

=
??

❖ organizing principle (beyond fixed-order calculation)?



What is a Jet?
❖ (soft & collinear) singularities ➝ organize through factorization!

!

!

!

!

!

❖ can be achieved via Effective Field Theory (in particular, Soft-
Collinear Effective Theory, or SCET)

= Soft
+ power !

corrections!

jet (coll. splittings)

hard process



SCET & Factorization: Thrust
❖ thrust measures “jettiness” of e+e- events:!

!

!

!

!

❖ small thrust ⟹ all particles close to thrust axis (very jetty)!

❖ fixed order calculation not possible in this region:

⌧ = ⌧L + ⌧R

⌧L,R =

X

i2L,R

Ei cos ✓
L,R
i

t̂
L R

✓
R
i

✓
L
i

1

�0

d�

d⌧
= 1 + ↵s

⇣
a12

ln ⌧

⌧
+ a11

1

⌧
+ a10

⌘
+↵2

s

⇣
a23

ln3 ⌧

⌧
+ a22

ln2 ⌧

⌧
+ a21

ln ⌧

⌧
+ a20

⌘
+ · · ·

1� ⌧L,R



SCET & Factorization: Thrust

Soft
+ power !

corrections!

jet function !
(coll. splittings)

hard function

d�

d⌧
= H ⇤ Jn ⌦ Jn̄ ⌦ Snn̄

virtual coll. real soft real

µH = Q

µJ = Q
p
⌧

µS = Q⌧

❖ resummation via RGE:

❖ factorization:



Factorization of Jet Rates
❖ “unmeasured jets” : tagged with algorithm but unprobed

❖ “measured jets” : probed with mass, angularity, etc 
“jet shapes” (not the jet shape Ψ(r/R))

}
Ellis, Kunszt, Soper ’91, ‘92
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Refs.[5,19,20]studiedNGLsof⇤/Qincrosssections
vetoingradiationwithtotalenergygreaterthan⇤inan-
gularregionsoutsideoffoundjets.Thoughahardscale
Qappearsintheseratios,wefoundin[21]thattheNGLs
stillarisefromconsideringbothscalesintheratiotobe
softandlatertakingoneofthemtoQinaninclusive
limit.

In[21]wemadeprogressinunderstandingtheori-
ginofNGLsine↵ectivefieldtheory.Weconsideredthe
factorizeddijetinvariantmassdistribution�(m1,m2)in
e+e�collisionsproducingback-to-backjets,andcalcu-
latedtoO(↵2

s),asalsoin[22],thehemispheresoftfunc-
tionS(kL,kR).Thesecalculationsclarifiedtheoriginof
NGLsinanEFTframeworkasthedependenceofasoft
functiononratiosofmultiplesoftscales,andrevealed
newsubleading(single)NGLsandnon-logarithmicnon-
globalfunctions.

TheseNGLsareorganizedintoamultiplicativefactor
enteringthetotalcrosssection,withtheleadingNGLs
takingthegenericform

SNG(µ1/µ2)=1�↵2
s

(2⇡)2
CFCAS2ln2µ1

µ2
+···.(2)

Hereµ1,2arethescalesatwhichsoftradiationisprobed
indi↵erentsharply-dividedregions.Forthehemisphere
massdistributionµ1,2=m2

1,2/QandS2=⇡2/3.For
the⇢Rdistribution,µ1=Q⇢Rwhileµ2=Qdueto
totalinclusivityinonehemisphere.Thecoe�cientS2

isageometricmeasureoftheregionintowhichthetwo
softgluonscontributingtoaNGLcango.Thefactthat
itvarieswiththesizeofthisregionisduetotheNGL
arisingfromapurelysoftdivergenceofQCD.Techniques
toresumNGLsusingnumericalfitsinthelarge-NClimit
ofQCDwereintroducedby[4],butanalyticresummation
ofNGLsinreal-worldQCDremainsanopenproblem.

Inthisworkweseektoextendtheintuitiongainedin
[21]bystudyingamoreexclusivesetofcrosssections.
Westudynon-globalpropertiesofanexclusivejetcross
section�(m1,m2,⇤),wheretheinvariantmassesm1and
m2oftwojetsofsizeRproducedinane+e�collision
atcenter-of-massenergyQaremeasured,withaveto⇤
ontheenergyofadditionaljets.Weconsiderfindingthe
jetsusingvariousalgorithms—cone,anti-kT,Cambridge-
Aachen,andkT[23–28].WewillfindthatNGLsof
theratioofthejetvetoandthejetmasses⇤/m1,2

arepresent,inadditiontoNGLsoftheratioofmasses
m1/m2.Wecalculatethecoe�cientsonlyofleadingdou-
bleNGLs↵2

sln2(µ1/µ2)inthispaper.Therelevantscales
forthisobservableareshowninFig.1foraparticularhi-
erarchyofm1,2and⇤,howeverourresultsarevalidfor
anychoicesuchthatQ�m1,2�m2

1,2/Q,⇤.
In[21],wediscoveredthatatO(↵2

s)NGLsoftwosoft
scalesµ1,2canbeconstructedfromseparatepiecesde-
pendentontheratioofthefactorizationscaleµtoone
physicalscaleatatime.Namely,theregionofphase
spacewhereoneofthesoftgluonsenterstheregionsen-
sitivetothescaleµ1andtheotherenterstheregion
sensitivetoµ2generatesthedoublelog↵2

sln2µ2/(µ1µ2),

Hard scale

Left jet scale

Right jet scale

Soft scales

µH=Q

µL
S=m2

1/Q

µout
S=⇤

µR
S=m2

2/Q

µL
J=m1

µR
J=m2

FIG.1:Therelevantscalesintheexclusivejetmasscross
sectionwithanenergyveto,⇤outsideofthejetsisshown
foraparticularchoiceofthehierarchym2

2⌧⇤Q⌧m2
1that

givesrisetolargenon-globallogs.Ourresultsapplytoany
choiceofm1,2and⇤thatsatisfiesQ�m1,2�m2

1,2/Q,⇤,
whichmaintainstheseparationbetweenhard,jetandsoft
scales.

whiletheregionswheresoftgluonsenteronlyregion1or
onlyregion2generate↵2

sln2(µ/µ1)and↵2
sln2(µ/µ2).In

[21]wederivedfromRGinvarianceofthecrosssection
andIRsafetyofthesoftfunctionthatthecoe�cients
oftheselogsareconstrainedsothattheµ-dependence
cancels,butanNGL↵2

sln2(µ1/µ2)isleftover.Analo-
gouslyfor�(m1,m2,⇤),thethreesoftphasespacere-
gionsthatgiverisetotheNGLsatO(↵2

s)areshown
inFig.2.Eachconfigurationcontributeslogarithmsof
µoverasinglescale,the“in-out”regionscontributing
logs↵2

sln2µ2/(⇤m1,2),andthe“in-in”regioncontribut-
inglogs↵2

sln2µ2/(m1m2).Thesecombinewithsingle-
regioncontributionstogiveNGLsof⇤/m1,2withcoe�-
cientsfOL,ORandofm1/m2withcoe�cientfLR.These
coe�cientsgivethegeometricfactorS2inEq.(2).IR
safetyandRGinvariancewillallowustoderiveaddi-
tionalstrongrelationsamongthesedi↵erentcoe�cients.
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discovered
thatatO

(↵2
s)N

G
Lsoftwo

soft

scales
µ

1,2can
be

constructed
from

separate
pieces

de-

pendent
on

the
ratio

ofthe
factorization

scale
µ

to
one

physicalscale
at

a
tim

e.
N

am
ely,

the
region

of
phase

space
where

one
ofthe

softgluonsentersthe
region

sen-

sitive
to

the
scale

µ
1

and
the

other
enters

the
region

sensitiveto
µ

2generatesthedoublelog
↵2

sln2
µ2

/(µ
1µ

2),

Hard scale Left jet scale Right jet scale

Soft scales

µ
H

=
Q

µL
S=

m2
1/Q

µout S
=

⇤
µR

S=
m2

2/Q

µL
J=

m
1

µR
J=

m
2

FIG
.1:

The
relevant

scales
in

the
exclusive

jet
m

ass
cross

section
with

an
energy

veto,
⇤

outside
of

the
jets

is
shown

for
a

particular
choice

ofthe
hierarchy

m
2
2⌧

⇤Q⌧
m

2
1that

gives
rise

to
large

non-globallogs.
O

ur
results

apply
to

any

choice
ofm

1,2
and

⇤
that

satisfies
Q�

m
1,2�

m
2
1,2/Q

,⇤,

which
m

aintains
the

separation
between

hard,
jet

and
soft

scales.
whiletheregionswheresoftgluonsenteronly

region
1

or

only
region

2
generate↵2

sln2
(µ/µ

1)and
↵2

sln2
(µ/µ

2).In

[21]we
derived

from
RG

invariance
ofthe

cross
section

and
IR

safety
of

the
soft

function
that

the
coe�

cients

ofthese
logs

are
constrained

so
that

the
µ-dependence

cancels,but
an

N
G

L
↵2

sln2
(µ

1/µ
2)

is
left

over.
A

nalo-

gously
for

�(m
1,m

2,⇤),
the

three
soft

phase
space

re-

gions
that

give
rise

to
the

N
G

Ls
atO

(↵2
s)

are
shown

in
Fig.2.

Each
configuration

contributes
logarithm

s
of

µ
over

a
single

scale,the
“in-out”

regions
contributing

logs↵2
sln2

µ2
/(⇤

m
1,2),and

the“in-in”
region

contribut-

ing
logs

↵2
sln2

µ2
/(m

1m
2).

These
com

bine
with

single-

region
contributionsto

give
N

G
Lsof⇤/m

1,2with
coe�

-

cientsf
O

L
,O

R
and

ofm
1/m

2with
coe�

cientf
L

R.These

coe�
cients

give
the

geom
etric

factor
S

2in
Eq.(2).

IR

safety
and

RG
invariance

willallow
us

to
derive

addi-

tionalstrong
relationsam

ong
these

di↵erentcoe�
cients.
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⇤
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d
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at
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ra
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N
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fie

ld
th
eo
ry
.
W
e
co
ns
id
er
ed

th
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s di
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m
1 ,

m
2 )
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e �
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-b
ac
k
je
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d
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-
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d
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s ),
as

al
so
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[2
2]
, t

he
he

m
isp

he
re

so
ft

fu
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-

tio
n
S(

kL
, k

R ).
The

se
ca
lcu

la
tio

ns
cla

rifi
ed

th
e
or
ig
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of

N
G
Ls

in
an

EF
T

fra
m
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or
k
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th
e
de
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en
ce
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a
so
ft
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n
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ra
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s
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m
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so
ft
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d
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ve
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ed

ne
w
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ng
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in
gl
e)

N
G
Ls

an
d
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n-
lo
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hm

ic
no

n-
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fu
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tio
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.

The
se

N
G
Ls

ar
e
or
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ze
d
in
to

a
m
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tip

lic
at
iv
e
fa
ct
or

en
te
rin

g
th
e
to
ta
l c

ro
ss

se
ct
io
n,

with
th
e
lea

di
ng

N
G
Ls

ta
ki
ng

th
e
ge
ne

ric
fo
rm

S
N
G
(µ

1 /
µ
2 )

=
1�

↵ 2
s(2

⇡) 2 C
F C

A S
2 ln 2

µ
1

µ
2 +

· · ·
.
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H
er
e
µ
1,
2
ar
e
th
e
sc
al
es

at
whi

ch
so
ft

ra
di
at
io
n
is

pr
ob

ed

in
di
↵e

re
nt

sh
ar
pl
y-
di
vi
de

d
re
gi
on

s.
Fo

r
th
e
he

m
isp

he
re
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s
di
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rib

ut
io
n

µ
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2

=
m 2
1,
2 /Q

an
d

S
2

=
⇡ 2

/3
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Fo
r

th
e
⇢R

di
st
rib

ut
io
n,

µ
1

=
Q
⇢R

whi
le

µ
2

=
Q

du
e
to

to
ta
l in

clu
siv

ity
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e
he

m
isp

he
re
.
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e�
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S
2
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a
ge
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ric

m
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e
re
gi
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o
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ft
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G
L
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n
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th
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it
va
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with
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e
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e
of

th
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re
gi
on
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N
G
L

ar
isi
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fro
m
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pu

re
ly
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ce
of

Q
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. T
ec
hn

iq
ue

s

to
re
su
m

N
G
Ls
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g
nu

m
er
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in
th
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N
C

lim
it
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Q
CD
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ly
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m
m
at
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N
G
Ls
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re
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Q
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m
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.
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is
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rk
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ga
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[2
1]

by
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a
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e
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clu
siv

e
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t
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s
se
ct
io
ns
.

W
e
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gl
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pr
op

er
tie

s
of
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e
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t
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s
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n
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m
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m
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⇤)
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th
e in

va
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nt
m
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se
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1
an

d

m
2

of
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o
je
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e
R

pr
od

uc
ed
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e �
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lli
sio

n
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ce
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as
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Q
ar
e
m
ea
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with
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⇤
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th
e
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er
gy
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di
tio

na
l j
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s.

W
e
co
ns
id
er

fin
di
ng

th
e

je
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in
g
va

rio
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al
go

rit
hm

s—
co
ne

, a
nt
i-k

T , C
am

br
id
ge
-

A
ac
he

n,
an

d
kT

[2
3–

28
].
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fin
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th
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N
G
Ls

of

th
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ra
tio

of
th
e
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t

ve
to

an
d
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e
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t

m
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⇤/
m
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2
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e
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N
G
Ls
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e
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m
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m
1 /

m
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W
e c

al
cu
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te

th
e c

oe
�
cie

nt
s o
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y
of
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di
ng

do
u-
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e N

G
Ls
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s ln 2
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1 /

µ
2 )
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pa

pe
r.

The
re
lev

an
t s
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les

fo
r t

hi
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er
va
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e ar

e sh
ow

n
in

Fi
g.

1
fo
r a
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rt
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ch
y
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2

an
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ho
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r
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r
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su
lts
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e
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fo
r

an
y
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ce

su
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th
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Q
�

m
1,
2
�
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1,
2 /Q

, ⇤
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ed
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G
Ls
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o
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ra
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e
ra
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e
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e.
N
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e
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e
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e
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e
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e
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µ
1

an
d

th
e
ot
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r
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te
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th
e
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gi
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se
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iti
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to
µ
2
ge
ne

ra
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he
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ub
le
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g
↵ 2
s ln 2

µ 2
/(
µ
1 µ

2 ),

Hard
 sc

ale
Le

ft 
jet

 sc
aleRigh

t j
et

 sc
ale

So
ft 

sc
ale

s

µ
H

=
Q

µ L
S

=
m 2
1 /Q

µ ou
tS
=

⇤
µ R
S

=
m 2
2 /Q

µ L
J

=
m
1

µ R
J

=
m
2

FI
G
. 1
:
Th
e
re
lev
an
t
sc
al
es
in
th
e
ex
clu
siv
e
je
t
m
as
s
cr
os
s

se
ct
io
n
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th
an

en
er
gy

ve
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,
⇤
ou
ts
id
e
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e
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fo
r
a
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rt
icu
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r
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ce
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th
e
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ch
y
m 2
2
⌧
⇤Q

⌧
m 2
1
th
at

gi
ve
s
ris
e
to
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rg
e
no
n-
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ob
al
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gs
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O
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y
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an
y

ch
oi
ce
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m
1,
2
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d
⇤
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at
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fie
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Q
�
m
1,
2
�
m 2
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2 /
Q
, ⇤
,
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m
ai
nt
ai
ns
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e
se
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ra
tio
n
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ee
n
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rd
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je
t
an
d
so
ft

sc
al
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.

whi
le

th
e re

gi
on

s w
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re
so
ft

gl
uo
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te
r o

nl
y
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gi
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1
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ly
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2
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ne

ra
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↵ 2
s ln 2
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1 )
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s ln 2
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2 ).
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e
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s
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n

th
at
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e
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es
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e
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ai
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d
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e
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ce
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N
G
L

↵ 2
s ln 2
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1 /

µ
2 )
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A
na
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-
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r
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m
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m
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e
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e
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s
th
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e
to
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e
N
G
Ls
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ar
e
sh
ow
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in
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g.

2.
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ch
co
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ra
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n
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⇤
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d
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m
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N
G
Ls
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m
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e�

-

cie
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s fO

L
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R
an

d
of

m
1 /

m
2
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co
e�

cie
nt

fL
R . The

se

co
e�

cie
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s
gi
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e
ge
om

et
ric

fa
ct
or

S
2

in
Eq

. (
2)
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sa
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d
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in
va

ria
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e
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e
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-
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l s
tr
on

g
re
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th
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nt
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ra
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.
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Refs. [5, 19, 20] studied NGLs of ⇤/Q in cross sections
vetoing radiation with total energy greater than ⇤ in an-
gular regions outside of found jets. Though a hard scale
Q appears in these ratios, we found in [21] that the NGLs
still arise from considering both scales in the ratio to be
soft and later taking one of them to Q in an inclusive
limit.

In [21] we made progress in understanding the ori-
gin of NGLs in e↵ective field theory. We considered the
factorized dijet invariant mass distribution �(m1, m2) in
e+e� collisions producing back-to-back jets, and calcu-
lated to O(↵2

s), as also in [22], the hemisphere soft func-
tion S(kL, kR). These calculations clarified the origin of
NGLs in an EFT framework as the dependence of a soft
function on ratios of multiple soft scales, and revealed
new subleading (single) NGLs and non-logarithmic non-
global functions.

These NGLs are organized into a multiplicative factor
entering the total cross section, with the leading NGLs
taking the generic form

SNG(µ1/µ2) = 1 � ↵2
s

(2⇡)2
CF CAS2 ln2 µ1

µ2
+ · · · . (2)

Here µ1,2 are the scales at which soft radiation is probed
in di↵erent sharply-divided regions. For the hemisphere
mass distribution µ1,2 = m2

1,2/Q and S2 = ⇡2/3. For
the ⇢R distribution, µ1 = Q⇢R while µ2 = Q due to
total inclusivity in one hemisphere. The coe�cient S2

is a geometric measure of the region into which the two
soft gluons contributing to a NGL can go. The fact that
it varies with the size of this region is due to the NGL
arising from a purely soft divergence of QCD. Techniques
to resum NGLs using numerical fits in the large-NC limit
of QCD were introduced by [4], but analytic resummation
of NGLs in real-world QCD remains an open problem.

In this work we seek to extend the intuition gained in
[21] by studying a more exclusive set of cross sections.
We study non-global properties of an exclusive jet cross
section �(m1, m2, ⇤), where the invariant masses m1 and
m2 of two jets of size R produced in an e+e� collision
at center-of-mass energy Q are measured, with a veto ⇤
on the energy of additional jets. We consider finding the
jets using various algorithms—cone, anti-kT, Cambridge-
Aachen, and kT [23–28]. We will find that NGLs of
the ratio of the jet veto and the jet masses ⇤/m1,2

are present, in addition to NGLs of the ratio of masses
m1/m2. We calculate the coe�cients only of leading dou-
ble NGLs ↵2

s ln2(µ1/µ2) in this paper. The relevant scales
for this observable are shown in Fig. 1 for a particular hi-
erarchy of m1,2 and ⇤, however our results are valid for
any choice such that Q � m1,2 � m2

1,2/Q, ⇤.
In [21], we discovered that at O(↵2

s) NGLs of two soft
scales µ1,2 can be constructed from separate pieces de-
pendent on the ratio of the factorization scale µ to one
physical scale at a time. Namely, the region of phase
space where one of the soft gluons enters the region sen-
sitive to the scale µ1 and the other enters the region
sensitive to µ2 generates the double log ↵2

s ln2 µ2/(µ1µ2),

Hard scale

Left jet scale

Right jet scale

Soft scales

µH = Q

µL
S = m2

1/Q

µout
S = ⇤

µR
S = m2

2/Q

µL
J = m1

µR
J = m2

FIG. 1: The relevant scales in the exclusive jet mass cross
section with an energy veto, ⇤ outside of the jets is shown
for a particular choice of the hierarchy m2

2 ⌧ ⇤Q ⌧ m2
1 that

gives rise to large non-global logs. Our results apply to any
choice of m1,2 and ⇤ that satisfies Q � m1,2 � m2

1,2/Q, ⇤,
which maintains the separation between hard, jet and soft
scales.

while the regions where soft gluons enter only region 1 or
only region 2 generate ↵2

s ln2(µ/µ1) and ↵2
s ln2(µ/µ2). In

[21] we derived from RG invariance of the cross section
and IR safety of the soft function that the coe�cients
of these logs are constrained so that the µ-dependence
cancels, but an NGL ↵2

s ln2(µ1/µ2) is left over. Analo-
gously for �(m1, m2, ⇤), the three soft phase space re-
gions that give rise to the NGLs at O(↵2

s) are shown
in Fig. 2. Each configuration contributes logarithms of
µ over a single scale, the “in-out” regions contributing
logs ↵2

s ln2 µ2/(⇤ m1,2), and the “in-in” region contribut-
ing logs ↵2

s ln2 µ2/(m1m2). These combine with single-
region contributions to give NGLs of ⇤/m1,2 with coe�-
cients fOL,OR and of m1/m2 with coe�cient fLR. These
coe�cients give the geometric factor S2 in Eq. (2). IR
safety and RG invariance will allow us to derive addi-
tional strong relations among these di↵erent coe�cients.
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Refs.[5,19,20]studiedNGLsof⇤/Qincrosssections
vetoingradiationwithtotalenergygreaterthan⇤inan-
gularregionsoutsideoffoundjets.Thoughahardscale
Qappearsintheseratios,wefoundin[21]thattheNGLs
stillarisefromconsideringbothscalesintheratiotobe
softandlatertakingoneofthemtoQinaninclusive
limit.

In[21]wemadeprogressinunderstandingtheori-
ginofNGLsine↵ectivefieldtheory.Weconsideredthe
factorizeddijetinvariantmassdistribution�(m1,m2)in
e+e�collisionsproducingback-to-backjets,andcalcu-
latedtoO(↵2

s),asalsoin[22],thehemispheresoftfunc-
tionS(kL,kR).Thesecalculationsclarifiedtheoriginof
NGLsinanEFTframeworkasthedependenceofasoft
functiononratiosofmultiplesoftscales,andrevealed
newsubleading(single)NGLsandnon-logarithmicnon-
globalfunctions.

TheseNGLsareorganizedintoamultiplicativefactor
enteringthetotalcrosssection,withtheleadingNGLs
takingthegenericform

SNG(µ1/µ2)=1�↵2
s

(2⇡)2
CFCAS2ln2µ1

µ2
+···.(2)

Hereµ1,2arethescalesatwhichsoftradiationisprobed
indi↵erentsharply-dividedregions.Forthehemisphere
massdistributionµ1,2=m2

1,2/QandS2=⇡2/3.For
the⇢Rdistribution,µ1=Q⇢Rwhileµ2=Qdueto
totalinclusivityinonehemisphere.Thecoe�cientS2

isageometricmeasureoftheregionintowhichthetwo
softgluonscontributingtoaNGLcango.Thefactthat
itvarieswiththesizeofthisregionisduetotheNGL
arisingfromapurelysoftdivergenceofQCD.Techniques
toresumNGLsusingnumericalfitsinthelarge-NClimit
ofQCDwereintroducedby[4],butanalyticresummation
ofNGLsinreal-worldQCDremainsanopenproblem.

Inthisworkweseektoextendtheintuitiongainedin
[21]bystudyingamoreexclusivesetofcrosssections.
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ontheenergyofadditionaljets.Weconsiderfindingthe
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Aachen,andkT[23–28].WewillfindthatNGLsof
theratioofthejetvetoandthejetmasses⇤/m1,2
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forthisobservableareshowninFig.1foraparticularhi-
erarchyofm1,2and⇤,howeverourresultsarevalidfor
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1,2/Q,⇤.
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s)NGLsoftwosoft
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sln2µ2/(µ1µ2),
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cientsfOL,ORandofm1/m2withcoe�cientfLR.These
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whi
le

µ
2

=
Q

du
e
to

to
ta
l in

clu
siv

ity
in

on
e
he

m
isp

he
re
.

The
co

e�
cie

nt
S
2

is
a
ge
om

et
ric

m
ea
su
re

of
th
e
re
gi
on

in
to

whi
ch

th
e
tw

o

so
ft

gl
uo

ns
co
nt
rib

ut
in
g
to

a
N
G
L
ca
n
go

. The
fa
ct

th
at

it
va

rie
s
with

th
e
siz

e
of

th
is

re
gi
on

is
du

e
to

th
e
N
G
L

ar
isi
ng

fro
m

a
pu

re
ly

so
ft

di
ve
rg
en

ce
of

Q
CD

. T
ec
hn

iq
ue

s

to
re
su
m

N
G
Ls

us
in
g
nu

m
er
ica

l fi
ts

in
th
e la

rg
e-
N
C

lim
it

of
Q
CD

we
re

in
tr
od

uc
ed

by
[4
],
bu

t a
na

ly
tic

re
su
m
m
at
io
n

of
N
G
Ls

in
re
al
-w

or
ld

Q
CD

re
m
ai
ns

an
op

en
pr
ob

lem
.

In
th
is

wo
rk

we
se
ek

to
ex

te
nd

th
e
in
tu
iti
on

ga
in
ed

in

[2
1]

by
st
ud

yi
ng

a
m
or
e
ex

clu
siv

e
se
t
of

cr
os
s
se
ct
io
ns
.

W
e
st
ud

y
no

n-
gl
ob

al
pr
op

er
tie

s
of

an
ex

clu
siv

e
je
t
cr
os
s

se
ct
io
n
�(

m
1 ,

m
2 ,

⇤)
, w

he
re

th
e in

va
ria

nt
m
as
se
s m

1
an

d

m
2

of
tw

o
je
ts

of
siz

e
R

pr
od

uc
ed

in
an

e +
e �

co
lli
sio

n

at
ce
nt
er
-o
f-m

as
s en

er
gy

Q
ar
e
m
ea
su
re
d,

with
a
ve
to

⇤

on
th
e
en

er
gy

of
ad

di
tio

na
l j
et
s.

W
e
co
ns
id
er

fin
di
ng

th
e

je
ts

us
in
g
va

rio
us

al
go

rit
hm

s—
co
ne

, a
nt
i-k

T , C
am

br
id
ge
-

A
ac
he

n,
an

d
kT

[2
3–

28
].

W
e

will
fin

d
th
at

N
G
Ls

of

th
e

ra
tio

of
th
e

je
t

ve
to

an
d

th
e

je
t

m
as
se
s

⇤/
m
1,
2

ar
e
pr
es
en

t,
in

ad
di
tio

n
to

N
G
Ls

of
th
e
ra
tio

of
m
as
se
s

m
1 /

m
2 .

W
e c

al
cu

la
te

th
e c

oe
�
cie

nt
s o

nl
y
of

lea
di
ng

do
u-

bl
e N

G
Ls

↵ 2
s ln 2

(µ
1 /

µ
2 )

in
th
is
pa

pe
r.

The
re
lev

an
t s

ca
les

fo
r t

hi
s o

bs
er
va

bl
e ar

e sh
ow

n
in

Fi
g.

1
fo
r a

pa
rt
icu

la
r h

i-

er
ar
ch
y
of

m
1,
2

an
d
⇤,

ho
we

ve
r
ou

r
re
su
lts

ar
e
va

lid
fo
r

an
y
ch

oi
ce

su
ch

th
at

Q
�

m
1,
2
�

m 2
1,
2 /Q

, ⇤
.

In
[2
1]
, w

e
di
sc
ov

er
ed

th
at

at
O(↵ 2

s ) N
G
Ls

of
tw

o
so
ft

sc
al
es

µ
1,
2

ca
n

be
co
ns
tr
uc

te
d

fro
m

se
pa

ra
te

pi
ec
es

de
-

pe
nd

en
t
on

th
e
ra
tio

of
th
e
fa
ct
or
iza

tio
n
sc
al
e
µ

to
on

e

ph
ys
ica

l sc
al
e
at

a
tim

e.
N
am

ely
,
th
e
re
gi
on

of
ph

as
e

sp
ac
e
whe

re
on

e
of

th
e
so
ft

gl
uo

ns
en

te
rs

th
e
re
gi
on

se
n-

sit
iv
e
to

th
e
sc
al
e
µ
1

an
d

th
e
ot
he

r
en

te
rs

th
e
re
gi
on

se
ns
iti
ve

to
µ
2
ge
ne

ra
te
s t

he
do

ub
le

lo
g
↵ 2
s ln 2

µ 2
/(
µ
1 µ

2 ),

Hard
 sc

ale
Le

ft 
jet

 sc
aleRigh

t j
et

 sc
ale

So
ft 

sc
ale

s

µ
H

=
Q

µ L
S

=
m 2
1 /Q

µ ou
tS
=

⇤
µ R
S

=
m 2
2 /Q

µ L
J

=
m
1

µ R
J

=
m
2

FI
G
. 1
:
Th
e
re
lev
an
t
sc
al
es
in
th
e
ex
clu
siv
e
je
t
m
as
s
cr
os
s

se
ct
io
n
wi
th
an

en
er
gy

ve
to
,
⇤
ou
ts
id
e
of
th
e
je
ts
is
sh
ow
n

fo
r
a
pa
rt
icu
la
r
ch
oi
ce
of
th
e
hi
er
ar
ch
y
m 2
2
⌧
⇤Q

⌧
m 2
1
th
at

gi
ve
s
ris
e
to
la
rg
e
no
n-
gl
ob
al
lo
gs
.
O
ur
re
su
lts

ap
pl
y
to
an
y

ch
oi
ce
of
m
1,
2
an
d
⇤
th
at
sa
tis
fie
s
Q
�
m
1,
2
�
m 2
1,
2 /
Q
, ⇤
,

wh
ich

m
ai
nt
ai
ns

th
e
se
pa
ra
tio
n
be
tw
ee
n
ha
rd
,
je
t
an
d
so
ft

sc
al
es
.

whi
le

th
e re

gi
on

s w
he

re
so
ft

gl
uo

ns
en

te
r o

nl
y
re
gi
on

1
or

on
ly

re
gi
on

2
ge
ne

ra
te

↵ 2
s ln 2

(µ
/µ

1 )
an

d
↵ 2
s ln 2

(µ
/µ

2 ).
In

[2
1]

we
de

riv
ed

fro
m

RG
in
va

ria
nc

e
of

th
e
cr
os
s
se
ct
io
n

an
d

IR
sa
fe
ty

of
th
e
so
ft

fu
nc

tio
n

th
at

th
e
co

e�
cie

nt
s

of
th
es
e
lo
gs

ar
e
co
ns
tr
ai
ne

d
so

th
at

th
e
µ-
de

pe
nd

en
ce

ca
nc

els
, b

ut
an

N
G
L

↵ 2
s ln 2

(µ
1 /

µ
2 )

is
lef

t
ov

er
.
A
na

lo
-

go
us
ly

fo
r
�(

m
1 ,

m
2 ,

⇤)
,
th
e
th
re
e
so
ft

ph
as
e
sp
ac
e
re
-

gi
on

s
th
at

gi
ve

ris
e
to

th
e
N
G
Ls

at
O(↵ 2

s )
ar
e
sh
ow

n

in
Fi
g.

2.
Ea

ch
co
nfi

gu
ra
tio

n
co
nt
rib

ut
es

lo
ga

rit
hm

s
of

µ
ov

er
a
sin

gl
e
sc
al
e,

th
e
“i
n-
ou

t”
re
gi
on

s
co
nt
rib

ut
in
g

lo
gs

↵ 2
s ln 2

µ 2
/(
⇤
m
1,
2 ),

an
d
th
e “i

n-
in
”
re
gi
on

co
nt
rib

ut
-

in
g
lo
gs

↵ 2
s ln 2

µ 2
/(
m
1m

2 ).
The

se
co
m
bi
ne

with
sin

gl
e-

re
gi
on

co
nt
rib

ut
io
ns

to
gi
ve

N
G
Ls

of
⇤/

m
1,
2
with

co
e�

-

cie
nt
s fO

L
,O

R
an

d
of

m
1 /

m
2
with

co
e�

cie
nt

fL
R . The

se

co
e�

cie
nt
s
gi
ve

th
e
ge
om

et
ric

fa
ct
or

S
2

in
Eq

. (
2)
.

IR

sa
fe
ty

an
d

RG
in
va

ria
nc

e
will

al
lo
w

us
to

de
riv

e
ad

di
-

tio
na

l s
tr
on

g
re
la
tio

ns
am

on
g
th
es
e
di
↵e

re
nt

co
e�

cie
nt
s.

2

Ref
s.

[5
, 1

9,
20

] s
tu
di
ed

N
G
Ls

of
⇤/

Q
in

cr
os
s
se
ct
io
ns

ve
to
in
g
ra
di
at
io
n
with

to
ta
l e

ne
rg
y
gr
ea
te
r t

ha
n
⇤

in
an

-

gu
la
r re

gi
on

s ou
ts
id
e
of

fo
un

d
je
ts
. Tho

ug
h
a
ha

rd
sc
al
e

Q
ap

pe
ar
s i
n
th
es
e r

at
io
s,
we

fo
un

d
in

[2
1]

th
at

th
e N

G
Ls

st
ill

ar
ise

fro
m

co
ns
id
er
in
g
bo

th
sc
al
es

in
th
e
ra
tio

to
be

so
ft

an
d

la
te
r
ta
ki
ng

on
e
of

th
em

to
Q

in
an

in
clu

siv
e

lim
it.In
[2
1]

we
m
ad

e
pr
og

re
ss

in
un

de
rs
ta
nd

in
g

th
e

or
i-

gi
n
of

N
G
Ls

in
e↵

ec
tiv

e
fie

ld
th
eo
ry
.
W
e
co
ns
id
er
ed

th
e

fa
ct
or
ize

d
di
je
t in

va
ria

nt
m
as
s di

st
rib

ut
io
n
�(

m
1 ,

m
2 )

in

e +
e �

co
lli
sio

ns
pr
od

uc
in
g
ba

ck
-to

-b
ac
k
je
ts
, an

d
ca
lcu

-

la
te
d
to
O(↵ 2

s ),
as

al
so

in
[2
2]
, t

he
he

m
isp

he
re

so
ft

fu
nc

-

tio
n
S(

kL
, k

R ).
The

se
ca
lcu

la
tio

ns
cla

rifi
ed

th
e
or
ig
in

of

N
G
Ls

in
an

EF
T

fra
m
ew

or
k
as

th
e
de

pe
nd

en
ce

of
a
so
ft

fu
nc

tio
n

on
ra
tio

s
of

m
ul
tip

le
so
ft

sc
al
es
,
an

d
re
ve
al
ed

ne
w

su
bl
ea
di
ng

(s
in
gl
e)

N
G
Ls

an
d
no

n-
lo
ga

rit
hm

ic
no

n-

gl
ob

al
fu
nc

tio
ns
.

The
se

N
G
Ls

ar
e
or
ga

ni
ze
d
in
to

a
m
ul
tip

lic
at
iv
e
fa
ct
or

en
te
rin

g
th
e
to
ta
l c

ro
ss

se
ct
io
n,

with
th
e
lea

di
ng

N
G
Ls

ta
ki
ng

th
e
ge
ne

ric
fo
rm

S
N
G
(µ

1 /
µ
2 )

=
1�

↵ 2
s(2

⇡) 2 C
F C

A S
2 ln 2

µ
1

µ
2 +

· · ·
.

(2
)

H
er
e
µ
1,
2
ar
e
th
e
sc
al
es

at
whi

ch
so
ft

ra
di
at
io
n
is

pr
ob

ed

in
di
↵e

re
nt

sh
ar
pl
y-
di
vi
de

d
re
gi
on

s.
Fo

r
th
e
he

m
isp

he
re

m
as
s
di
st
rib

ut
io
n

µ
1,
2

=
m 2
1,
2 /Q

an
d

S
2

=
⇡ 2

/3
.

Fo
r

th
e
⇢R

di
st
rib

ut
io
n,

µ
1

=
Q
⇢R

whi
le

µ
2

=
Q

du
e
to

to
ta
l in

clu
siv

ity
in

on
e
he

m
isp

he
re
.

The
co

e�
cie

nt
S
2

is
a
ge
om

et
ric

m
ea
su
re

of
th
e
re
gi
on

in
to

whi
ch

th
e
tw

o

so
ft

gl
uo

ns
co
nt
rib

ut
in
g
to

a
N
G
L
ca
n
go

. The
fa
ct

th
at

it
va

rie
s
with

th
e
siz

e
of

th
is

re
gi
on

is
du

e
to

th
e
N
G
L

ar
isi
ng

fro
m

a
pu

re
ly

so
ft

di
ve
rg
en

ce
of

Q
CD

. T
ec
hn

iq
ue

s

to
re
su
m

N
G
Ls

us
in
g
nu

m
er
ica

l fi
ts

in
th
e la

rg
e-
N
C

lim
it

of
Q
CD

we
re

in
tr
od

uc
ed

by
[4
],
bu

t a
na

ly
tic

re
su
m
m
at
io
n

of
N
G
Ls

in
re
al
-w

or
ld

Q
CD

re
m
ai
ns

an
op

en
pr
ob

lem
.

In
th
is

wo
rk

we
se
ek

to
ex

te
nd

th
e
in
tu
iti
on

ga
in
ed

in

[2
1]

by
st
ud

yi
ng

a
m
or
e
ex

clu
siv

e
se
t
of

cr
os
s
se
ct
io
ns
.

W
e
st
ud

y
no

n-
gl
ob

al
pr
op

er
tie

s
of

an
ex

clu
siv

e
je
t
cr
os
s

se
ct
io
n
�(

m
1 ,

m
2 ,

⇤)
, w

he
re

th
e in

va
ria

nt
m
as
se
s m

1
an

d

m
2

of
tw

o
je
ts

of
siz

e
R

pr
od

uc
ed

in
an

e +
e �

co
lli
sio

n

at
ce
nt
er
-o
f-m

as
s en

er
gy

Q
ar
e
m
ea
su
re
d,

with
a
ve
to

⇤

on
th
e
en

er
gy

of
ad

di
tio

na
l j
et
s.

W
e
co
ns
id
er

fin
di
ng

th
e

je
ts

us
in
g
va

rio
us

al
go

rit
hm

s—
co
ne

, a
nt
i-k

T , C
am

br
id
ge
-

A
ac
he

n,
an

d
kT

[2
3–

28
].

W
e

will
fin

d
th
at

N
G
Ls

of

th
e

ra
tio

of
th
e

je
t

ve
to

an
d

th
e

je
t

m
as
se
s

⇤/
m
1,
2

ar
e
pr
es
en

t,
in

ad
di
tio

n
to

N
G
Ls

of
th
e
ra
tio

of
m
as
se
s

m
1 /

m
2 .

W
e c

al
cu

la
te

th
e c

oe
�
cie

nt
s o

nl
y
of

lea
di
ng

do
u-

bl
e N

G
Ls

↵ 2
s ln 2

(µ
1 /

µ
2 )

in
th
is
pa

pe
r.

The
re
lev

an
t s

ca
les

fo
r t

hi
s o

bs
er
va

bl
e ar

e sh
ow

n
in

Fi
g.

1
fo
r a

pa
rt
icu

la
r h

i-

er
ar
ch
y
of

m
1,
2

an
d
⇤,

ho
we

ve
r
ou

r
re
su
lts

ar
e
va

lid
fo
r

an
y
ch

oi
ce

su
ch

th
at

Q
�

m
1,
2
�

m 2
1,
2 /Q

, ⇤
.

In
[2
1]
, w

e
di
sc
ov

er
ed

th
at

at
O(↵ 2

s ) N
G
Ls

of
tw

o
so
ft

sc
al
es

µ
1,
2

ca
n

be
co
ns
tr
uc

te
d

fro
m

se
pa

ra
te

pi
ec
es

de
-

pe
nd

en
t
on

th
e
ra
tio

of
th
e
fa
ct
or
iza

tio
n
sc
al
e
µ

to
on

e

ph
ys
ica

l sc
al
e
at

a
tim

e.
N
am

ely
,
th
e
re
gi
on

of
ph

as
e

sp
ac
e
whe

re
on

e
of

th
e
so
ft

gl
uo

ns
en

te
rs

th
e
re
gi
on

se
n-

sit
iv
e
to

th
e
sc
al
e
µ
1

an
d

th
e
ot
he

r
en

te
rs

th
e
re
gi
on

se
ns
iti
ve

to
µ
2
ge
ne

ra
te
s t

he
do

ub
le

lo
g
↵ 2
s ln 2

µ 2
/(
µ
1 µ

2 ),

Hard
 sc

ale
Le

ft 
jet

 sc
aleRigh

t j
et

 sc
ale

So
ft 

sc
ale

s

µ
H

=
Q

µ L
S

=
m 2
1 /Q

µ ou
tS
=

⇤
µ R
S

=
m 2
2 /Q

µ L
J

=
m
1

µ R
J

=
m
2

FI
G
. 1
:
Th
e
re
lev
an
t
sc
al
es
in
th
e
ex
clu
siv
e
je
t
m
as
s
cr
os
s

se
ct
io
n
wi
th
an

en
er
gy

ve
to
,
⇤
ou
ts
id
e
of
th
e
je
ts
is
sh
ow
n

fo
r
a
pa
rt
icu
la
r
ch
oi
ce
of
th
e
hi
er
ar
ch
y
m 2
2
⌧
⇤Q

⌧
m 2
1
th
at

gi
ve
s
ris
e
to
la
rg
e
no
n-
gl
ob
al
lo
gs
.
O
ur
re
su
lts

ap
pl
y
to
an
y

ch
oi
ce
of
m
1,
2
an
d
⇤
th
at
sa
tis
fie
s
Q
�
m
1,
2
�
m 2
1,
2 /
Q
, ⇤
,

wh
ich

m
ai
nt
ai
ns

th
e
se
pa
ra
tio
n
be
tw
ee
n
ha
rd
,
je
t
an
d
so
ft

sc
al
es
.

whi
le

th
e re

gi
on

s w
he

re
so
ft

gl
uo

ns
en

te
r o

nl
y
re
gi
on

1
or

on
ly

re
gi
on

2
ge
ne

ra
te

↵ 2
s ln 2

(µ
/µ

1 )
an

d
↵ 2
s ln 2

(µ
/µ

2 ).
In

[2
1]

we
de

riv
ed

fro
m

RG
in
va

ria
nc

e
of

th
e
cr
os
s
se
ct
io
n

an
d

IR
sa
fe
ty

of
th
e
so
ft

fu
nc

tio
n

th
at

th
e
co

e�
cie

nt
s

of
th
es
e
lo
gs

ar
e
co
ns
tr
ai
ne

d
so

th
at

th
e
µ-
de

pe
nd

en
ce

ca
nc

els
, b

ut
an

N
G
L

↵ 2
s ln 2

(µ
1 /

µ
2 )

is
lef

t
ov

er
.
A
na

lo
-

go
us
ly

fo
r
�(

m
1 ,

m
2 ,

⇤)
,
th
e
th
re
e
so
ft

ph
as
e
sp
ac
e
re
-

gi
on

s
th
at

gi
ve

ris
e
to

th
e
N
G
Ls

at
O(↵ 2

s )
ar
e
sh
ow

n

in
Fi
g.

2.
Ea

ch
co
nfi

gu
ra
tio

n
co
nt
rib

ut
es

lo
ga

rit
hm

s
of

µ
ov

er
a
sin

gl
e
sc
al
e,

th
e
“i
n-
ou

t”
re
gi
on

s
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Refs. [5, 19, 20] studied NGLs of ⇤/Q in cross sections
vetoing radiation with total energy greater than ⇤ in an-
gular regions outside of found jets. Though a hard scale
Q appears in these ratios, we found in [21] that the NGLs
still arise from considering both scales in the ratio to be
soft and later taking one of them to Q in an inclusive
limit.

In [21] we made progress in understanding the ori-
gin of NGLs in e↵ective field theory. We considered the
factorized dijet invariant mass distribution �(m1, m2) in
e+e� collisions producing back-to-back jets, and calcu-
lated to O(↵2

s), as also in [22], the hemisphere soft func-
tion S(kL, kR). These calculations clarified the origin of
NGLs in an EFT framework as the dependence of a soft
function on ratios of multiple soft scales, and revealed
new subleading (single) NGLs and non-logarithmic non-
global functions.

These NGLs are organized into a multiplicative factor
entering the total cross section, with the leading NGLs
taking the generic form

SNG(µ1/µ2) = 1 � ↵2
s

(2⇡)2
CF CAS2 ln2 µ1

µ2
+ · · · . (2)

Here µ1,2 are the scales at which soft radiation is probed
in di↵erent sharply-divided regions. For the hemisphere
mass distribution µ1,2 = m2

1,2/Q and S2 = ⇡2/3. For
the ⇢R distribution, µ1 = Q⇢R while µ2 = Q due to
total inclusivity in one hemisphere. The coe�cient S2

is a geometric measure of the region into which the two
soft gluons contributing to a NGL can go. The fact that
it varies with the size of this region is due to the NGL
arising from a purely soft divergence of QCD. Techniques
to resum NGLs using numerical fits in the large-NC limit
of QCD were introduced by [4], but analytic resummation
of NGLs in real-world QCD remains an open problem.

In this work we seek to extend the intuition gained in
[21] by studying a more exclusive set of cross sections.
We study non-global properties of an exclusive jet cross
section �(m1, m2, ⇤), where the invariant masses m1 and
m2 of two jets of size R produced in an e+e� collision
at center-of-mass energy Q are measured, with a veto ⇤
on the energy of additional jets. We consider finding the
jets using various algorithms—cone, anti-kT, Cambridge-
Aachen, and kT [23–28]. We will find that NGLs of
the ratio of the jet veto and the jet masses ⇤/m1,2

are present, in addition to NGLs of the ratio of masses
m1/m2. We calculate the coe�cients only of leading dou-
ble NGLs ↵2

s ln2(µ1/µ2) in this paper. The relevant scales
for this observable are shown in Fig. 1 for a particular hi-
erarchy of m1,2 and ⇤, however our results are valid for
any choice such that Q � m1,2 � m2

1,2/Q, ⇤.
In [21], we discovered that at O(↵2

s) NGLs of two soft
scales µ1,2 can be constructed from separate pieces de-
pendent on the ratio of the factorization scale µ to one
physical scale at a time. Namely, the region of phase
space where one of the soft gluons enters the region sen-
sitive to the scale µ1 and the other enters the region
sensitive to µ2 generates the double log ↵2

s ln2 µ2/(µ1µ2),

Hard scale

Left jet scale

Right jet scale

Soft scales

µH = Q

µL
S = m2

1/Q

µout
S = ⇤

µR
S = m2

2/Q

µL
J = m1

µR
J = m2

FIG. 1: The relevant scales in the exclusive jet mass cross
section with an energy veto, ⇤ outside of the jets is shown
for a particular choice of the hierarchy m2

2 ⌧ ⇤Q ⌧ m2
1 that

gives rise to large non-global logs. Our results apply to any
choice of m1,2 and ⇤ that satisfies Q � m1,2 � m2

1,2/Q, ⇤,
which maintains the separation between hard, jet and soft
scales.

while the regions where soft gluons enter only region 1 or
only region 2 generate ↵2

s ln2(µ/µ1) and ↵2
s ln2(µ/µ2). In

[21] we derived from RG invariance of the cross section
and IR safety of the soft function that the coe�cients
of these logs are constrained so that the µ-dependence
cancels, but an NGL ↵2

s ln2(µ1/µ2) is left over. Analo-
gously for �(m1, m2, ⇤), the three soft phase space re-
gions that give rise to the NGLs at O(↵2

s) are shown
in Fig. 2. Each configuration contributes logarithms of
µ over a single scale, the “in-out” regions contributing
logs ↵2

s ln2 µ2/(⇤ m1,2), and the “in-in” region contribut-
ing logs ↵2

s ln2 µ2/(m1m2). These combine with single-
region contributions to give NGLs of ⇤/m1,2 with coe�-
cients fOL,OR and of m1/m2 with coe�cient fLR. These
coe�cients give the geometric factor S2 in Eq. (2). IR
safety and RG invariance will allow us to derive addi-
tional strong relations among these di↵erent coe�cients.
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Factorization of Jet Rates
❖ “unmeasured jets” : tagged with algorithm but unproved

❖ “measured jets” : probed with mass, angularity, etc 

2

Refs.[5,19,20]studiedNGLsof⇤/Qincrosssections
vetoingradiationwithtotalenergygreaterthan⇤inan-
gularregionsoutsideoffoundjets.Thoughahardscale
Qappearsintheseratios,wefoundin[21]thattheNGLs
stillarisefromconsideringbothscalesintheratiotobe
softandlatertakingoneofthemtoQinaninclusive
limit.

In[21]wemadeprogressinunderstandingtheori-
ginofNGLsine↵ectivefieldtheory.Weconsideredthe
factorizeddijetinvariantmassdistribution�(m1,m2)in
e+e�collisionsproducingback-to-backjets,andcalcu-
latedtoO(↵2

s),asalsoin[22],thehemispheresoftfunc-
tionS(kL,kR).Thesecalculationsclarifiedtheoriginof
NGLsinanEFTframeworkasthedependenceofasoft
functiononratiosofmultiplesoftscales,andrevealed
newsubleading(single)NGLsandnon-logarithmicnon-
globalfunctions.

TheseNGLsareorganizedintoamultiplicativefactor
enteringthetotalcrosssection,withtheleadingNGLs
takingthegenericform

SNG(µ1/µ2)=1�↵2
s

(2⇡)2
CFCAS2ln2µ1

µ2
+···.(2)

Hereµ1,2arethescalesatwhichsoftradiationisprobed
indi↵erentsharply-dividedregions.Forthehemisphere
massdistributionµ1,2=m2

1,2/QandS2=⇡2/3.For
the⇢Rdistribution,µ1=Q⇢Rwhileµ2=Qdueto
totalinclusivityinonehemisphere.Thecoe�cientS2

isageometricmeasureoftheregionintowhichthetwo
softgluonscontributingtoaNGLcango.Thefactthat
itvarieswiththesizeofthisregionisduetotheNGL
arisingfromapurelysoftdivergenceofQCD.Techniques
toresumNGLsusingnumericalfitsinthelarge-NClimit
ofQCDwereintroducedby[4],butanalyticresummation
ofNGLsinreal-worldQCDremainsanopenproblem.

Inthisworkweseektoextendtheintuitiongainedin
[21]bystudyingamoreexclusivesetofcrosssections.
Westudynon-globalpropertiesofanexclusivejetcross
section�(m1,m2,⇤),wheretheinvariantmassesm1and
m2oftwojetsofsizeRproducedinane+e�collision
atcenter-of-massenergyQaremeasured,withaveto⇤
ontheenergyofadditionaljets.Weconsiderfindingthe
jetsusingvariousalgorithms—cone,anti-kT,Cambridge-
Aachen,andkT[23–28].WewillfindthatNGLsof
theratioofthejetvetoandthejetmasses⇤/m1,2

arepresent,inadditiontoNGLsoftheratioofmasses
m1/m2.Wecalculatethecoe�cientsonlyofleadingdou-
bleNGLs↵2

sln2(µ1/µ2)inthispaper.Therelevantscales
forthisobservableareshowninFig.1foraparticularhi-
erarchyofm1,2and⇤,howeverourresultsarevalidfor
anychoicesuchthatQ�m1,2�m2

1,2/Q,⇤.
In[21],wediscoveredthatatO(↵2

s)NGLsoftwosoft
scalesµ1,2canbeconstructedfromseparatepiecesde-
pendentontheratioofthefactorizationscaleµtoone
physicalscaleatatime.Namely,theregionofphase
spacewhereoneofthesoftgluonsenterstheregionsen-
sitivetothescaleµ1andtheotherenterstheregion
sensitivetoµ2generatesthedoublelog↵2

sln2µ2/(µ1µ2),

Hard scale

Left jet scale

Right jet scale

Soft scales

µH=Q

µL
S=m2

1/Q

µout
S=⇤

µR
S=m2

2/Q

µL
J=m1

µR
J=m2

FIG.1:Therelevantscalesintheexclusivejetmasscross
sectionwithanenergyveto,⇤outsideofthejetsisshown
foraparticularchoiceofthehierarchym2

2⌧⇤Q⌧m2
1that

givesrisetolargenon-globallogs.Ourresultsapplytoany
choiceofm1,2and⇤thatsatisfiesQ�m1,2�m2

1,2/Q,⇤,
whichmaintainstheseparationbetweenhard,jetandsoft
scales.

whiletheregionswheresoftgluonsenteronlyregion1or
onlyregion2generate↵2

sln2(µ/µ1)and↵2
sln2(µ/µ2).In

[21]wederivedfromRGinvarianceofthecrosssection
andIRsafetyofthesoftfunctionthatthecoe�cients
oftheselogsareconstrainedsothattheµ-dependence
cancels,butanNGL↵2

sln2(µ1/µ2)isleftover.Analo-
gouslyfor�(m1,m2,⇤),thethreesoftphasespacere-
gionsthatgiverisetotheNGLsatO(↵2

s)areshown
inFig.2.Eachconfigurationcontributeslogarithmsof
µoverasinglescale,the“in-out”regionscontributing
logs↵2

sln2µ2/(⇤m1,2),andthe“in-in”regioncontribut-
inglogs↵2

sln2µ2/(m1m2).Thesecombinewithsingle-
regioncontributionstogiveNGLsof⇤/m1,2withcoe�-
cientsfOL,ORandofm1/m2withcoe�cientfLR.These
coe�cientsgivethegeometricfactorS2inEq.(2).IR
safetyandRGinvariancewillallowustoderiveaddi-
tionalstrongrelationsamongthesedi↵erentcoe�cients.
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⇤

on
the

energy
ofadditionaljets.W

e
considerfinding

the

jetsusing
variousalgorithm

s—
cone,anti-k

T,Cam
bridge-

A
achen,

and
k
T

[23–28].
W

e
will

find
that

N
G

Ls
of

the
ratio

of
the

jet
veto

and
the

jet
m

asses
⇤/m

1,2

are
present,in

addition
to

N
G

Ls
ofthe

ratio
ofm

asses

m
1/m

2.W
ecalculatethecoe�

cientsonly
ofleadingdou-

bleN
G

Ls↵2
sln2

(µ
1/µ

2)in
thispaper.Therelevantscales

forthisobservableareshown
in

Fig.1
fora

particularhi-

erarchy
ofm

1,2and
⇤,however

our
results

are
valid

for

any
choice

such
thatQ

�
m

1,2�
m

2
1,2/Q

,⇤.

In
[21],we

discovered
thatatO

(↵2
s)N

G
Lsoftwo

soft

scales
µ

1,2can
be

constructed
from

separate
pieces

de-

pendent
on

the
ratio

ofthe
factorization

scale
µ

to
one

physicalscale
at

a
tim

e.
N

am
ely,

the
region

of
phase

space
where

one
ofthe

softgluonsentersthe
region

sen-

sitive
to

the
scale

µ
1

and
the

other
enters

the
region

sensitiveto
µ

2generatesthedoublelog
↵2

sln2
µ2

/(µ
1µ

2),

Hard scale Left jet scale Right jet scale

Soft scales

µ
H

=
Q

µL
S=

m2
1/Q

µout S
=

⇤
µR

S=
m2

2/Q

µL
J=

m
1

µR
J=

m
2

FIG
.1:

The
relevant

scales
in

the
exclusive

jet
m

ass
cross

section
with

an
energy

veto,
⇤

outside
of

the
jets

is
shown

for
a

particular
choice

ofthe
hierarchy

m
2
2⌧

⇤Q⌧
m

2
1that

gives
rise

to
large

non-globallogs.
O

ur
results

apply
to

any

choice
ofm

1,2
and

⇤
that

satisfies
Q�

m
1,2�

m
2
1,2/Q

,⇤,

which
m

aintains
the

separation
between

hard,
jet

and
soft

scales.
whiletheregionswheresoftgluonsenteronly

region
1

or

only
region

2
generate↵2

sln2
(µ/µ

1)and
↵2

sln2
(µ/µ

2).In

[21]we
derived

from
RG

invariance
ofthe

cross
section

and
IR

safety
of

the
soft

function
that

the
coe�

cients

ofthese
logs

are
constrained

so
that

the
µ-dependence

cancels,but
an

N
G

L
↵2

sln2
(µ

1/µ
2)

is
left

over.
A

nalo-

gously
for

�(m
1,m

2,⇤),
the

three
soft

phase
space

re-

gions
that

give
rise

to
the

N
G

Ls
atO

(↵2
s)

are
shown

in
Fig.2.

Each
configuration

contributes
logarithm

s
of

µ
over

a
single

scale,the
“in-out”

regions
contributing

logs↵2
sln2

µ2
/(⇤

m
1,2),and

the“in-in”
region

contribut-

ing
logs

↵2
sln2

µ2
/(m

1m
2).

These
com

bine
with

single-

region
contributionsto

give
N

G
Lsof⇤/m

1,2with
coe�

-

cientsf
O

L
,O

R
and

ofm
1/m

2with
coe�

cientf
L

R.These

coe�
cients

give
the

geom
etric

factor
S

2in
Eq.(2).

IR

safety
and

RG
invariance

willallow
us

to
derive

addi-

tionalstrong
relationsam

ong
these

di↵erentcoe�
cients.
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at
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⇤
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-
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e
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d
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h
a
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rd
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e

Q
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at
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d
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[2
1]

th
at

th
e N

G
Ls

st
ill

ar
ise

fro
m
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id
er
in
g
bo

th
sc
al
es

in
th
e
ra
tio

to
be

so
ft

an
d

la
te
r
ta
ki
ng
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e
of

th
em

to
Q
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an

in
clu

siv
e

lim
it.In
[2
1]

we
m
ad

e
pr
og

re
ss

in
un

de
rs
ta
nd

in
g

th
e

or
i-

gi
n
of

N
G
Ls

in
e↵

ec
tiv

e
fie

ld
th
eo
ry
.
W
e
co
ns
id
er
ed

th
e

fa
ct
or
ize

d
di
je
t in

va
ria

nt
m
as
s di

st
rib

ut
io
n
�(

m
1 ,

m
2 )

in

e +
e �

co
lli
sio

ns
pr
od

uc
in
g
ba

ck
-to

-b
ac
k
je
ts
, an

d
ca
lcu

-

la
te
d
to
O(↵ 2

s ),
as

al
so

in
[2
2]
, t

he
he

m
isp

he
re

so
ft

fu
nc

-

tio
n
S(

kL
, k

R ).
The

se
ca
lcu

la
tio

ns
cla

rifi
ed

th
e
or
ig
in

of

N
G
Ls

in
an

EF
T

fra
m
ew

or
k
as

th
e
de

pe
nd

en
ce

of
a
so
ft

fu
nc

tio
n

on
ra
tio

s
of

m
ul
tip

le
so
ft

sc
al
es
,
an

d
re
ve
al
ed

ne
w

su
bl
ea
di
ng

(s
in
gl
e)

N
G
Ls

an
d
no

n-
lo
ga

rit
hm

ic
no

n-

gl
ob

al
fu
nc

tio
ns
.

The
se

N
G
Ls

ar
e
or
ga

ni
ze
d
in
to

a
m
ul
tip

lic
at
iv
e
fa
ct
or

en
te
rin

g
th
e
to
ta
l c

ro
ss

se
ct
io
n,

with
th
e
lea

di
ng

N
G
Ls

ta
ki
ng

th
e
ge
ne

ric
fo
rm

S
N
G
(µ

1 /
µ
2 )

=
1�

↵ 2
s(2

⇡) 2 C
F C

A S
2 ln 2

µ
1

µ
2 +

· · ·
.

(2
)

H
er
e
µ
1,
2
ar
e
th
e
sc
al
es

at
whi

ch
so
ft

ra
di
at
io
n
is

pr
ob

ed

in
di
↵e

re
nt

sh
ar
pl
y-
di
vi
de

d
re
gi
on

s.
Fo

r
th
e
he

m
isp

he
re

m
as
s
di
st
rib

ut
io
n

µ
1,
2

=
m 2
1,
2 /Q

an
d

S
2

=
⇡ 2

/3
.

Fo
r

th
e
⇢R

di
st
rib

ut
io
n,

µ
1

=
Q
⇢R

whi
le

µ
2

=
Q

du
e
to

to
ta
l in

clu
siv

ity
in

on
e
he

m
isp

he
re
.

The
co

e�
cie

nt
S
2

is
a
ge
om

et
ric

m
ea
su
re

of
th
e
re
gi
on

in
to

whi
ch

th
e
tw

o

so
ft

gl
uo

ns
co
nt
rib

ut
in
g
to

a
N
G
L
ca
n
go

. The
fa
ct

th
at

it
va

rie
s
with

th
e
siz

e
of

th
is

re
gi
on

is
du

e
to

th
e
N
G
L

ar
isi
ng

fro
m

a
pu

re
ly

so
ft

di
ve
rg
en

ce
of

Q
CD

. T
ec
hn

iq
ue

s

to
re
su
m

N
G
Ls

us
in
g
nu

m
er
ica

l fi
ts

in
th
e la

rg
e-
N
C

lim
it

of
Q
CD

we
re

in
tr
od

uc
ed

by
[4
],
bu

t a
na

ly
tic

re
su
m
m
at
io
n

of
N
G
Ls

in
re
al
-w

or
ld

Q
CD

re
m
ai
ns

an
op

en
pr
ob

lem
.

In
th
is

wo
rk

we
se
ek

to
ex

te
nd

th
e
in
tu
iti
on

ga
in
ed

in

[2
1]

by
st
ud

yi
ng

a
m
or
e
ex

clu
siv

e
se
t
of

cr
os
s
se
ct
io
ns
.

W
e
st
ud

y
no

n-
gl
ob

al
pr
op

er
tie

s
of

an
ex

clu
siv

e
je
t
cr
os
s

se
ct
io
n
�(

m
1 ,

m
2 ,

⇤)
, w

he
re

th
e in

va
ria

nt
m
as
se
s m

1
an

d

m
2

of
tw

o
je
ts

of
siz

e
R

pr
od

uc
ed

in
an

e +
e �

co
lli
sio

n

at
ce
nt
er
-o
f-m

as
s en

er
gy

Q
ar
e
m
ea
su
re
d,

with
a
ve
to

⇤

on
th
e
en

er
gy

of
ad

di
tio

na
l j
et
s.

W
e
co
ns
id
er

fin
di
ng

th
e

je
ts

us
in
g
va

rio
us

al
go

rit
hm

s—
co
ne

, a
nt
i-k

T , C
am

br
id
ge
-

A
ac
he

n,
an

d
kT

[2
3–

28
].

W
e

will
fin

d
th
at

N
G
Ls

of

th
e

ra
tio

of
th
e

je
t

ve
to

an
d

th
e

je
t

m
as
se
s

⇤/
m
1,
2

ar
e
pr
es
en

t,
in

ad
di
tio

n
to

N
G
Ls

of
th
e
ra
tio

of
m
as
se
s

m
1 /

m
2 .

W
e c

al
cu

la
te

th
e c

oe
�
cie

nt
s o

nl
y
of

lea
di
ng

do
u-

bl
e N

G
Ls

↵ 2
s ln 2

(µ
1 /

µ
2 )

in
th
is
pa

pe
r.

The
re
lev

an
t s

ca
les

fo
r t

hi
s o

bs
er
va

bl
e ar

e sh
ow

n
in

Fi
g.

1
fo
r a

pa
rt
icu

la
r h

i-

er
ar
ch
y
of

m
1,
2

an
d
⇤,

ho
we

ve
r
ou

r
re
su
lts

ar
e
va

lid
fo
r

an
y
ch

oi
ce

su
ch

th
at

Q
�

m
1,
2
�

m 2
1,
2 /Q

, ⇤
.

In
[2
1]
, w

e
di
sc
ov

er
ed

th
at

at
O(↵ 2

s ) N
G
Ls

of
tw

o
so
ft

sc
al
es

µ
1,
2

ca
n

be
co
ns
tr
uc

te
d

fro
m

se
pa

ra
te

pi
ec
es

de
-

pe
nd

en
t
on

th
e
ra
tio

of
th
e
fa
ct
or
iza

tio
n
sc
al
e
µ

to
on

e

ph
ys
ica

l sc
al
e
at

a
tim

e.
N
am

ely
,
th
e
re
gi
on

of
ph

as
e

sp
ac
e
whe

re
on

e
of

th
e
so
ft

gl
uo

ns
en

te
rs

th
e
re
gi
on

se
n-

sit
iv
e
to

th
e
sc
al
e
µ
1

an
d

th
e
ot
he

r
en

te
rs

th
e
re
gi
on

se
ns
iti
ve

to
µ
2
ge
ne

ra
te
s t

he
do

ub
le

lo
g
↵ 2
s ln 2

µ 2
/(
µ
1 µ

2 ),

Hard
 sc

ale
Le

ft 
jet

 sc
aleRigh

t j
et

 sc
ale

So
ft 

sc
ale

s

µ
H

=
Q

µ L
S

=
m 2
1 /Q

µ ou
tS
=

⇤
µ R
S

=
m 2
2 /Q

µ L
J

=
m
1

µ R
J

=
m
2

FI
G
. 1
:
Th
e
re
lev
an
t
sc
al
es
in
th
e
ex
clu
siv
e
je
t
m
as
s
cr
os
s

se
ct
io
n
wi
th
an

en
er
gy

ve
to
,
⇤
ou
ts
id
e
of
th
e
je
ts
is
sh
ow
n

fo
r
a
pa
rt
icu
la
r
ch
oi
ce
of
th
e
hi
er
ar
ch
y
m 2
2
⌧
⇤Q

⌧
m 2
1
th
at

gi
ve
s
ris
e
to
la
rg
e
no
n-
gl
ob
al
lo
gs
.
O
ur
re
su
lts

ap
pl
y
to
an
y

ch
oi
ce
of
m
1,
2
an
d
⇤
th
at
sa
tis
fie
s
Q
�
m
1,
2
�
m 2
1,
2 /
Q
, ⇤
,

wh
ich

m
ai
nt
ai
ns

th
e
se
pa
ra
tio
n
be
tw
ee
n
ha
rd
,
je
t
an
d
so
ft

sc
al
es
.

whi
le

th
e re

gi
on

s w
he

re
so
ft

gl
uo

ns
en

te
r o

nl
y
re
gi
on

1
or

on
ly

re
gi
on

2
ge
ne

ra
te

↵ 2
s ln 2

(µ
/µ

1 )
an

d
↵ 2
s ln 2

(µ
/µ

2 ).
In

[2
1]

we
de

riv
ed

fro
m

RG
in
va

ria
nc

e
of

th
e
cr
os
s
se
ct
io
n

an
d

IR
sa
fe
ty

of
th
e
so
ft

fu
nc

tio
n

th
at

th
e
co

e�
cie

nt
s

of
th
es
e
lo
gs

ar
e
co
ns
tr
ai
ne

d
so

th
at

th
e
µ-
de

pe
nd

en
ce

ca
nc

els
, b

ut
an

N
G
L

↵ 2
s ln 2

(µ
1 /

µ
2 )

is
lef

t
ov

er
.
A
na

lo
-

go
us
ly

fo
r
�(

m
1 ,

m
2 ,

⇤)
,
th
e
th
re
e
so
ft

ph
as
e
sp
ac
e
re
-

gi
on

s
th
at

gi
ve

ris
e
to

th
e
N
G
Ls

at
O(↵ 2

s )
ar
e
sh
ow

n

in
Fi
g.

2.
Ea

ch
co
nfi

gu
ra
tio

n
co
nt
rib

ut
es

lo
ga

rit
hm

s
of

µ
ov

er
a
sin

gl
e
sc
al
e,

th
e
“i
n-
ou

t”
re
gi
on

s
co
nt
rib

ut
in
g

lo
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↵ 2
s ln 2

µ 2
/(
⇤
m
1,
2 ),

an
d
th
e “i

n-
in
”
re
gi
on

co
nt
rib

ut
-

in
g
lo
gs

↵ 2
s ln 2

µ 2
/(
m
1m

2 ).
The

se
co
m
bi
ne

with
sin

gl
e-

re
gi
on

co
nt
rib

ut
io
ns

to
gi
ve

N
G
Ls

of
⇤/

m
1,
2
with

co
e�

-

cie
nt
s fO

L
,O

R
an

d
of

m
1 /

m
2
with

co
e�

cie
nt

fL
R . The

se

co
e�

cie
nt
s
gi
ve

th
e
ge
om

et
ric

fa
ct
or

S
2

in
Eq

. (
2)
.

IR

sa
fe
ty

an
d

RG
in
va

ria
nc

e
will

al
lo
w

us
to

de
riv

e
ad

di
-

tio
na

l s
tr
on

g
re
la
tio

ns
am

on
g
th
es
e
di
↵e

re
nt

co
e�

cie
nt
s.
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lcu

-

la
te
d
to
O(↵ 2

s ),
as

al
so
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ed
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e
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N
G
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an
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e
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G
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d
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.
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N
G
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ar
e
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d
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to

a
m
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e
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ct
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G
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ra
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⇢R

whi
le

µ
2

=
Q

du
e
to

to
ta
l in

clu
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.
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Refs. [5, 19, 20] studied NGLs of ⇤/Q in cross sections
vetoing radiation with total energy greater than ⇤ in an-
gular regions outside of found jets. Though a hard scale
Q appears in these ratios, we found in [21] that the NGLs
still arise from considering both scales in the ratio to be
soft and later taking one of them to Q in an inclusive
limit.

In [21] we made progress in understanding the ori-
gin of NGLs in e↵ective field theory. We considered the
factorized dijet invariant mass distribution �(m1, m2) in
e+e� collisions producing back-to-back jets, and calcu-
lated to O(↵2

s), as also in [22], the hemisphere soft func-
tion S(kL, kR). These calculations clarified the origin of
NGLs in an EFT framework as the dependence of a soft
function on ratios of multiple soft scales, and revealed
new subleading (single) NGLs and non-logarithmic non-
global functions.

These NGLs are organized into a multiplicative factor
entering the total cross section, with the leading NGLs
taking the generic form

SNG(µ1/µ2) = 1 � ↵2
s

(2⇡)2
CF CAS2 ln2 µ1

µ2
+ · · · . (2)

Here µ1,2 are the scales at which soft radiation is probed
in di↵erent sharply-divided regions. For the hemisphere
mass distribution µ1,2 = m2

1,2/Q and S2 = ⇡2/3. For
the ⇢R distribution, µ1 = Q⇢R while µ2 = Q due to
total inclusivity in one hemisphere. The coe�cient S2

is a geometric measure of the region into which the two
soft gluons contributing to a NGL can go. The fact that
it varies with the size of this region is due to the NGL
arising from a purely soft divergence of QCD. Techniques
to resum NGLs using numerical fits in the large-NC limit
of QCD were introduced by [4], but analytic resummation
of NGLs in real-world QCD remains an open problem.

In this work we seek to extend the intuition gained in
[21] by studying a more exclusive set of cross sections.
We study non-global properties of an exclusive jet cross
section �(m1, m2, ⇤), where the invariant masses m1 and
m2 of two jets of size R produced in an e+e� collision
at center-of-mass energy Q are measured, with a veto ⇤
on the energy of additional jets. We consider finding the
jets using various algorithms—cone, anti-kT, Cambridge-
Aachen, and kT [23–28]. We will find that NGLs of
the ratio of the jet veto and the jet masses ⇤/m1,2

are present, in addition to NGLs of the ratio of masses
m1/m2. We calculate the coe�cients only of leading dou-
ble NGLs ↵2

s ln2(µ1/µ2) in this paper. The relevant scales
for this observable are shown in Fig. 1 for a particular hi-
erarchy of m1,2 and ⇤, however our results are valid for
any choice such that Q � m1,2 � m2

1,2/Q, ⇤.
In [21], we discovered that at O(↵2

s) NGLs of two soft
scales µ1,2 can be constructed from separate pieces de-
pendent on the ratio of the factorization scale µ to one
physical scale at a time. Namely, the region of phase
space where one of the soft gluons enters the region sen-
sitive to the scale µ1 and the other enters the region
sensitive to µ2 generates the double log ↵2

s ln2 µ2/(µ1µ2),

Hard scale

Left jet scale

Right jet scale

Soft scales

µH = Q

µL
S = m2

1/Q

µout
S = ⇤

µR
S = m2

2/Q

µL
J = m1

µR
J = m2

FIG. 1: The relevant scales in the exclusive jet mass cross
section with an energy veto, ⇤ outside of the jets is shown
for a particular choice of the hierarchy m2

2 ⌧ ⇤Q ⌧ m2
1 that

gives rise to large non-global logs. Our results apply to any
choice of m1,2 and ⇤ that satisfies Q � m1,2 � m2

1,2/Q, ⇤,
which maintains the separation between hard, jet and soft
scales.

while the regions where soft gluons enter only region 1 or
only region 2 generate ↵2

s ln2(µ/µ1) and ↵2
s ln2(µ/µ2). In

[21] we derived from RG invariance of the cross section
and IR safety of the soft function that the coe�cients
of these logs are constrained so that the µ-dependence
cancels, but an NGL ↵2

s ln2(µ1/µ2) is left over. Analo-
gously for �(m1, m2, ⇤), the three soft phase space re-
gions that give rise to the NGLs at O(↵2

s) are shown
in Fig. 2. Each configuration contributes logarithms of
µ over a single scale, the “in-out” regions contributing
logs ↵2

s ln2 µ2/(⇤ m1,2), and the “in-in” region contribut-
ing logs ↵2

s ln2 µ2/(m1m2). These combine with single-
region contributions to give NGLs of ⇤/m1,2 with coe�-
cients fOL,OR and of m1/m2 with coe�cient fLR. These
coe�cients give the geometric factor S2 in Eq. (2). IR
safety and RG invariance will allow us to derive addi-
tional strong relations among these di↵erent coe�cients.
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Refs.[5,19,20]studiedNGLsof⇤/Qincrosssections
vetoingradiationwithtotalenergygreaterthan⇤inan-
gularregionsoutsideoffoundjets.Thoughahardscale
Qappearsintheseratios,wefoundin[21]thattheNGLs
stillarisefromconsideringbothscalesintheratiotobe
softandlatertakingoneofthemtoQinaninclusive
limit.

In[21]wemadeprogressinunderstandingtheori-
ginofNGLsine↵ectivefieldtheory.Weconsideredthe
factorizeddijetinvariantmassdistribution�(m1,m2)in
e+e�collisionsproducingback-to-backjets,andcalcu-
latedtoO(↵2

s),asalsoin[22],thehemispheresoftfunc-
tionS(kL,kR).Thesecalculationsclarifiedtheoriginof
NGLsinanEFTframeworkasthedependenceofasoft
functiononratiosofmultiplesoftscales,andrevealed
newsubleading(single)NGLsandnon-logarithmicnon-
globalfunctions.
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enteringthetotalcrosssection,withtheleadingNGLs
takingthegenericform
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Hereµ1,2arethescalesatwhichsoftradiationisprobed
indi↵erentsharply-dividedregions.Forthehemisphere
massdistributionµ1,2=m2

1,2/QandS2=⇡2/3.For
the⇢Rdistribution,µ1=Q⇢Rwhileµ2=Qdueto
totalinclusivityinonehemisphere.Thecoe�cientS2

isageometricmeasureoftheregionintowhichthetwo
softgluonscontributingtoaNGLcango.Thefactthat
itvarieswiththesizeofthisregionisduetotheNGL
arisingfromapurelysoftdivergenceofQCD.Techniques
toresumNGLsusingnumericalfitsinthelarge-NClimit
ofQCDwereintroducedby[4],butanalyticresummation
ofNGLsinreal-worldQCDremainsanopenproblem.
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cientsfOL,ORandofm1/m2withcoe�cientfLR.These
coe�cientsgivethegeometricfactorS2inEq.(2).IR
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di
ng

N
G
Ls

ta
ki
ng

th
e
ge
ne

ric
fo
rm

S
N
G
(µ

1 /
µ
2 )

=
1�

↵ 2
s(2

⇡) 2 C
F C

A S
2 ln 2

µ
1

µ
2 +

· · ·
.

(2
)

H
er
e
µ
1,
2
ar
e
th
e
sc
al
es

at
whi

ch
so
ft

ra
di
at
io
n
is

pr
ob

ed

in
di
↵e

re
nt

sh
ar
pl
y-
di
vi
de

d
re
gi
on

s.
Fo

r
th
e
he

m
isp

he
re

m
as
s
di
st
rib

ut
io
n

µ
1,
2

=
m 2
1,
2 /Q

an
d

S
2

=
⇡ 2

/3
.

Fo
r

th
e
⇢R

di
st
rib

ut
io
n,

µ
1

=
Q
⇢R

whi
le

µ
2

=
Q

du
e
to

to
ta
l in

clu
siv

ity
in

on
e
he

m
isp

he
re
.

The
co

e�
cie

nt
S
2

is
a
ge
om

et
ric

m
ea
su
re

of
th
e
re
gi
on

in
to

whi
ch

th
e
tw

o

so
ft

gl
uo

ns
co
nt
rib

ut
in
g
to

a
N
G
L
ca
n
go

. The
fa
ct

th
at

it
va

rie
s
with

th
e
siz

e
of

th
is

re
gi
on

is
du

e
to

th
e
N
G
L

ar
isi
ng

fro
m

a
pu

re
ly

so
ft

di
ve
rg
en

ce
of

Q
CD

. T
ec
hn

iq
ue

s

to
re
su
m

N
G
Ls

us
in
g
nu

m
er
ica

l fi
ts

in
th
e la

rg
e-
N
C

lim
it

of
Q
CD

we
re

in
tr
od

uc
ed

by
[4
],
bu

t a
na

ly
tic

re
su
m
m
at
io
n

of
N
G
Ls

in
re
al
-w

or
ld

Q
CD

re
m
ai
ns

an
op

en
pr
ob

lem
.

In
th
is

wo
rk

we
se
ek

to
ex

te
nd

th
e
in
tu
iti
on

ga
in
ed

in

[2
1]

by
st
ud

yi
ng

a
m
or
e
ex

clu
siv

e
se
t
of

cr
os
s
se
ct
io
ns
.

W
e
st
ud

y
no

n-
gl
ob

al
pr
op

er
tie

s
of

an
ex

clu
siv

e
je
t
cr
os
s

se
ct
io
n
�(

m
1 ,

m
2 ,

⇤)
, w

he
re

th
e in

va
ria

nt
m
as
se
s m

1
an

d

m
2

of
tw

o
je
ts

of
siz

e
R

pr
od

uc
ed

in
an

e +
e �

co
lli
sio

n

at
ce
nt
er
-o
f-m

as
s en

er
gy

Q
ar
e
m
ea
su
re
d,

with
a
ve
to

⇤

on
th
e
en

er
gy

of
ad

di
tio

na
l j
et
s.

W
e
co
ns
id
er

fin
di
ng

th
e

je
ts

us
in
g
va

rio
us

al
go

rit
hm

s—
co
ne

, a
nt
i-k

T , C
am

br
id
ge
-

A
ac
he

n,
an

d
kT

[2
3–

28
].

W
e

will
fin

d
th
at

N
G
Ls

of

th
e

ra
tio

of
th
e

je
t

ve
to

an
d

th
e

je
t

m
as
se
s

⇤/
m
1,
2

ar
e
pr
es
en

t,
in

ad
di
tio

n
to

N
G
Ls

of
th
e
ra
tio

of
m
as
se
s

m
1 /

m
2 .

W
e c

al
cu

la
te

th
e c

oe
�
cie

nt
s o

nl
y
of

lea
di
ng

do
u-

bl
e N

G
Ls

↵ 2
s ln 2

(µ
1 /

µ
2 )

in
th
is
pa

pe
r.

The
re
lev

an
t s

ca
les

fo
r t

hi
s o

bs
er
va

bl
e ar

e sh
ow

n
in

Fi
g.

1
fo
r a

pa
rt
icu

la
r h

i-

er
ar
ch
y
of

m
1,
2

an
d
⇤,

ho
we

ve
r
ou

r
re
su
lts

ar
e
va

lid
fo
r

an
y
ch

oi
ce

su
ch

th
at

Q
�

m
1,
2
�

m 2
1,
2 /Q

, ⇤
.

In
[2
1]
, w

e
di
sc
ov

er
ed

th
at

at
O(↵ 2

s ) N
G
Ls

of
tw

o
so
ft

sc
al
es

µ
1,
2

ca
n

be
co
ns
tr
uc

te
d

fro
m

se
pa

ra
te

pi
ec
es

de
-

pe
nd

en
t
on

th
e
ra
tio

of
th
e
fa
ct
or
iza

tio
n
sc
al
e
µ

to
on

e

ph
ys
ica

l sc
al
e
at

a
tim

e.
N
am

ely
,
th
e
re
gi
on

of
ph

as
e

sp
ac
e
whe

re
on

e
of

th
e
so
ft

gl
uo

ns
en

te
rs

th
e
re
gi
on

se
n-

sit
iv
e
to

th
e
sc
al
e
µ
1

an
d

th
e
ot
he

r
en

te
rs

th
e
re
gi
on

se
ns
iti
ve

to
µ
2
ge
ne

ra
te
s t

he
do

ub
le

lo
g
↵ 2
s ln 2

µ 2
/(
µ
1 µ

2 ),

Hard
 sc

ale
Le

ft 
jet

 sc
aleRigh

t j
et

 sc
ale

So
ft 

sc
ale

s

µ
H

=
Q

µ L
S

=
m 2
1 /Q

µ ou
tS
=

⇤
µ R
S

=
m 2
2 /Q

µ L
J

=
m
1

µ R
J

=
m
2

FI
G
. 1
:
Th
e
re
lev
an
t
sc
al
es
in
th
e
ex
clu
siv
e
je
t
m
as
s
cr
os
s

se
ct
io
n
wi
th
an

en
er
gy

ve
to
,
⇤
ou
ts
id
e
of
th
e
je
ts
is
sh
ow
n

fo
r
a
pa
rt
icu
la
r
ch
oi
ce
of
th
e
hi
er
ar
ch
y
m 2
2
⌧
⇤Q

⌧
m 2
1
th
at

gi
ve
s
ris
e
to
la
rg
e
no
n-
gl
ob
al
lo
gs
.
O
ur
re
su
lts

ap
pl
y
to
an
y

ch
oi
ce
of
m
1,
2
an
d
⇤
th
at
sa
tis
fie
s
Q
�
m
1,
2
�
m 2
1,
2 /
Q
, ⇤
,

wh
ich

m
ai
nt
ai
ns

th
e
se
pa
ra
tio
n
be
tw
ee
n
ha
rd
,
je
t
an
d
so
ft

sc
al
es
.

whi
le

th
e re

gi
on

s w
he

re
so
ft

gl
uo

ns
en

te
r o

nl
y
re
gi
on

1
or

on
ly

re
gi
on

2
ge
ne

ra
te

↵ 2
s ln 2

(µ
/µ

1 )
an

d
↵ 2
s ln 2

(µ
/µ

2 ).
In

[2
1]

we
de

riv
ed

fro
m

RG
in
va

ria
nc

e
of

th
e
cr
os
s
se
ct
io
n

an
d

IR
sa
fe
ty

of
th
e
so
ft

fu
nc

tio
n

th
at

th
e
co

e�
cie

nt
s

of
th
es
e
lo
gs

ar
e
co
ns
tr
ai
ne

d
so

th
at

th
e
µ-
de

pe
nd

en
ce

ca
nc

els
, b

ut
an

N
G
L

↵ 2
s ln 2

(µ
1 /

µ
2 )

is
lef

t
ov

er
.
A
na

lo
-

go
us
ly

fo
r
�(

m
1 ,

m
2 ,

⇤)
,
th
e
th
re
e
so
ft

ph
as
e
sp
ac
e
re
-

gi
on

s
th
at

gi
ve

ris
e
to

th
e
N
G
Ls

at
O(↵ 2

s )
ar
e
sh
ow

n

in
Fi
g.

2.
Ea

ch
co
nfi

gu
ra
tio

n
co
nt
rib

ut
es

lo
ga

rit
hm

s
of

µ
ov

er
a
sin

gl
e
sc
al
e,

th
e
“i
n-
ou

t”
re
gi
on

s
co
nt
rib

ut
in
g

lo
gs

↵ 2
s ln 2

µ 2
/(
⇤
m
1,
2 ),

an
d
th
e “i

n-
in
”
re
gi
on

co
nt
rib

ut
-

in
g
lo
gs

↵ 2
s ln 2

µ 2
/(
m
1m

2 ).
The

se
co
m
bi
ne

with
sin

gl
e-

re
gi
on

co
nt
rib

ut
io
ns

to
gi
ve

N
G
Ls

of
⇤/

m
1,
2
with

co
e�

-

cie
nt
s fO

L
,O

R
an

d
of

m
1 /

m
2
with

co
e�

cie
nt

fL
R . The

se

co
e�

cie
nt
s
gi
ve

th
e
ge
om

et
ric

fa
ct
or

S
2

in
Eq

. (
2)
.

IR

sa
fe
ty

an
d

RG
in
va

ria
nc

e
will

al
lo
w

us
to

de
riv

e
ad

di
-

tio
na

l s
tr
on

g
re
la
tio

ns
am

on
g
th
es
e
di
↵e

re
nt

co
e�

cie
nt
s.

2

Ref
s.

[5
, 1

9,
20

] s
tu
di
ed

N
G
Ls

of
⇤/

Q
in

cr
os
s
se
ct
io
ns

ve
to
in
g
ra
di
at
io
n
with

to
ta
l e

ne
rg
y
gr
ea
te
r t

ha
n
⇤

in
an

-

gu
la
r re

gi
on

s ou
ts
id
e
of

fo
un

d
je
ts
. Tho

ug
h
a
ha

rd
sc
al
e

Q
ap

pe
ar
s i
n
th
es
e r

at
io
s,
we

fo
un

d
in

[2
1]

th
at

th
e N

G
Ls

st
ill

ar
ise

fro
m

co
ns
id
er
in
g
bo

th
sc
al
es

in
th
e
ra
tio

to
be

so
ft

an
d

la
te
r
ta
ki
ng

on
e
of

th
em

to
Q

in
an

in
clu

siv
e

lim
it.In
[2
1]

we
m
ad

e
pr
og

re
ss

in
un

de
rs
ta
nd

in
g

th
e

or
i-

gi
n
of

N
G
Ls

in
e↵

ec
tiv

e
fie

ld
th
eo
ry
.
W
e
co
ns
id
er
ed

th
e

fa
ct
or
ize

d
di
je
t in

va
ria

nt
m
as
s di

st
rib

ut
io
n
�(

m
1 ,

m
2 )

in

e +
e �

co
lli
sio

ns
pr
od

uc
in
g
ba

ck
-to

-b
ac
k
je
ts
, an

d
ca
lcu

-

la
te
d
to
O(↵ 2

s ),
as

al
so

in
[2
2]
, t

he
he

m
isp

he
re

so
ft

fu
nc

-

tio
n
S(

kL
, k

R ).
The

se
ca
lcu

la
tio

ns
cla

rifi
ed

th
e
or
ig
in

of

N
G
Ls

in
an

EF
T

fra
m
ew

or
k
as

th
e
de

pe
nd

en
ce

of
a
so
ft

fu
nc

tio
n

on
ra
tio

s
of

m
ul
tip

le
so
ft

sc
al
es
,
an

d
re
ve
al
ed

ne
w

su
bl
ea
di
ng

(s
in
gl
e)

N
G
Ls

an
d
no

n-
lo
ga

rit
hm

ic
no

n-

gl
ob

al
fu
nc

tio
ns
.

The
se

N
G
Ls

ar
e
or
ga

ni
ze
d
in
to

a
m
ul
tip

lic
at
iv
e
fa
ct
or

en
te
rin

g
th
e
to
ta
l c

ro
ss

se
ct
io
n,

with
th
e
lea

di
ng

N
G
Ls

ta
ki
ng

th
e
ge
ne

ric
fo
rm

S
N
G
(µ

1 /
µ
2 )

=
1�

↵ 2
s(2

⇡) 2 C
F C

A S
2 ln 2

µ
1

µ
2 +

· · ·
.

(2
)

H
er
e
µ
1,
2
ar
e
th
e
sc
al
es

at
whi

ch
so
ft

ra
di
at
io
n
is

pr
ob

ed

in
di
↵e

re
nt

sh
ar
pl
y-
di
vi
de

d
re
gi
on

s.
Fo

r
th
e
he

m
isp

he
re

m
as
s
di
st
rib

ut
io
n

µ
1,
2

=
m 2
1,
2 /Q

an
d

S
2

=
⇡ 2

/3
.

Fo
r

th
e
⇢R

di
st
rib

ut
io
n,

µ
1

=
Q
⇢R

whi
le

µ
2

=
Q

du
e
to

to
ta
l in

clu
siv

ity
in

on
e
he

m
isp

he
re
.

The
co

e�
cie

nt
S
2

is
a
ge
om

et
ric

m
ea
su
re

of
th
e
re
gi
on

in
to

whi
ch

th
e
tw

o

so
ft

gl
uo

ns
co
nt
rib

ut
in
g
to

a
N
G
L
ca
n
go

. The
fa
ct

th
at

it
va

rie
s
with

th
e
siz

e
of

th
is

re
gi
on

is
du

e
to

th
e
N
G
L

ar
isi
ng

fro
m

a
pu

re
ly

so
ft

di
ve
rg
en

ce
of

Q
CD

. T
ec
hn

iq
ue

s

to
re
su
m

N
G
Ls

us
in
g
nu

m
er
ica

l fi
ts

in
th
e la

rg
e-
N
C

lim
it

of
Q
CD

we
re

in
tr
od

uc
ed

by
[4
],
bu

t a
na

ly
tic

re
su
m
m
at
io
n

of
N
G
Ls

in
re
al
-w

or
ld

Q
CD

re
m
ai
ns

an
op

en
pr
ob

lem
.

In
th
is

wo
rk

we
se
ek

to
ex

te
nd

th
e
in
tu
iti
on

ga
in
ed

in

[2
1]

by
st
ud

yi
ng

a
m
or
e
ex

clu
siv

e
se
t
of

cr
os
s
se
ct
io
ns
.

W
e
st
ud

y
no

n-
gl
ob

al
pr
op

er
tie

s
of

an
ex

clu
siv

e
je
t
cr
os
s

se
ct
io
n
�(

m
1 ,

m
2 ,

⇤)
, w

he
re

th
e in

va
ria

nt
m
as
se
s m

1
an

d

m
2

of
tw

o
je
ts

of
siz

e
R

pr
od

uc
ed

in
an

e +
e �

co
lli
sio

n

at
ce
nt
er
-o
f-m

as
s en

er
gy

Q
ar
e
m
ea
su
re
d,

with
a
ve
to

⇤

on
th
e
en

er
gy

of
ad

di
tio

na
l j
et
s.

W
e
co
ns
id
er

fin
di
ng

th
e

je
ts

us
in
g
va

rio
us

al
go

rit
hm

s—
co
ne

, a
nt
i-k

T , C
am

br
id
ge
-

A
ac
he

n,
an

d
kT

[2
3–

28
].

W
e

will
fin

d
th
at

N
G
Ls

of

th
e

ra
tio

of
th
e

je
t

ve
to

an
d

th
e

je
t

m
as
se
s

⇤/
m
1,
2

ar
e
pr
es
en

t,
in

ad
di
tio

n
to

N
G
Ls

of
th
e
ra
tio

of
m
as
se
s

m
1 /

m
2 .

W
e c

al
cu

la
te

th
e c

oe
�
cie

nt
s o

nl
y
of

lea
di
ng

do
u-

bl
e N

G
Ls

↵ 2
s ln 2

(µ
1 /

µ
2 )

in
th
is
pa

pe
r.

The
re
lev

an
t s

ca
les

fo
r t

hi
s o

bs
er
va

bl
e ar

e sh
ow

n
in

Fi
g.

1
fo
r a

pa
rt
icu

la
r h

i-

er
ar
ch
y
of

m
1,
2

an
d
⇤,

ho
we

ve
r
ou

r
re
su
lts

ar
e
va

lid
fo
r

an
y
ch

oi
ce

su
ch

th
at

Q
�

m
1,
2
�

m 2
1,
2 /Q

, ⇤
.

In
[2
1]
, w

e
di
sc
ov

er
ed

th
at

at
O(↵ 2

s ) N
G
Ls

of
tw

o
so
ft

sc
al
es

µ
1,
2

ca
n

be
co
ns
tr
uc

te
d

fro
m

se
pa

ra
te

pi
ec
es

de
-

pe
nd

en
t
on

th
e
ra
tio

of
th
e
fa
ct
or
iza

tio
n
sc
al
e
µ

to
on

e

ph
ys
ica

l sc
al
e
at

a
tim

e.
N
am

ely
,
th
e
re
gi
on

of
ph

as
e

sp
ac
e
whe

re
on

e
of

th
e
so
ft

gl
uo

ns
en

te
rs

th
e
re
gi
on

se
n-

sit
iv
e
to

th
e
sc
al
e
µ
1

an
d

th
e
ot
he

r
en

te
rs

th
e
re
gi
on

se
ns
iti
ve

to
µ
2
ge
ne

ra
te
s t

he
do

ub
le

lo
g
↵ 2
s ln 2

µ 2
/(
µ
1 µ

2 ),

Hard
 sc

ale
Le

ft 
jet

 sc
aleRigh

t j
et

 sc
ale

So
ft 

sc
ale

s

µ
H

=
Q

µ L
S

=
m 2
1 /Q

µ ou
tS
=

⇤
µ R
S

=
m 2
2 /Q

µ L
J

=
m
1

µ R
J

=
m
2

FI
G
. 1
:
Th
e
re
lev
an
t
sc
al
es
in
th
e
ex
clu
siv
e
je
t
m
as
s
cr
os
s

se
ct
io
n
wi
th
an

en
er
gy

ve
to
,
⇤
ou
ts
id
e
of
th
e
je
ts
is
sh
ow
n

fo
r
a
pa
rt
icu
la
r
ch
oi
ce
of
th
e
hi
er
ar
ch
y
m 2
2
⌧
⇤Q

⌧
m 2
1
th
at

gi
ve
s
ris
e
to
la
rg
e
no
n-
gl
ob
al
lo
gs
.
O
ur
re
su
lts

ap
pl
y
to
an
y

ch
oi
ce
of
m
1,
2
an
d
⇤
th
at
sa
tis
fie
s
Q
�
m
1,
2
�
m 2
1,
2 /
Q
, ⇤
,

wh
ich

m
ai
nt
ai
ns

th
e
se
pa
ra
tio
n
be
tw
ee
n
ha
rd
,
je
t
an
d
so
ft

sc
al
es
.

whi
le

th
e re

gi
on

s w
he

re
so
ft

gl
uo

ns
en

te
r o

nl
y
re
gi
on

1
or

on
ly

re
gi
on

2
ge
ne

ra
te

↵ 2
s ln 2

(µ
/µ

1 )
an

d
↵ 2
s ln 2

(µ
/µ

2 ).
In

[2
1]

we
de

riv
ed

fro
m

RG
in
va

ria
nc

e
of

th
e
cr
os
s
se
ct
io
n

an
d

IR
sa
fe
ty

of
th
e
so
ft

fu
nc

tio
n

th
at

th
e
co

e�
cie

nt
s

of
th
es
e
lo
gs

ar
e
co
ns
tr
ai
ne
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Refs. [5, 19, 20] studied NGLs of ⇤/Q in cross sections
vetoing radiation with total energy greater than ⇤ in an-
gular regions outside of found jets. Though a hard scale
Q appears in these ratios, we found in [21] that the NGLs
still arise from considering both scales in the ratio to be
soft and later taking one of them to Q in an inclusive
limit.

In [21] we made progress in understanding the ori-
gin of NGLs in e↵ective field theory. We considered the
factorized dijet invariant mass distribution �(m1, m2) in
e+e� collisions producing back-to-back jets, and calcu-
lated to O(↵2

s), as also in [22], the hemisphere soft func-
tion S(kL, kR). These calculations clarified the origin of
NGLs in an EFT framework as the dependence of a soft
function on ratios of multiple soft scales, and revealed
new subleading (single) NGLs and non-logarithmic non-
global functions.

These NGLs are organized into a multiplicative factor
entering the total cross section, with the leading NGLs
taking the generic form

SNG(µ1/µ2) = 1 � ↵2
s

(2⇡)2
CF CAS2 ln2 µ1

µ2
+ · · · . (2)

Here µ1,2 are the scales at which soft radiation is probed
in di↵erent sharply-divided regions. For the hemisphere
mass distribution µ1,2 = m2

1,2/Q and S2 = ⇡2/3. For
the ⇢R distribution, µ1 = Q⇢R while µ2 = Q due to
total inclusivity in one hemisphere. The coe�cient S2

is a geometric measure of the region into which the two
soft gluons contributing to a NGL can go. The fact that
it varies with the size of this region is due to the NGL
arising from a purely soft divergence of QCD. Techniques
to resum NGLs using numerical fits in the large-NC limit
of QCD were introduced by [4], but analytic resummation
of NGLs in real-world QCD remains an open problem.

In this work we seek to extend the intuition gained in
[21] by studying a more exclusive set of cross sections.
We study non-global properties of an exclusive jet cross
section �(m1, m2, ⇤), where the invariant masses m1 and
m2 of two jets of size R produced in an e+e� collision
at center-of-mass energy Q are measured, with a veto ⇤
on the energy of additional jets. We consider finding the
jets using various algorithms—cone, anti-kT, Cambridge-
Aachen, and kT [23–28]. We will find that NGLs of
the ratio of the jet veto and the jet masses ⇤/m1,2

are present, in addition to NGLs of the ratio of masses
m1/m2. We calculate the coe�cients only of leading dou-
ble NGLs ↵2

s ln2(µ1/µ2) in this paper. The relevant scales
for this observable are shown in Fig. 1 for a particular hi-
erarchy of m1,2 and ⇤, however our results are valid for
any choice such that Q � m1,2 � m2

1,2/Q, ⇤.
In [21], we discovered that at O(↵2

s) NGLs of two soft
scales µ1,2 can be constructed from separate pieces de-
pendent on the ratio of the factorization scale µ to one
physical scale at a time. Namely, the region of phase
space where one of the soft gluons enters the region sen-
sitive to the scale µ1 and the other enters the region
sensitive to µ2 generates the double log ↵2

s ln2 µ2/(µ1µ2),

Hard scale

Left jet scale

Right jet scale

Soft scales

µH = Q

µL
S = m2

1/Q

µout
S = ⇤

µR
S = m2

2/Q

µL
J = m1

µR
J = m2

FIG. 1: The relevant scales in the exclusive jet mass cross
section with an energy veto, ⇤ outside of the jets is shown
for a particular choice of the hierarchy m2

2 ⌧ ⇤Q ⌧ m2
1 that

gives rise to large non-global logs. Our results apply to any
choice of m1,2 and ⇤ that satisfies Q � m1,2 � m2

1,2/Q, ⇤,
which maintains the separation between hard, jet and soft
scales.

while the regions where soft gluons enter only region 1 or
only region 2 generate ↵2

s ln2(µ/µ1) and ↵2
s ln2(µ/µ2). In

[21] we derived from RG invariance of the cross section
and IR safety of the soft function that the coe�cients
of these logs are constrained so that the µ-dependence
cancels, but an NGL ↵2

s ln2(µ1/µ2) is left over. Analo-
gously for �(m1, m2, ⇤), the three soft phase space re-
gions that give rise to the NGLs at O(↵2

s) are shown
in Fig. 2. Each configuration contributes logarithms of
µ over a single scale, the “in-out” regions contributing
logs ↵2

s ln2 µ2/(⇤ m1,2), and the “in-in” region contribut-
ing logs ↵2

s ln2 µ2/(m1m2). These combine with single-
region contributions to give NGLs of ⇤/m1,2 with coe�-
cients fOL,OR and of m1/m2 with coe�cient fLR. These
coe�cients give the geometric factor S2 in Eq. (2). IR
safety and RG invariance will allow us to derive addi-
tional strong relations among these di↵erent coe�cients.

2

Refs. [5, 19, 20] studied NGLs of ⇤/Q in cross sections
vetoing radiation with total energy greater than ⇤ in an-
gular regions outside of found jets. Though a hard scale
Q appears in these ratios, we found in [21] that the NGLs
still arise from considering both scales in the ratio to be
soft and later taking one of them to Q in an inclusive
limit.

In [21] we made progress in understanding the ori-
gin of NGLs in e↵ective field theory. We considered the
factorized dijet invariant mass distribution �(m1, m2) in
e+e� collisions producing back-to-back jets, and calcu-
lated to O(↵2

s), as also in [22], the hemisphere soft func-
tion S(kL, kR). These calculations clarified the origin of
NGLs in an EFT framework as the dependence of a soft
function on ratios of multiple soft scales, and revealed
new subleading (single) NGLs and non-logarithmic non-
global functions.

These NGLs are organized into a multiplicative factor
entering the total cross section, with the leading NGLs
taking the generic form

SNG(µ1/µ2) = 1 � ↵2
s

(2⇡)2
CF CAS2 ln2 µ1

µ2
+ · · · . (2)

Here µ1,2 are the scales at which soft radiation is probed
in di↵erent sharply-divided regions. For the hemisphere
mass distribution µ1,2 = m2

1,2/Q and S2 = ⇡2/3. For
the ⇢R distribution, µ1 = Q⇢R while µ2 = Q due to
total inclusivity in one hemisphere. The coe�cient S2

is a geometric measure of the region into which the two
soft gluons contributing to a NGL can go. The fact that
it varies with the size of this region is due to the NGL
arising from a purely soft divergence of QCD. Techniques
to resum NGLs using numerical fits in the large-NC limit
of QCD were introduced by [4], but analytic resummation
of NGLs in real-world QCD remains an open problem.

In this work we seek to extend the intuition gained in
[21] by studying a more exclusive set of cross sections.
We study non-global properties of an exclusive jet cross
section �(m1, m2, ⇤), where the invariant masses m1 and
m2 of two jets of size R produced in an e+e� collision
at center-of-mass energy Q are measured, with a veto ⇤
on the energy of additional jets. We consider finding the
jets using various algorithms—cone, anti-kT, Cambridge-
Aachen, and kT [23–28]. We will find that NGLs of
the ratio of the jet veto and the jet masses ⇤/m1,2

are present, in addition to NGLs of the ratio of masses
m1/m2. We calculate the coe�cients only of leading dou-
ble NGLs ↵2

s ln2(µ1/µ2) in this paper. The relevant scales
for this observable are shown in Fig. 1 for a particular hi-
erarchy of m1,2 and ⇤, however our results are valid for
any choice such that Q � m1,2 � m2

1,2/Q, ⇤.
In [21], we discovered that at O(↵2

s) NGLs of two soft
scales µ1,2 can be constructed from separate pieces de-
pendent on the ratio of the factorization scale µ to one
physical scale at a time. Namely, the region of phase
space where one of the soft gluons enters the region sen-
sitive to the scale µ1 and the other enters the region
sensitive to µ2 generates the double log ↵2

s ln2 µ2/(µ1µ2),

Hard scale

Left jet scale

Right jet scale

Soft scales

µH = Q

µL
S = m2

1/Q

µout
S = ⇤

µR
S = m2

2/Q

µL
J = m1

µR
J = m2

FIG. 1: The relevant scales in the exclusive jet mass cross
section with an energy veto, ⇤ outside of the jets is shown
for a particular choice of the hierarchy m2

2 ⌧ ⇤Q ⌧ m2
1 that

gives rise to large non-global logs. Our results apply to any
choice of m1,2 and ⇤ that satisfies Q � m1,2 � m2

1,2/Q, ⇤,
which maintains the separation between hard, jet and soft
scales.

while the regions where soft gluons enter only region 1 or
only region 2 generate ↵2

s ln2(µ/µ1) and ↵2
s ln2(µ/µ2). In

[21] we derived from RG invariance of the cross section
and IR safety of the soft function that the coe�cients
of these logs are constrained so that the µ-dependence
cancels, but an NGL ↵2

s ln2(µ1/µ2) is left over. Analo-
gously for �(m1, m2, ⇤), the three soft phase space re-
gions that give rise to the NGLs at O(↵2

s) are shown
in Fig. 2. Each configuration contributes logarithms of
µ over a single scale, the “in-out” regions contributing
logs ↵2

s ln2 µ2/(⇤ m1,2), and the “in-in” region contribut-
ing logs ↵2

s ln2 µ2/(m1m2). These combine with single-
region contributions to give NGLs of ⇤/m1,2 with coe�-
cients fOL,OR and of m1/m2 with coe�cient fLR. These
coe�cients give the geometric factor S2 in Eq. (2). IR
safety and RG invariance will allow us to derive addi-
tional strong relations among these di↵erent coe�cients.

2

Refs.
[5, 19,

20]
studied

NGLs of ⇤/Q
in cros

s sect
ions

veto
ing radiatio

n with tota
l energy

grea
ter than ⇤ in an-

gular regi
ons outsid

e of found jets
. Though a hard

scal
e

Q appears
in these

rati
os, we found in [21]

that the NGLs

still
aris

e from
considerin

g both
scal

es in the rati
o to be

soft
and late

r taki
ng one of them

to Q in an inclusive

limit.

In [21]
we made progr

ess
in underst

anding the ori-

gin
of NGLs in e↵ecti

ve field
theory

. We considered
the

fact
oriz

ed dijet
inva

rian
t mass

distri
bution

�(m1,m
2)

in

e+ e�
colli

sion
s producing back-

to-b
ack

jets
, and calc

u-

late
d to O(↵

2
s
), as also

in [22]
, the hemisphere

soft
func-

tion
S(kL, kR). These

calc
ulatio

ns clar
ified the orig

in of

NGLs in an EFT fram
ework

as the dependence of a soft

functio
n on rati

os of multiple soft
scal

es,
and reve

aled

new sublead
ing (sin

gle)
NGLs and non-log

arit
hmic non-

glob
al functio

ns.

These
NGLs are

orga
nized

into
a multiplicat

ive
fact

or

ente
ring the tota

l cros
s sect

ion, with
the lead

ing NGLs

taki
ng the generic

form

SNG
(µ1/µ

2) = 1�
↵
2
s

(2⇡)2
CFCAS2

ln
2
µ1

µ2

+ · · · .
(2)

Here
µ1,2

are
the scal

es at which
soft

radiatio
n is probed

in di↵eren
t sharply-d

ivid
ed regi

ons. For the hemisphere

mass
distri

bution
µ1,2

= m
2
1,2

/Q
and S2

= ⇡
2 /3.

For

the ⇢R
distri

bution
, µ1

= Q⇢R
while µ2

= Q due to

tota
l inclusivit

y in one hemisphere.
The coe�

cien
t S2

is a geom
etric

measu
re of the regi

on into
which

the two

soft
gluons cont

ributing to a NGL can
go.

The fact
that

it vari
es with

the size
of this regi

on is due to the NGL

aris
ing from

a purely
soft

diver
gence of QCD. Techniques

to resu
m NGLs using numeric

al fits in the larg
e-NC

limit

of QCD were intr
oduced

by [4],
but analyt

ic resu
mmatio

n

of NGLs in real
-world

QCD rem
ains an open problem

.

In this work
we seek

to exte
nd the intu

ition
gain

ed in

[21]
by studying a more

excl
usive

set
of cros

s sect
ions.

We study non-glo
bal propertie

s of an excl
usive

jet cros
s

sect
ion

�(m1,m
2,⇤

), where
the inva

rian
t masse

s m1
and

m2
of two jets

of size
R produced

in an e+ e�
colli

sion

at cent
er-o

f-mass
energy

Q are
measu

red, with
a veto

⇤

on the energy
of addition

al jets
. We consider finding the

jets
using vari

ous algo
rith

ms—cone, anti
-kT

, Cambridge-

Aachen, and kT
[23–

28].
We will find that NGLs of

the rati
o of the jet

veto
and the jet

masse
s ⇤/m1,2

are
prese

nt,
in addition

to NGLs of the rati
o of masse

s

m1/m
2.

We calc
ulate

the coe�
cien

ts only of lead
ing dou-

ble NGLs ↵
2
s
ln

2 (µ1/µ
2) in this paper. The rele

vant
scal

es

for this observ
able are

shown in Fig. 1 for a parti
cular hi-

erar
chy

of m1,2
and ⇤, however

our resu
lts are

vali
d for

any
choice

such that Q � m1,2
� m

2
1,2

/Q, ⇤.

In [21]
, we disco

vere
d that at O(↵

2
s
) NGLs of two soft

scal
es µ1,2

can
be constru

cted
from

separat
e piece

s de-

pendent
on the rati

o of the fact
oriz

atio
n scal

e µ to one

physi
cal

scal
e at a time.

Namely,
the regi

on of phase

space
where

one of the soft
gluons ente

rs the regi
on sen-

sitiv
e to the scal

e µ1
and the other ente

rs the regi
on

sensitiv
e to µ2

generat
es the double log

↵
2
s
ln

2 µ
2 /(µ1µ2),

Hard scal
e

Left jet sca
le

Right jet sca
le

Soft sc
ales

µH
= Q

µ
L
S

= m
2
1
/Q

µ
out

S
= ⇤

µ
R
S

= m
2
2
/Q

µ
L
J

= m1

µ
R
J

= m2

FIG
. 1:

The
rele

van
t scal

es in the
excl

usiv
e jet

mass
cros

s

sect
ion

with
an ener

gy veto
, ⇤

outs
ide

of t
he jets

is show
n

for
a part

icul
ar c

hoic
e of

the
hier

arch
y m

2
2
⌧ ⇤Q

⌧ m
2
1
that

give
s ris

e to larg
e non

-glo
bal

logs
. Our

resu
lts a

pply
to any

choi
ce of m

1,2
and

⇤ that
sati

sfies
Q � m1,2

� m
2
1,2
/Q, ⇤,

whi
ch maint

ains
the

sepa
rati

on
betw

een
hard

, je
t and

soft

scal
es.

while the regi
ons where

soft
gluons ente

r only regi
on 1 or

only regi
on 2 generat

e ↵
2
s
ln

2 (µ/µ1)
and ↵

2
s
ln

2 (µ/µ2).
In

[21]
we deriv

ed from
RG inva

rian
ce of the cros

s sect
ion

and IR
safe

ty of the soft
functio

n that the coe�
cien

ts

of these
logs

are
constra

ined so that the µ-dependence

cancels
, but an NGL ↵

2
s
ln

2 (µ1/µ
2)

is left
over

. Analo-

gou
sly

for
�(m1,m

2,⇤
), the three

soft
phase

space
re-

gion
s that give

rise
to the NGLs at O(↵

2
s
) are

shown

in Fig. 2. Each
configurati

on cont
ributes

loga
rith

ms of

µ over
a single

scal
e, the “in-out” regi

ons cont
ributing

logs
↵
2
s
ln

2 µ
2 /(⇤

m1,2
), and the “in-in” regi

on cont
ribut-

ing logs
↵
2
s
ln

2 µ
2 /(m1m2).

These
com

bine with
single-

regi
on cont

ribution
s to give

NGLs of ⇤/m1,2
with

coe�
-

cien
ts fOL,OR

and of m1/m
2

with
coe�

cien
t fLR

. These

coe�
cien

ts give
the geom

etric
fact

or S2
in Eq. (2).

IR

safe
ty and RG inva

rian
ce will allow

us to deriv
e addi-

tion
al stro

ng rela
tion

s among these
di↵eren

t coe�
cien

ts.

2

Refs.
[5, 19,

20]
studied

NGLs of ⇤/Q
in cros

s sect
ions

veto
ing radiatio

n with tota
l energy

grea
ter than ⇤ in an-

gular regi
ons outsid

e of found jets
. Though a hard

scal
e

Q appears
in these

rati
os, we found in [21]

that the NGLs

still
aris

e from
considerin

g both
scal

es in the rati
o to be

soft
and late

r taki
ng one of them

to Q in an inclusive

limit.

In [21]
we made progr

ess
in underst

anding the ori-

gin
of NGLs in e↵ecti

ve field
theory

. We considered
the

fact
oriz

ed dijet
inva

rian
t mass

distri
bution

�(m1,m
2)

in

e+ e�
colli

sion
s producing back-

to-b
ack

jets
, and calc

u-

late
d to O(↵

2
s
), as also

in [22]
, the hemisphere

soft
func-

tion
S(kL, kR). These

calc
ulatio

ns clar
ified the orig

in of

NGLs in an EFT fram
ework

as the dependence of a soft

functio
n on rati

os of multiple soft
scal

es,
and reve

aled

new sublead
ing (sin

gle)
NGLs and non-log

arit
hmic non-

glob
al functio

ns.

These
NGLs are

orga
nized

into
a multiplicat

ive
fact

or

ente
ring the tota

l cros
s sect

ion, with
the lead

ing NGLs

taki
ng the generic

form

SNG
(µ1/µ

2) = 1�
↵
2
s

(2⇡)2
CFCAS2

ln
2
µ1

µ2

+ · · · .
(2)

Here
µ1,2

are
the scal

es at which
soft

radiatio
n is probed

in di↵eren
t sharply-d

ivid
ed regi

ons. For the hemisphere

mass
distri

bution
µ1,2

= m
2
1,2

/Q
and S2

= ⇡
2 /3.

For

the ⇢R
distri

bution
, µ1

= Q⇢R
while µ2

= Q due to

tota
l inclusivit

y in one hemisphere.
The coe�

cien
t S2

is a geom
etric

measu
re of the regi

on into
which

the two

soft
gluons cont

ributing to a NGL can
go.

The fact
that

it vari
es with

the size
of this regi

on is due to the NGL

aris
ing from

a purely
soft

diver
gence of QCD. Techniques

to resu
m NGLs using numeric

al fits in the larg
e-NC

limit

of QCD were intr
oduced

by [4],
but analyt

ic resu
mmatio

n

of NGLs in real
-world

QCD rem
ains an open problem

.

In this work
we seek

to exte
nd the intu

ition
gain

ed in

[21]
by studying a more

excl
usive

set
of cros

s sect
ions.

We study non-glo
bal propertie

s of an excl
usive

jet cros
s

sect
ion

�(m1,m
2,⇤

), where
the inva

rian
t masse

s m1
and

m2
of two jets

of size
R produced

in an e+ e�
colli

sion

at cent
er-o

f-mass
energy

Q are
measu

red, with
a veto

⇤

on the energy
of addition

al jets
. We consider finding the

jets
using vari

ous algo
rith

ms—cone, anti
-kT

, Cambridge-

Aachen, and kT
[23–

28].
We will find that NGLs of

the rati
o of the jet

veto
and the jet

masse
s ⇤/m1,2

are
prese

nt,
in addition

to NGLs of the rati
o of masse

s

m1/m
2.

We calc
ulate

the coe�
cien

ts only of lead
ing dou-

ble NGLs ↵
2
s
ln

2 (µ1/µ
2) in this paper. The rele

vant
scal

es

for this observ
able are

shown in Fig. 1 for a parti
cular hi-

erar
chy

of m1,2
and ⇤, however

our resu
lts are

vali
d for

any
choice

such that Q � m1,2
� m

2
1,2

/Q, ⇤.

In [21]
, we disco

vere
d that at O(↵

2
s
) NGLs of two soft

scal
es µ1,2

can
be constru

cted
from

separat
e piece

s de-

pendent
on the rati

o of the fact
oriz

atio
n scal

e µ to one

physi
cal

scal
e at a time.

Namely,
the regi

on of phase

space
where

one of the soft
gluons ente

rs the regi
on sen-

sitiv
e to the scal

e µ1
and the other ente

rs the regi
on

sensitiv
e to µ2

generat
es the double log

↵
2
s
ln

2 µ
2 /(µ1µ2),

Hard scal
e

Left jet sca
le

Right jet sca
le

Soft sc
ales

µH
= Q

µ
L
S

= m
2
1
/Q

µ
out

S
= ⇤

µ
R
S

= m
2
2
/Q

µ
L
J

= m1

µ
R
J

= m2

FIG
. 1:

The
rele

van
t scal

es in the
excl

usiv
e jet

mass
cros

s

sect
ion

with
an ener

gy veto
, ⇤

outs
ide

of t
he jets

is show
n

for
a part

icul
ar c

hoic
e of

the
hier

arch
y m

2
2
⌧ ⇤Q

⌧ m
2
1
that

give
s ris

e to larg
e non

-glo
bal

logs
. Our

resu
lts a

pply
to any

choi
ce of m

1,2
and

⇤ that
sati

sfies
Q � m1,2

� m
2
1,2
/Q, ⇤,

whi
ch maint

ains
the

sepa
rati

on
betw

een
hard

, je
t and

soft

scal
es.

while the regi
ons where

soft
gluons ente

r only regi
on 1 or

only regi
on 2 generat

e ↵
2
s
ln

2 (µ/µ1)
and ↵

2
s
ln

2 (µ/µ2).
In

[21]
we deriv

ed from
RG inva

rian
ce of the cros

s sect
ion

and IR
safe

ty of the soft
functio

n that the coe�
cien

ts

of these
logs

are
constra

ined so that the µ-dependence

cancels
, but an NGL ↵

2
s
ln

2 (µ1/µ
2)

is left
over

. Analo-

gou
sly

for
�(m1,m

2,⇤
), the three

soft
phase

space
re-

gion
s that give

rise
to the NGLs at O(↵

2
s
) are

shown

in Fig. 2. Each
configurati

on cont
ributes

loga
rith

ms of

µ over
a single

scal
e, the “in-out” regi

ons cont
ributing

logs
↵
2
s
ln

2 µ
2 /(⇤

m1,2
), and the “in-in” regi

on cont
ribut-

ing logs
↵
2
s
ln

2 µ
2 /(m1m2).

These
com

bine with
single-

regi
on cont

ribution
s to give

NGLs of ⇤/m1,2
with

coe�
-

cien
ts fOL,OR

and of m1/m
2

with
coe�

cien
t fLR

. These

coe�
cien

ts give
the geom

etric
fact

or S2
in Eq. (2).

IR

safe
ty and RG inva

rian
ce will allow

us to deriv
e addi-

tion
al stro

ng rela
tion

s among these
di↵eren

t coe�
cien

ts.

d�(R)

dmJ

1 2

R}

E
<
⇤

}

E
<
⇤

�(R,⇤) = H(Q) ⇤ Junmeas(QR) ⇤ Sunmeas(R,⇤/Q)

= H(Q) ⇤ Jmeas(mJ , R) ⇤ Smeas(R,⇤/Q,mJ)

Ellis, AH, Lee, Vermilion, Walsh 1001.0014

?

?

valid for R << 1



Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

Jet Rates from Integrating Shapes to αs
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❖ can get rates directly from integrating shapes:
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simply the expression in braces for ⌧ < ⌧
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agreeing with Eqs. (1) and (2).
Note that the di↵erential jet functions Jalg.(t, R, µ)

when integrated up to t = Q2⌧
max

do not by them-
selves reproduce the unmeasured jet functions J(R, µ)
in Eq. (7b)—the coe�cient of the double log dif-
fers. However, after combining Jalg.

n,n̄ (tn,n̄, R, µ) with
S(kn, kn̄, ⇤, R) through Eq. (30), the total ⌧ distribution
integrated up to ⌧ = ⌧

max

does equal the total 2-jet rate
Eq. (1) or Eq. (2). This is because the wide-angle radi-
ation in a measured jet with jet thrust ⌧ belongs in the
csoft sector in Eq. (30)—it cannot become very energetic
and preserve a small value of ⌧ for the jet—while in an un-
measured jet, hard collinear radiation can go all the way
up to the angle R (or R/2) and remain in the allowed
collinear jet phase space. This di↵erence was noted in
[15]. Thus some of the logs appear in a di↵erent sector—
csoft or hard-collinear—depending on whether ⌧ is mea-
sured or not, but their total contribution to the 2-jet
cross section remains the same. The transition between
the two descriptions is relevant to formulating a complete
all-orders form of the factorization theorem that resums

all logs, global and non-global, in the 2-jet cross section
(cf. [21, 22, 44]).

A slightly di↵erent approach was taken in [39], where
a definition of the measured (or, there, “unintegrated”)
jet function was adopted so that it does integrate up to
the unmeasured (or, “integrated”) jet function. This was
done by adopting the power counting R ⇠ ⌧ from the be-
ginning, whereas [15] began with ⌧ ⌧ R. Ref. [39] e↵ec-
tively combined the measured jet function Jalg.

n (tn, R, µ)
in Eq. (34) with the part of the soft function Eq. (39) de-
pending on the in-jet measured radiation with momenta
kn into a single object that by itself integrates up to Jalg.

un

.
Their soft function then retains no dependence on the
measurement ⌧ and is the same for cross sections with
measured or unmeasured jets. We have shown above
that keeping the scales associated with ⌧ and R sepa-
rate (⌧ ⌧ R from the beginnning but then integrating
the total cross section up to ⌧ ⇠ R) does in fact repro-
duce the total 2-jet cross section to leading power in R.
Both approaches lead to the correct fixed-order total 2-
jet cross section. However, in the approach of [39], one
could not study the resummation of logs of the jet thrust
⌧ itself, although as a path to the total 2-jet cross sec-
tion it is essentially equivalent to ours. The µ-dependent
logs in the jet and soft functions of [39] are only those
of µ/(QR) or µ/(2⇤) (no soft-collinear scale was identi-
fied), with no µ-dependent logs containing the jet mass
p2 or soft momentum k relevant to the resummation of
logs of ⌧ remaining. For the goal of simply obtaining the
total fixed-order two-jet rate, however, their approach
succeeds in organizing the pieces of the jet thrust cross
section in a way that can be integrated simply to give the
total two-jet rate. We will explore the generalization of
the relation between measured and unmeasured jet/soft
functions to O(↵2

s) and higher in Sec. VIB.

V. TWO-LOOP JET THRUST SOFT FUNCTION

In this section we explore the factorization of the two-
loop soft function for the jet thrust cross section in
Eq. (30) into csoft, global (veto) soft, and soft-collinear
functions. The total jet thrust soft function was calcu-
lated to O(↵2

s) in [38]. Ideally, one should compute the
individual factors from their operator definitions, e.g.,
Eqs. (26) and (27), the results of which to O(↵s) we
gave in Eq. (23), and verify that they reproduce the re-
sult of [38]. We do not do the EFT computation explic-
itly at O(↵2

s) in this paper, leaving it for future work.
Rather, we show that the result in [38] does indeed fac-
tor into pieces sensitive individually to csoft, global soft,
and soft-collinear scales, and that these agree with the
generic form these functions should take if they satisfy
the appropriate RG evolution equations (RGEs). There
are leftover non-global pieces sensitive to multiple scales,
and we show these remaining pieces agree with known
coe�cients for leading and subleading NGLs at O(↵2

s).
From [38] we can then extract the anomalous dimensions
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agreeing with Eqs. (1) and (2).
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csoft sector in Eq. (30)—it cannot become very energetic
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and preserve a small value of ⌧ for the jet—while in an un-
measured jet, hard collinear radiation can go all the way
up to the angle R (or R/2) and remain in the allowed
collinear jet phase space. This di↵erence was noted in
[15]. Thus some of the logs appear in a di↵erent sector—
csoft or hard-collinear—depending on whether ⌧ is mea-
sured or not, but their total contribution to the 2-jet
cross section remains the same. The transition between
the two descriptions is relevant to formulating a complete
all-orders form of the factorization theorem that resums

all logs, global and non-global, in the 2-jet cross section
(cf. [21, 22, 44]).

A slightly di↵erent approach was taken in [39], where
a definition of the measured (or, there, “unintegrated”)
jet function was adopted so that it does integrate up to
the unmeasured (or, “integrated”) jet function. This was
done by adopting the power counting R ⇠ ⌧ from the be-
ginning, whereas [15] began with ⌧ ⌧ R. Ref. [39] e↵ec-
tively combined the measured jet function Jalg.

n (tn, R, µ)
in Eq. (34) with the part of the soft function Eq. (39) de-
pending on the in-jet measured radiation with momenta
kn into a single object that by itself integrates up to Jalg.

un

.
Their soft function then retains no dependence on the
measurement ⌧ and is the same for cross sections with
measured or unmeasured jets. We have shown above
that keeping the scales associated with ⌧ and R sepa-
rate (⌧ ⌧ R from the beginnning but then integrating
the total cross section up to ⌧ ⇠ R) does in fact repro-
duce the total 2-jet cross section to leading power in R.
Both approaches lead to the correct fixed-order total 2-
jet cross section. However, in the approach of [39], one
could not study the resummation of logs of the jet thrust
⌧ itself, although as a path to the total 2-jet cross sec-
tion it is essentially equivalent to ours. The µ-dependent
logs in the jet and soft functions of [39] are only those
of µ/(QR) or µ/(2⇤) (no soft-collinear scale was identi-
fied), with no µ-dependent logs containing the jet mass
p2 or soft momentum k relevant to the resummation of
logs of ⌧ remaining. For the goal of simply obtaining the
total fixed-order two-jet rate, however, their approach
succeeds in organizing the pieces of the jet thrust cross
section in a way that can be integrated simply to give the
total two-jet rate. We will explore the generalization of
the relation between measured and unmeasured jet/soft
functions to O(↵2

s) and higher in Sec. VIB.

V. TWO-LOOP JET THRUST SOFT FUNCTION

In this section we explore the factorization of the two-
loop soft function for the jet thrust cross section in
Eq. (30) into csoft, global (veto) soft, and soft-collinear
functions. The total jet thrust soft function was calcu-
lated to O(↵2

s) in [38]. Ideally, one should compute the
individual factors from their operator definitions, e.g.,
Eqs. (26) and (27), the results of which to O(↵s) we
gave in Eq. (23), and verify that they reproduce the re-
sult of [38]. We do not do the EFT computation explic-
itly at O(↵2

s) in this paper, leaving it for future work.
Rather, we show that the result in [38] does indeed fac-
tor into pieces sensitive individually to csoft, global soft,
and soft-collinear scales, and that these agree with the
generic form these functions should take if they satisfy
the appropriate RG evolution equations (RGEs). There
are leftover non-global pieces sensitive to multiple scales,
and we show these remaining pieces agree with known
coe�cients for leading and subleading NGLs at O(↵2

s).
From [38] we can then extract the anomalous dimensions

�(R) =

Z ⌧max(R)

0
d⌧

d�

d⌧
= }

= H(Q) ⇤ Junmeas(QR) ⇤ Sunmeas(R,⇤/Q)

= H ⇤ Jmeas(⌧, R) ⇤ Smeas(R,⇤/Q, ⌧)

note: !

→ part of Smeas(τ) is needed (more later!)

Z ⌧max(R)

0
d⌧Jmeas(⌧, R) 6= Junmeas(QR)
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the jet thrust, one of the jet angularity shapes defined in
[15]. The jet thrust is defined by

⌧(J) =
1

2EJ

X

i2J

�

�pi
T

�

� e�⌘i , (29)

where J is a jet found by the chosen algorithm, the sum is
over particles i within the jet, EJ is the total jet energy,
and the transverse momentum pT and (pseudo)rapidity
⌘i are measured with respect to the jet axis. We will
consider both the double-di↵erential distribution in the
thrust of the two separate jets, ⌧

1,2, and the single dif-
ferential distribution in the total thrust ⌧ = ⌧

1

+ ⌧
2

. Fol-
lowing the derivation in [15], we find the leading power
contributions to the jet thrust distribution can be com-
puted from the factorized cross section,

1

�
0

d�(⇤, R)

d⌧
1

d⌧
2

= H(Q2, µ)

Z

dtndtn̄dkndkn̄ (30)

⇥ �
⇣

⌧
1

� tn
Q2

� kn

Q

⌘

�
⇣

⌧
2

� tn̄
Q2

� kn̄

Q

⌘

⇥ Jalg.

n (tn, R, µ)Jalg.

n̄ (tn̄, R, µ)S(kn, kn̄, ⇤, R, µ) ,

where Jalg.

n,n̄ are algorithm-dependent jet shape functions
[15, 60] and S is the jet shape soft function, equal to at
least O(↵s) for cone and kT -type algorithms. The total
jet thrust distribution is then given by

1

�
0

d�(⇤, R)

d⌧
=

1

�
0

Z

d⌧
1

d⌧
2

�(⌧�⌧
1

�⌧
2

)
d�(⇤, R)

d⌧
1

d⌧
2

. (31)

The measurement of jet thrust in Eqs. (30) and (31)
induces sensitivity to a di↵erent set of collinear and soft
modes than those in Eqs. (5) and (12). The hard modes
are integrated out the same way to give the hard function
H in Eq. (30), but the EFT we match onto is SCET with
an extra set of “collinear-soft” (csoft) modes, a theory
that was dubbed “SCET

+

” [46]:

pcn ⇠ Q(⌧, 1,
p

⌧) , pcn̄ ⇠ Q(1, ⌧,
p

⌧) ,

SCET
+

: pcs ⇠ Q
⇣

⌧,
⌧

R2

,
⌧

R

⌘

or Q
⇣ ⌧

R2

, ⌧,
⌧

R

⌘

,

p⇤

s ⇠ ⇤(1, 1, 1) . (32)

The csoft scale Q⌧/R can be identified from the explicit
computation of the soft function, given to O(↵s) in [15]
and below in Eq. (39). Physically, it arises because the
measured soft radiation with small light-cone component
⇠ Q⌧ inside the jet cone is being confined to angular re-
gion of size R, increasing its collinearity and virtuality—
in the global thrust cross section, the soft scale would
just be Q⌧ . Confining such radiation to a cone then re-
quires the large light-cone component to be ⇠ Q⌧/R2 and
p? ⇠ Q⌧/R, as in Eq. (32). The rescaling of the mea-
sured soft scale by 1/R was identified in [15], and here
we assert further that they are in fact the csoft modes in
[46], with an overall soft energy ⇠ Q⌧ but with relative
collinear scaling of the components in Eq. (32). In [46]

csoft modes arise because soft radiation is exchanged be-
tween two collinear jets whose angular separation grows
small. Here they arise because the measured soft radi-
ation from one jet is itself being confined to a smaller
cone.

The jet thrust cross section exhibits dependence, of
course, on the (veto) soft and soft-collinear scales in
Eq. (12). We will deal with the refactorization of the soft
function into pieces dependent on one of these scales at a
time in the next section. The whole hierarchy of relevant
scales is illustrated in Fig. 3. The complete EFT with
hard-collinear, csoft, global (veto) soft, and soft-collinear
modes we dub SCET

++

:

pcn ⇠ Q(⌧, 1,
p

⌧) , pcn̄ ⇠ Q(1, ⌧,
p

⌧) ,

SCET
++

: pcs ⇠ Q
⇣

⌧,
⌧

R2

,
⌧

R

⌘

or Q
⇣ ⌧

R2

, ⌧,
⌧

R

⌘

,

p⇤

s ⇠ ⇤(1, 1, 1) ,

psc ⇠ ⇤(R2, 1, R) or ⇤(1, R2, R) . (33)

To one-loop order, the jet functions Jalg.

n = Jalg.

n̄ in
Eq. (30) are given by

Jalg.

n (tn, R, µ) = J incl(tn, µ) + �Jalg.(tn, R), (34)

where J incl is the usual inclusive jet function [54, 62],

J incl(t, µ) = �(t)
h

1 +
↵sCF

4⇡
(7 � ⇡2)

i

(35)

+
↵sCF

4⇡

⇢

� 3

µ2

h✓(t)µ2

t

i

+

+
4

µ2

h✓(t) ln(t/µ2)

t/µ2

i

+

�

,

where the plus distributions are defined in App. A, and
�Jalg. is an additional contribution dependent on the
algorithm. These were computed in [15, 60] for cone al-
gorithms and [15] for kT /Sterman-Weinberg algorithms,
with the result:

�Jcone(t, R) =
↵sCF

4⇡



✓(t)✓(Q2R2 � t)
6

t + Q2R2

+
✓(t � Q2R2)

t

⇣

4 ln
t

Q2R2

+ 3
⌘

�

,

(36)

and,

�JkT (t, R) =
↵sCF

4⇡

⇢

✓(t)✓
�

Q2R2

4

� t
�

t

⇥
h

6x
1

+ 4 ln
⇣1 � x

1

x
1

t

Q2R2

⌘i

+
✓
�

t � Q2R2

4

�

t

⇣

4 ln
t

Q2R2

+ 3
⌘

�

,

(37)

where

x
1

=
1

2

✓

1 �
r

1 � 4t

Q2R2

◆

. (38)

Strictly to leading order in t/(QR)2, that is, ⌧ ⌧ R2 in
Eq. (30), the algorithm-dependent corrections Eqs. (36)
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the jet thrust, one of the jet angularity shapes defined in
[15]. The jet thrust is defined by

⌧(J) =
1

2EJ

X

i2J

�

�pi
T

�

� e�⌘i , (29)

where J is a jet found by the chosen algorithm, the sum is
over particles i within the jet, EJ is the total jet energy,
and the transverse momentum pT and (pseudo)rapidity
⌘i are measured with respect to the jet axis. We will
consider both the double-di↵erential distribution in the
thrust of the two separate jets, ⌧

1,2, and the single dif-
ferential distribution in the total thrust ⌧ = ⌧

1

+ ⌧
2

. Fol-
lowing the derivation in [15], we find the leading power
contributions to the jet thrust distribution can be com-
puted from the factorized cross section,

1

�
0

d�(⇤, R)

d⌧
1

d⌧
2

= H(Q2, µ)

Z

dtndtn̄dkndkn̄ (30)

⇥ �
⇣

⌧
1

� tn
Q2

� kn

Q

⌘

�
⇣

⌧
2

� tn̄
Q2

� kn̄

Q

⌘

⇥ Jalg.

n (tn, R, µ)Jalg.

n̄ (tn̄, R, µ)S(kn, kn̄, ⇤, R, µ) ,

where Jalg.

n,n̄ are algorithm-dependent jet shape functions
[15, 60] and S is the jet shape soft function, equal to at
least O(↵s) for cone and kT -type algorithms. The total
jet thrust distribution is then given by

1

�
0

d�(⇤, R)

d⌧
=

1

�
0

Z

d⌧
1

d⌧
2

�(⌧�⌧
1

�⌧
2

)
d�(⇤, R)

d⌧
1

d⌧
2

. (31)

The measurement of jet thrust in Eqs. (30) and (31)
induces sensitivity to a di↵erent set of collinear and soft
modes than those in Eqs. (5) and (12). The hard modes
are integrated out the same way to give the hard function
H in Eq. (30), but the EFT we match onto is SCET with
an extra set of “collinear-soft” (csoft) modes, a theory
that was dubbed “SCET

+

” [46]:

pcn ⇠ Q(⌧, 1,
p

⌧) , pcn̄ ⇠ Q(1, ⌧,
p

⌧) ,

SCET
+

: pcs ⇠ Q
⇣

⌧,
⌧

R2

,
⌧

R

⌘

or Q
⇣ ⌧

R2

, ⌧,
⌧

R

⌘

,

p⇤

s ⇠ ⇤(1, 1, 1) . (32)

The csoft scale Q⌧/R can be identified from the explicit
computation of the soft function, given to O(↵s) in [15]
and below in Eq. (39). Physically, it arises because the
measured soft radiation with small light-cone component
⇠ Q⌧ inside the jet cone is being confined to angular re-
gion of size R, increasing its collinearity and virtuality—
in the global thrust cross section, the soft scale would
just be Q⌧ . Confining such radiation to a cone then re-
quires the large light-cone component to be ⇠ Q⌧/R2 and
p? ⇠ Q⌧/R, as in Eq. (32). The rescaling of the mea-
sured soft scale by 1/R was identified in [15], and here
we assert further that they are in fact the csoft modes in
[46], with an overall soft energy ⇠ Q⌧ but with relative
collinear scaling of the components in Eq. (32). In [46]

csoft modes arise because soft radiation is exchanged be-
tween two collinear jets whose angular separation grows
small. Here they arise because the measured soft radi-
ation from one jet is itself being confined to a smaller
cone.

The jet thrust cross section exhibits dependence, of
course, on the (veto) soft and soft-collinear scales in
Eq. (12). We will deal with the refactorization of the soft
function into pieces dependent on one of these scales at a
time in the next section. The whole hierarchy of relevant
scales is illustrated in Fig. 3. The complete EFT with
hard-collinear, csoft, global (veto) soft, and soft-collinear
modes we dub SCET

++

:

pcn ⇠ Q(⌧, 1,
p

⌧) , pcn̄ ⇠ Q(1, ⌧,
p

⌧) ,

SCET
++

: pcs ⇠ Q
⇣

⌧,
⌧

R2

,
⌧

R

⌘

or Q
⇣ ⌧

R2

, ⌧,
⌧

R

⌘

,

p⇤

s ⇠ ⇤(1, 1, 1) ,

psc ⇠ ⇤(R2, 1, R) or ⇤(1, R2, R) . (33)

To one-loop order, the jet functions Jalg.

n = Jalg.

n̄ in
Eq. (30) are given by

Jalg.

n (tn, R, µ) = J incl(tn, µ) + �Jalg.(tn, R), (34)

where J incl is the usual inclusive jet function [54, 62],

J incl(t, µ) = �(t)
h

1 +
↵sCF

4⇡
(7 � ⇡2)

i

(35)

+
↵sCF

4⇡

⇢

� 3

µ2

h✓(t)µ2

t

i

+

+
4

µ2

h✓(t) ln(t/µ2)

t/µ2

i

+

�

,

where the plus distributions are defined in App. A, and
�Jalg. is an additional contribution dependent on the
algorithm. These were computed in [15, 60] for cone al-
gorithms and [15] for kT /Sterman-Weinberg algorithms,
with the result:

�Jcone(t, R) =
↵sCF

4⇡



✓(t)✓(Q2R2 � t)
6

t + Q2R2

+
✓(t � Q2R2)

t

⇣

4 ln
t

Q2R2

+ 3
⌘

�

,

(36)

and,

�JkT (t, R) =
↵sCF

4⇡

⇢

✓(t)✓
�

Q2R2

4

� t
�

t

⇥
h

6x
1

+ 4 ln
⇣1 � x

1

x
1

t

Q2R2

⌘i

+
✓
�

t � Q2R2

4

�

t

⇣

4 ln
t

Q2R2

+ 3
⌘

�

,

(37)

where

x
1

=
1

2

✓

1 �
r

1 � 4t

Q2R2

◆

. (38)

Strictly to leading order in t/(QR)2, that is, ⌧ ⌧ R2 in
Eq. (30), the algorithm-dependent corrections Eqs. (36)
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the jet thrust, one of the jet angularity shapes defined in
[15]. The jet thrust is defined by

⌧(J) =
1

2EJ

X

i2J

�

�pi
T

�

� e�⌘i , (29)

where J is a jet found by the chosen algorithm, the sum is
over particles i within the jet, EJ is the total jet energy,
and the transverse momentum pT and (pseudo)rapidity
⌘i are measured with respect to the jet axis. We will
consider both the double-di↵erential distribution in the
thrust of the two separate jets, ⌧

1,2, and the single dif-
ferential distribution in the total thrust ⌧ = ⌧

1

+ ⌧
2

. Fol-
lowing the derivation in [15], we find the leading power
contributions to the jet thrust distribution can be com-
puted from the factorized cross section,

1

�
0

d�(⇤, R)

d⌧
1

d⌧
2

= H(Q2, µ)

Z

dtndtn̄dkndkn̄ (30)

⇥ �
⇣

⌧
1

� tn
Q2

� kn

Q

⌘

�
⇣

⌧
2

� tn̄
Q2

� kn̄

Q

⌘

⇥ Jalg.

n (tn, R, µ)Jalg.

n̄ (tn̄, R, µ)S(kn, kn̄, ⇤, R, µ) ,

where Jalg.

n,n̄ are algorithm-dependent jet shape functions
[15, 60] and S is the jet shape soft function, equal to at
least O(↵s) for cone and kT -type algorithms. The total
jet thrust distribution is then given by

1

�
0

d�(⇤, R)

d⌧
=

1

�
0

Z

d⌧
1

d⌧
2

�(⌧�⌧
1

�⌧
2

)
d�(⇤, R)

d⌧
1

d⌧
2

. (31)

The measurement of jet thrust in Eqs. (30) and (31)
induces sensitivity to a di↵erent set of collinear and soft
modes than those in Eqs. (5) and (12). The hard modes
are integrated out the same way to give the hard function
H in Eq. (30), but the EFT we match onto is SCET with
an extra set of “collinear-soft” (csoft) modes, a theory
that was dubbed “SCET

+

” [46]:

pcn ⇠ Q(⌧, 1,
p

⌧) , pcn̄ ⇠ Q(1, ⌧,
p

⌧) ,

SCET
+

: pcs ⇠ Q
⇣

⌧,
⌧

R2

,
⌧

R

⌘

or Q
⇣ ⌧

R2

, ⌧,
⌧

R

⌘

,

p⇤

s ⇠ ⇤(1, 1, 1) . (32)

The csoft scale Q⌧/R can be identified from the explicit
computation of the soft function, given to O(↵s) in [15]
and below in Eq. (39). Physically, it arises because the
measured soft radiation with small light-cone component
⇠ Q⌧ inside the jet cone is being confined to angular re-
gion of size R, increasing its collinearity and virtuality—
in the global thrust cross section, the soft scale would
just be Q⌧ . Confining such radiation to a cone then re-
quires the large light-cone component to be ⇠ Q⌧/R2 and
p? ⇠ Q⌧/R, as in Eq. (32). The rescaling of the mea-
sured soft scale by 1/R was identified in [15], and here
we assert further that they are in fact the csoft modes in
[46], with an overall soft energy ⇠ Q⌧ but with relative
collinear scaling of the components in Eq. (32). In [46]

csoft modes arise because soft radiation is exchanged be-
tween two collinear jets whose angular separation grows
small. Here they arise because the measured soft radi-
ation from one jet is itself being confined to a smaller
cone.

The jet thrust cross section exhibits dependence, of
course, on the (veto) soft and soft-collinear scales in
Eq. (12). We will deal with the refactorization of the soft
function into pieces dependent on one of these scales at a
time in the next section. The whole hierarchy of relevant
scales is illustrated in Fig. 3. The complete EFT with
hard-collinear, csoft, global (veto) soft, and soft-collinear
modes we dub SCET

++

:

pcn ⇠ Q(⌧, 1,
p

⌧) , pcn̄ ⇠ Q(1, ⌧,
p

⌧) ,

SCET
++

: pcs ⇠ Q
⇣

⌧,
⌧

R2

,
⌧

R

⌘

or Q
⇣ ⌧

R2

, ⌧,
⌧

R

⌘

,

p⇤

s ⇠ ⇤(1, 1, 1) ,

psc ⇠ ⇤(R2, 1, R) or ⇤(1, R2, R) . (33)

To one-loop order, the jet functions Jalg.

n = Jalg.

n̄ in
Eq. (30) are given by

Jalg.

n (tn, R, µ) = J incl(tn, µ) + �Jalg.(tn, R), (34)

where J incl is the usual inclusive jet function [54, 62],

J incl(t, µ) = �(t)
h

1 +
↵sCF

4⇡
(7 � ⇡2)

i

(35)

+
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⇢
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µ2

h✓(t)µ2

t

i

+

+
4

µ2

h✓(t) ln(t/µ2)

t/µ2

i

+

�

,

where the plus distributions are defined in App. A, and
�Jalg. is an additional contribution dependent on the
algorithm. These were computed in [15, 60] for cone al-
gorithms and [15] for kT /Sterman-Weinberg algorithms,
with the result:

�Jcone(t, R) =
↵sCF

4⇡



✓(t)✓(Q2R2 � t)
6

t + Q2R2

+
✓(t � Q2R2)

t

⇣
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Q2R2

+ 3
⌘
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,

(36)

and,

�JkT (t, R) =
↵sCF

4⇡

⇢

✓(t)✓
�

Q2R2

4
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�

t

⇥
h

6x
1

+ 4 ln
⇣1 � x
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,

(37)

where

x
1

=
1

2

✓

1 �
r

1 � 4t

Q2R2

◆

. (38)

Strictly to leading order in t/(QR)2, that is, ⌧ ⌧ R2 in
Eq. (30), the algorithm-dependent corrections Eqs. (36)

→ power correction for τ << R, !
but needed in general!
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µS = Q⌧/R

Hard scale

Jet scale

Global soft 
(veto) scale

µH = Q

µ
⇤

= 2⇤

µsc = 2⇤R

µJ = Q
p

⌧

Csoft scale

Soft-collinear  
scale

Q(1, ⌧,
p

⌧)

⇠ (Q, Q, Q)

Q⌧
⇣ 1

R2

, 1,
1

R

⌘

(⇤, ⇤, ⇤)

⇤(1, R2, R)

FIG. 3: Scales in SCET++ for the jet thrust cross section. The scaling of the light-cone components of momentum (p±, p⌥, p?)
for each mode is shown. Hard virtual modes of scale Q are integrated out. The jet scale is the same as the global thrust
distribution; the usual soft scale is increased by 1/R due to the restriction of measured soft radiation to a cone of radius R,
like the csoft mode of [46]. The soft veto on the energy ⇤ of additional jets induces a global soft veto mode that cannot resolve
the angle R as well as the soft-collinear modes that can, see Eq. (12). The csoft scale here could also be below the soft veto
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and (37) are power suppressed relative to J incl.. Thus
in that limit, as in [15], the jet thrust cross section is
independent of the algorithm to O(↵s). However, to ob-
tain the total 2-jet rate later, we will integrate the cross
section up to kinematically maximum allowed value of
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max

= R2 (cone) or ⌧
max

= R2/4 (kT ), where �Jalg. is
no longer power suppressed. Thus we keep the contribu-
tions of both J incl. and �Jalg. in what follows.

The soft function in Eq. (30), meanwhile, receives con-
tributions from soft gluons emitted within the jets and
contributing to the jet thrust, and those outside and
encountering the jet veto ⇤ but not contributing to ⌧ .
Putting together these di↵erent contributions at O(↵s)
from [15] for two measured jets in the final state, we ob-
tain
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which in this form is di↵erential in kn,n̄ but cumulative
(integrated up to ⇤) in the energy veto. Note that the
parts of �Jalg. in Eqs. (36) and (37) for t > Q2⌧
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cancel the total contribution of J incl. and S in Eq. (30)
above ⌧ = ⌧
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[15].

Putting together the hard function Eq. (7a), the jet
function Eq. (34) including the contributions Eqs. (36)
and (37), and the soft function Eq. (39), the prediction of
Eqs. (30) and (31) for the (total) jet thrust cross section
to O(↵s), presented in integrated form, is
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As noted above, the contribution of �Jalg.(⌧) above
⌧ = ⌧
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cancels against the sum of the inclusive jet
function and the soft function contributions, so the in-
tegrated distribution plateaus at its constant value at
⌧ = ⌧
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. The final term �alg.
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part associated with veto:!
minimized for  μ ~ 2 Λ R1/2!

CLUE??

❖ jet function with a jet algorithm (R dependence needed!):

❖ soft function: }



Andrew Hornig, LANL SF Flavor WS Jan 11, 2016

The αs2 Result

10

5.2 The Structure of the ln(r) Terms

We begin by presenting the small r limit of Eq. (4.2) in a convenient form:

K̄(2)
TC(τω,ω, r → 0, µ) = CACF

[

−176

9
ln3
(

µ

Qτω

)

+

(

−88 ln(r)

3
+

8π2

3
− 536

9

)

× ln2
(

µ

Qτω

)

+

(

−44

3
ln2(r) +

8

3
π2 ln(r)− 536 ln(r)

9
+ 56ζ3 +

44π2

9
− 1616

27

)

× ln

(

µ

Qτω

)

+

(

−44

3
ln2(r)− 8

3
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536 ln(r)

9
− 44π2
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88

3
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3
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+
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]
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. (5.14)

The terms preceding the −8π2

3 ln2
(

Qτω
2rω

)

term in the CACF color structure and the
(

16
3 − 32π2

9

)

ln
(

Qτω
2rω

)

term in the CFnfTF color structure correspond precisely to the terms

predicted by the factorization theorem of reference [16] in the small r limit, provided that

one makes the choices

c(1)in = CF
[

−π2 − 2 ln2(r)
]

(5.15)

and

c(1)out = CF

[

−2π2

3
− 2 ln2(r)− 8Li2 (−r)

]

(5.16)

for the one-loop matching coefficients. This choice is such that the one-loop out-of-jet inte-

grated jet thrust distribution is equal to the full one-loop soft function for two unmeasured

jets (see reference [29] for details).

One can check that Eq. (5.14) is equal to the sum of Eqs. (5.3)-(5.10). However, to

arrive at the above form, one has to rearrange terms in the sum and, clearly, this requires

further explanation. By way of motivation, let us consider the in-out contributions to the

O
(

αL
s

)

integrated jet thrust distribution8,

K in−out (L)
TC (τω,ω, r, µ) =

(

µ2eγE

4π

)

4−d
2 L ∫ τω

0
dτ ′ω

∫ ω

0
dλ

∫

dkLdkR

8Recall that we have defined the in-out contributions at O
(

αL
s

)

to be those contributions where nin > 0

soft partons get clustered into a single jet, nout > 0 soft partons go out of all jets, and the sum nin + nout

is equal to the loop order, L.

– 30 –

Manteufell, Schabinger, Zhu 1309.3560 

❖ large logs at μ ~ 2 Λ R1/2

❖ “refactorization??” (but not clear any set of scales will work)
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(a) All jets equally separated.
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m2/
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t

√

t
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SCET

QCD

SCET+

soft+

soft

(b) Two jets close to each other.

FIG. 1: Different kinematic situations and relevant scales for the case of three jets with invariant mass m. On the left, the
invariant masses between any two jets are comparable, sij = 2qi · qj ∼ Q2, and the only relevant scales are Q, m, and m2/Q.
On the right, the dijet invariant mass between jets 1 and 2, t = 2q1 · q2, is parametrically smaller than that between any other
pair of jets, so there are two more relevant scales,

√
t and m2/

√
t.

illustrated in Fig. 1(b) for the case of three jets. We are
interested in the dijet invariant mass mjj between the
two close jets, which is much smaller than the other di-
jet invariant masses of order Q, but much larger than
the invariant mass m of the individual jets, i.e., there
is a hierarchy of scales m ≪ mjj ≪ Q. In this case,
the cross section contains two types of logarithms, those
related to the mass of the jets, ln2(m/Q), as well as kine-
matic logarithms ln2(mjj/Q). For mjj ∼ Q, all jets are
well separated, as in Fig. 1(a), and the jet-mass loga-
rithms ln2(m/Q) in the exclusive jet cross section can
be resummed [3–7] using soft-collinear effective theory
(SCET) [8–11].
In this paper, we construct a new effective theory,

SCET+, which is valid in the limit m ≪ mjj ≪ Q. The
added complication in this case arises from the fact that
one needs to separate the soft radiation within a given jet
from the radiation between the two close jets, giving rise
to two different scales. In regular SCET, both of these
processes are described by the same soft function, which
therefore contains multiple scales. Soft functions with
multiple scales have been observed in SCET before, and
it has been suggested that this requires one to “refac-
torize” the soft function into more fundamental pieces
depending on only a single scale. This was first pointed
out in Ref. [5]. Here we explicitly construct for the first
time an effective theory that accomplishes a refactoriza-
tion of the soft sector and separates different scales in a
soft function. Using SCET+, we derive the factorization
of multijet processes in the limit m ≪ mjj ≪ Q, where
each function in the factorization theorem depends only
on a single scale. The renormalization group evolution in
SCET+ then allows us to sum all large logarithms aris-
ing from this scale hierarchy, including those in the soft
sector.
It is worthwhile to note that the multijet events we con-

sider in this paper are part of a broader class of kinematic
configurations that give rise to multiple disparate scales.
The case we address here of small dijet invariant masses
belongs to the class of configurations for which the kine-

matics of the final-state jets introduces additional kine-
matic scales. In our case this gives rise to large logarithms
of ratios of dijet masses ln(mjj/Q). Other configurations
which give rise to large kinematic logarithms, such as
those with a hierarchy of jet pT s, may require a different
effective-theory treatment, which we leave to future work.
These kinematic logarithms are in contrast to so-called
“nonglobal” observables [12], which introduce additional
scales by imposing parametrically different cuts in differ-
ent phase space regions. This corresponds for example
to a hierarchy between individual jet masses mi ≪ mj ,
giving rise to logarithms of the form ln(mi/mj). The
structure of such logarithms has been recently explored
using SCET in Refs. [13, 14].
In the next section, we explain the physical picture

of the effective-theory setup. In Sec. III, we discuss the
construction of SCET+, which requires a new mode with
collinear-soft scaling to properly describe the soft radia-
tion between the two close jets. As an explicit example of
the application of SCET+, we consider the simplest case
of e+e−→ 3 jets, for which in Sec. IV we derive the fac-
torized cross section in the limit m ≪ mjj ≪ Q, and in
Sec. V we obtain all ingredients at next-to-leading order
(NLO). In Sec. V, we also discuss the consistency of the
factorized result in SCET+, and show how the usual 3-jet
hard and soft functions in SCET are separately factor-
ized into two pieces each. Readers not interested in the
technical details of this example can skip over Secs. IV
and V. In Sec. VI, we generalize our results to the case
of pp → N jets plus leptons. In Sec. VII, we present nu-
merical results for the dijet invariant mass spectrum for
e+e−→ 3 jets with all logarithms of m/Q and mjj/Q re-
summed at next-to-leading logarithmic (NLL) order. We
conclude in Sec. VIII.

❖ originally used for when jets get close:

❖ requires a new “csoft” mode
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vector in color space and ŜN is a matrix, while the beam
and jet functions are diagonal in color.
Each function in Eq. (2.9) explicitly depends on the

renormalization scale µ. This dependence cancels in the
product and convolutions of all functions on the right-
hand side, since the cross section is µ independent. Since
the different functions each only contain physics at a sin-
gle energy scale, they can only contain logarithms of µ
divided by that physical scale. In general, the logarithms
appearing in the hard, jet, and soft function are of the
form

C⃗N : ln
µ2

sij
,

Ba,b, Ji : ln
µ2

m2
i

,

ŜN : ln
µ2sij
m4

i

. (2.10)

(For the N -jet soft function this can be seen explicitly
from the results in Ref. [7].) Hence, since all sij ∼ Q2 and
all mi ∼ m as in Eq. (2.4), there are no large logarithms
when evaluating each function at its own natural scale,

µH = Q , µJ = µB = m, µS =
m2

Q
. (2.11)

Using the renormalization group evolution in the effec-
tive theory, each function can then be evolved from its
own natural scale to the common arbitrary scale µ, which
sums the logarithms in Eq. (2.10). Combining all func-
tions evolved to µ as in Eq. (2.9) then sums all logarithms
of the form ln(m2/Q2) in the cross section.

B. Two Jets Close To Each Other

In the situation depicted in Fig. 1(b), the invariant
mass of two of the jets becomes parametrically smaller
than all the other pairwise invariant masses between jets.
In the following, we take the two jets that are close to
each other to be jets 1 and 2 and use t ≡ s12 to denote
their invariant mass, and sij to denote all other dijet
invariant masses. We then have

m2 ≪ t = s12 ≪ sij ∼ Q2 . (2.12)

In principle, the factorization theorem in Eq. (2.9) can
still be applied in this case, since the invariant masses of
all jets are still much smaller than any of the dijet invari-
ant masses. However, the hard matching coefficient CN

now depends on two parametrically different hard scales,√
t and Q, and from Eq. (2.10) it contains corresponding

logarithms ln(µ2/Q2) and ln(µ2/t). This means there is
no single hard scale µH that we can choose that would
minimize all logarithms in the hard matching. In par-
ticular, choosing µH = Q as before, there are now unre-
summed large logarithms ln(t/Q2) in the hard matching
coefficient.

Similarly, the soft function now depends on two para-
metrically different soft scales, m2/

√
t and m2/Q, con-

taining logarithms ln(µ2t/m4) as well as ln(µ2Q2/m4
i ).

Hence, there is not a single soft scale µS we can choose
to minimize all logarithms in the soft function. Choos-
ing µS = m2/Q as before, there are still unresummed
large logarithms ln(t/Q2) in the soft function. In the
soft function these naturally arise as lnni ·nj .
To be able to resum the logarithms of ln(t/Q2) we have

to perform additional matching steps at each of the new
intermediate scales

√
t and m2/

√
t, as shown in Fig. 1(b).

At the scale Q we match QCD onto SCET as before, in-
tegrating out hard modes of virtuality >∼ Q2. This ef-
fective theory has collinear modes with virtuality t and
corresponding soft modes,

pc ∼ Q(λ2t , 1,λt) , pus ∼ Q(λ2t ,λ
2
t ,λ

2
t ) , λt =

√
t

Q
.

(2.13)
There is one set of collinear modes for each of the jets,
except for the two close jets 1 and 2. The latter are
described at the hard scale Q by a single set of collinear
modes with virtuality t in a common direction nt. Since
the total invariant mass between the two jets is t, such nt-
collinear modes can freely exchange momentum between
the two close jets without changing their virtuality. This
matching corresponds to performing an expansion in λt.
In the next step, at the scale

√
t, we match SCET onto

a new effective theory SCET+, integrating out all modes
of virtuality t. Below this scale we now have separate
collinear modes with virtuality m2 for each jet, including
jets 1 and 2,

pc = Q(λ2, 1,λ) , λ =
m

Q
. (2.14)

Note that for the well-separated jets, this matching at
√
t

will have no effect, since we do not perform a measure-
ment in those directions that is sensitive to this scale.
This means the virtuality of their collinear modes is sim-
ply lowered from t to m2. On the other hand, for jets 1
and 2 we match a single nt collinear sector in SCET onto
two independent n1 collinear and n2 collinear sectors in
SCET+.
As before, the collinear modes cannot directly inter-

act with each other. Interactions between the jets are
possible via ultrasoft modes

pus = Q(λ2,λ2,λ2) , (2.15)

which have virtuality Q2λ4 = (m2/Q)2. In addition we
can still have collinear modes in the nt direction which
are soft enough to interact between jets 1 and 2 without
changing the virtuality of the n1 and n2 collinear modes.
These collinear-soft (csoft) modes have momentum scal-
ing in the nt direction as

pcs ∼ Q(λ2, η2, ηλ) , η =
λ

λt
=

m√
t
. (2.16)
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ply lowered from t to m2. On the other hand, for jets 1
and 2 we match a single nt collinear sector in SCET onto
two independent n1 collinear and n2 collinear sectors in
SCET+.
As before, the collinear modes cannot directly inter-

act with each other. Interactions between the jets are
possible via ultrasoft modes

pus = Q(λ2,λ2,λ2) , (2.15)

which have virtuality Q2λ4 = (m2/Q)2. In addition we
can still have collinear modes in the nt direction which
are soft enough to interact between jets 1 and 2 without
changing the virtuality of the n1 and n2 collinear modes.
These collinear-soft (csoft) modes have momentum scal-
ing in the nt direction as

pcs ∼ Q(λ2, η2, ηλ) , η =
λ

λt
=

m√
t
. (2.16)
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vector in color space and ŜN is a matrix, while the beam
and jet functions are diagonal in color.
Each function in Eq. (2.9) explicitly depends on the

renormalization scale µ. This dependence cancels in the
product and convolutions of all functions on the right-
hand side, since the cross section is µ independent. Since
the different functions each only contain physics at a sin-
gle energy scale, they can only contain logarithms of µ
divided by that physical scale. In general, the logarithms
appearing in the hard, jet, and soft function are of the
form

C⃗N : ln
µ2

sij
,

Ba,b, Ji : ln
µ2

m2
i

,

ŜN : ln
µ2sij
m4

i

. (2.10)

(For the N -jet soft function this can be seen explicitly
from the results in Ref. [7].) Hence, since all sij ∼ Q2 and
all mi ∼ m as in Eq. (2.4), there are no large logarithms
when evaluating each function at its own natural scale,

µH = Q , µJ = µB = m, µS =
m2

Q
. (2.11)

Using the renormalization group evolution in the effec-
tive theory, each function can then be evolved from its
own natural scale to the common arbitrary scale µ, which
sums the logarithms in Eq. (2.10). Combining all func-
tions evolved to µ as in Eq. (2.9) then sums all logarithms
of the form ln(m2/Q2) in the cross section.

B. Two Jets Close To Each Other

In the situation depicted in Fig. 1(b), the invariant
mass of two of the jets becomes parametrically smaller
than all the other pairwise invariant masses between jets.
In the following, we take the two jets that are close to
each other to be jets 1 and 2 and use t ≡ s12 to denote
their invariant mass, and sij to denote all other dijet
invariant masses. We then have

m2 ≪ t = s12 ≪ sij ∼ Q2 . (2.12)

In principle, the factorization theorem in Eq. (2.9) can
still be applied in this case, since the invariant masses of
all jets are still much smaller than any of the dijet invari-
ant masses. However, the hard matching coefficient CN

now depends on two parametrically different hard scales,√
t and Q, and from Eq. (2.10) it contains corresponding

logarithms ln(µ2/Q2) and ln(µ2/t). This means there is
no single hard scale µH that we can choose that would
minimize all logarithms in the hard matching. In par-
ticular, choosing µH = Q as before, there are now unre-
summed large logarithms ln(t/Q2) in the hard matching
coefficient.

Similarly, the soft function now depends on two para-
metrically different soft scales, m2/

√
t and m2/Q, con-

taining logarithms ln(µ2t/m4) as well as ln(µ2Q2/m4
i ).

Hence, there is not a single soft scale µS we can choose
to minimize all logarithms in the soft function. Choos-
ing µS = m2/Q as before, there are still unresummed
large logarithms ln(t/Q2) in the soft function. In the
soft function these naturally arise as lnni ·nj .
To be able to resum the logarithms of ln(t/Q2) we have

to perform additional matching steps at each of the new
intermediate scales

√
t and m2/

√
t, as shown in Fig. 1(b).

At the scale Q we match QCD onto SCET as before, in-
tegrating out hard modes of virtuality >∼ Q2. This ef-
fective theory has collinear modes with virtuality t and
corresponding soft modes,

pc ∼ Q(λ2t , 1,λt) , pus ∼ Q(λ2t ,λ
2
t ,λ

2
t ) , λt =

√
t

Q
.

(2.13)
There is one set of collinear modes for each of the jets,
except for the two close jets 1 and 2. The latter are
described at the hard scale Q by a single set of collinear
modes with virtuality t in a common direction nt. Since
the total invariant mass between the two jets is t, such nt-
collinear modes can freely exchange momentum between
the two close jets without changing their virtuality. This
matching corresponds to performing an expansion in λt.
In the next step, at the scale

√
t, we match SCET onto

a new effective theory SCET+, integrating out all modes
of virtuality t. Below this scale we now have separate
collinear modes with virtuality m2 for each jet, including
jets 1 and 2,

pc = Q(λ2, 1,λ) , λ =
m

Q
. (2.14)

Note that for the well-separated jets, this matching at
√
t

will have no effect, since we do not perform a measure-
ment in those directions that is sensitive to this scale.
This means the virtuality of their collinear modes is sim-
ply lowered from t to m2. On the other hand, for jets 1
and 2 we match a single nt collinear sector in SCET onto
two independent n1 collinear and n2 collinear sectors in
SCET+.
As before, the collinear modes cannot directly inter-

act with each other. Interactions between the jets are
possible via ultrasoft modes

pus = Q(λ2,λ2,λ2) , (2.15)

which have virtuality Q2λ4 = (m2/Q)2. In addition we
can still have collinear modes in the nt direction which
are soft enough to interact between jets 1 and 2 without
changing the virtuality of the n1 and n2 collinear modes.
These collinear-soft (csoft) modes have momentum scal-
ing in the nt direction as

pcs ∼ Q(λ2, η2, ηλ) , η =
λ

λt
=

m√
t
. (2.16)
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❖ we also fix small component and decrease ⊥

p? / p�/R

2

Refs. [5, 19, 20] studied NGLs of ⇤/Q in cross sections
vetoing radiation with total energy greater than ⇤ in an-
gular regions outside of found jets. Though a hard scale
Q appears in these ratios, we found in [21] that the NGLs
still arise from considering both scales in the ratio to be
soft and later taking one of them to Q in an inclusive
limit.

In [21] we made progress in understanding the ori-
gin of NGLs in e↵ective field theory. We considered the
factorized dijet invariant mass distribution �(m1, m2) in
e+e� collisions producing back-to-back jets, and calcu-
lated to O(↵2

s), as also in [22], the hemisphere soft func-
tion S(kL, kR). These calculations clarified the origin of
NGLs in an EFT framework as the dependence of a soft
function on ratios of multiple soft scales, and revealed
new subleading (single) NGLs and non-logarithmic non-
global functions.

These NGLs are organized into a multiplicative factor
entering the total cross section, with the leading NGLs
taking the generic form

SNG(µ1/µ2) = 1 � ↵2
s

(2⇡)2
CF CAS2 ln2 µ1

µ2
+ · · · . (2)

Here µ1,2 are the scales at which soft radiation is probed
in di↵erent sharply-divided regions. For the hemisphere
mass distribution µ1,2 = m2

1,2/Q and S2 = ⇡2/3. For
the ⇢R distribution, µ1 = Q⇢R while µ2 = Q due to
total inclusivity in one hemisphere. The coe�cient S2

is a geometric measure of the region into which the two
soft gluons contributing to a NGL can go. The fact that
it varies with the size of this region is due to the NGL
arising from a purely soft divergence of QCD. Techniques
to resum NGLs using numerical fits in the large-NC limit
of QCD were introduced by [4], but analytic resummation
of NGLs in real-world QCD remains an open problem.

In this work we seek to extend the intuition gained in
[21] by studying a more exclusive set of cross sections.
We study non-global properties of an exclusive jet cross
section �(m1, m2, ⇤), where the invariant masses m1 and
m2 of two jets of size R produced in an e+e� collision
at center-of-mass energy Q are measured, with a veto ⇤
on the energy of additional jets. We consider finding the
jets using various algorithms—cone, anti-kT, Cambridge-
Aachen, and kT [23–28]. We will find that NGLs of
the ratio of the jet veto and the jet masses ⇤/m1,2

are present, in addition to NGLs of the ratio of masses
m1/m2. We calculate the coe�cients only of leading dou-
ble NGLs ↵2

s ln2(µ1/µ2) in this paper. The relevant scales
for this observable are shown in Fig. 1 for a particular hi-
erarchy of m1,2 and ⇤, however our results are valid for
any choice such that Q � m1,2 � m2

1,2/Q, ⇤.
In [21], we discovered that at O(↵2

s) NGLs of two soft
scales µ1,2 can be constructed from separate pieces de-
pendent on the ratio of the factorization scale µ to one
physical scale at a time. Namely, the region of phase
space where one of the soft gluons enters the region sen-
sitive to the scale µ1 and the other enters the region
sensitive to µ2 generates the double log ↵2

s ln2 µ2/(µ1µ2),

Hard scale

Left jet scale

Right jet scale

Soft scales

µH = Q

µL
S = m2

1/Q

µout
S = ⇤

µR
S = m2

2/Q

µL
J = m1

µR
J = m2

FIG. 1: The relevant scales in the exclusive jet mass cross
section with an energy veto, ⇤ outside of the jets is shown
for a particular choice of the hierarchy m2

2 ⌧ ⇤Q ⌧ m2
1 that

gives rise to large non-global logs. Our results apply to any
choice of m1,2 and ⇤ that satisfies Q � m1,2 � m2

1,2/Q, ⇤,
which maintains the separation between hard, jet and soft
scales.

while the regions where soft gluons enter only region 1 or
only region 2 generate ↵2

s ln2(µ/µ1) and ↵2
s ln2(µ/µ2). In

[21] we derived from RG invariance of the cross section
and IR safety of the soft function that the coe�cients
of these logs are constrained so that the µ-dependence
cancels, but an NGL ↵2

s ln2(µ1/µ2) is left over. Analo-
gously for �(m1, m2, ⇤), the three soft phase space re-
gions that give rise to the NGLs at O(↵2

s) are shown
in Fig. 2. Each configuration contributes logarithms of
µ over a single scale, the “in-out” regions contributing
logs ↵2

s ln2 µ2/(⇤ m1,2), and the “in-in” region contribut-
ing logs ↵2

s ln2 µ2/(m1m2). These combine with single-
region contributions to give NGLs of ⇤/m1,2 with coe�-
cients fOL,OR and of m1/m2 with coe�cient fLR. These
coe�cients give the geometric factor S2 in Eq. (2). IR
safety and RG invariance will allow us to derive addi-
tional strong relations among these di↵erent coe�cients.

fixed by τ meas

2

Refs. [5, 19, 20] studied NGLs of ⇤/Q
in cross sections

vetoing radiation with total energy greater than ⇤ in an-

gular regions outside of found jets. Though a hard scale
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1,2 are the scales at which soft radiation is probed
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mass distribution µ
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R distribution, µ
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of QCD were introduced by [4], but analytic resummation
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remains an open problem.
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s ) NGLs of two soft
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safety of the soft function that the coe�cients

of these logs are constrained so that the µ-dependence
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small R

}p+ = Q⌧

inside R (the jet) virtuality increased due to R!

p = Q⌧(1, 1/R2, 1/R)
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p+
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p�
g

Q2⇤
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Q

p+

g = Rp�
g

p+

g = p�
g /R

cn

cn̄

s

p+

g

p�
g

Q2⇤

2⇤

Q

s

cn̄

cn

FIG. 1: Phase space for cone and kT /Sterman-Weinberg jets. The phase space for a collinear (blue) or soft (red) gluon emitted
from a quark and antiquark in the computation of the O(↵s) 2-jet rate in the cone and kT -type/Sterman-Weinberg algorithms
are shown.

p+

g = Rp�
g

p+

g = p�
g /R

2⇤

2⇤

p�
g

p+

g

ss scn

scn̄= �

FIG. 2: Soft phase space for one gluon. The phase space for one soft gluon emission is the same for both cone and kT -
type/Sterman-Weinberg algorithms. The original soft phase space on the left covers the region outside both jets where radiation
is vetoed by the energy cut Eg < ⇤. This region is actually sensitive to two distinct physical scales. On the right-hand side,
this region is re-expressed in terms of region sensitive to one physical scale at a time. The purely soft (or “global”) region
covers all angles and is sensitive to the scale 2⇤. The “soft-collinear” regions cover gluons of energy ⇤ within the jet cones of
angle R and are sensitive to the scale 2⇤R.

by [15],

⇥n
kT

= ✓
⇣

R2 � Q2p+

g

p�
g (Q � p�

g )2

⌘

, (19)

and similarly for ⇥n̄
kT

. These regions are illustrated in

blue in Fig. 1, and give the contribution J (1) in Eq. (15),
given by Eq. (7b).

Technically, the collinear gluon phase space also in-
cludes the region outside the jet cones/regions, where its
energy would be capped by the veto energy ⇤. However,
this double counts the region of phase space covered by
the soft gluon, and must be subtracted out [58]. The con-
tribution of this region of the collinear phase space was
shown to cancel against this subtraction in [15]. Thus it is
not drawn in Fig. 1. In addition, such a soft/zero-bin sub-
traction must also be made from the blue regions; how-
ever, these give scaleless integrals in dimensional regular-
ization (DR), and so we do not explicitly include them.
They are necessary, however, in properly interpreting any
1/✏ divergences in DR as being of IR or UV origin (in ad-
dition to virtual diagram contributions) [35, 39, 58, 59].

For jet functions with finite R and an additional mea-
surement such as jet mass, the zero-bin subtractions are
nonzero even in DR and are essential to obtain correct
results [15, 60]. We refer the reader to these references
for appropriate discussion.

In the limit that the gluon is soft, p0

g ⇠ ⇤ ⌧ Q,
the emitting quark or antiquark determines the jet axis
and thus automatically lies inside the jet, and these con-
straints reduce to

⇥s
cone

= ✓(✓qg > r)✓(✓q̄g > r)✓(p0

g < ⇤) (20)

Technically there is also a term for soft gluons inside the
jets with no energy constraint, but in the soft limit the
integrals over the soft amplitude are scaleless and zero in
DR. This region is illustrated in red in Fig. 1 and gives
the contribution S(1) in Eq. (7c).

Going back to the soft phase space given by Eq. (20)
and examining Eq. (7c) and Fig. 1, we see that this phase
space is still sensitive to two distinct physical scales. We
separate these out in Fig. 2. The first scale is, of course,
the soft jet veto energy ⇤. The other, however, is the
soft-collinear scale ⇤R. Although the cross section does

The Soft-Collinear Mode (new!)
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µS = Q⌧/R

Hard scale

Jet scale

Global soft 
(veto) scale

µH = Q

µ
⇤

= 2⇤

µsc = 2⇤R

µJ = Q
p

⌧

Csoft scale

Soft-collinear  
scale

Q(1, ⌧,
p

⌧)

⇠ (Q, Q, Q)

Q⌧
⇣ 1

R2

, 1,
1

R

⌘

(⇤, ⇤, ⇤)

⇤(1, R2, R)

FIG. 3: Scales in SCET++ for the jet thrust cross section. The scaling of the light-cone components of momentum (p±, p⌥, p?)
for each mode is shown. Hard virtual modes of scale Q are integrated out. The jet scale is the same as the global thrust
distribution; the usual soft scale is increased by 1/R due to the restriction of measured soft radiation to a cone of radius R,
like the csoft mode of [46]. The soft veto on the energy ⇤ of additional jets induces a global soft veto mode that cannot resolve
the angle R as well as the soft-collinear modes that can, see Eq. (12). The csoft scale here could also be below the soft veto
and/or soft-collinear scales.

and (37) are power suppressed relative to J incl.. Thus
in that limit, as in [15], the jet thrust cross section is
independent of the algorithm to O(↵s). However, to ob-
tain the total 2-jet rate later, we will integrate the cross
section up to kinematically maximum allowed value of
⌧
max

= R2 (cone) or ⌧
max

= R2/4 (kT ), where �Jalg. is
no longer power suppressed. Thus we keep the contribu-
tions of both J incl. and �Jalg. in what follows.

The soft function in Eq. (30), meanwhile, receives con-
tributions from soft gluons emitted within the jets and
contributing to the jet thrust, and those outside and
encountering the jet veto ⇤ but not contributing to ⌧ .
Putting together these di↵erent contributions at O(↵s)
from [15] for two measured jets in the final state, we ob-
tain

S(kn, kn̄, ⇤, R, µ) = �(k)
h

1 +
↵sCF

4⇡

⇣

4 ln R ln
µ2

4⇤2R

� ⇡2

3

⌘i

�
X

i=n,n̄

2↵sCF

⇡

1

µR



✓(ki)µR

ki
ln

ki

µR

�

+

, (39)

which in this form is di↵erential in kn,n̄ but cumulative
(integrated up to ⇤) in the energy veto. Note that the
parts of �Jalg. in Eqs. (36) and (37) for t > Q2⌧

max

cancel the total contribution of J incl. and S in Eq. (30)
above ⌧ = ⌧

max

[15].

Putting together the hard function Eq. (7a), the jet
function Eq. (34) including the contributions Eqs. (36)
and (37), and the soft function Eq. (39), the prediction of
Eqs. (30) and (31) for the (total) jet thrust cross section
to O(↵s), presented in integrated form, is

�alg.

c

(⌧) =
1

�
0

Z ⌧

0

d⌧ 0 d�(⇤, R)

d⌧ 0 (40)

= ✓(⌧)✓(⌧
max

� ⌧)

⇢

1 +
↵sCF

2⇡

h

�2 ln2 ⌧ � 3 ln ⌧

� 8 ln R ln
2⇤R

Q⌧
� 1

i

+ 2��alg.

c (⌧)

�

+ ✓(⌧ � ⌧
max

)�alg.

c

(⌧
max

) ,

where ��alg.

c

is given by

��alg.

c

(⌧) = ✓(⌧
max

� ⌧)

Z Q2⌧

0

dt �Jalg.(t, R) . (41)

As noted above, the contribution of �Jalg.(⌧) above
⌧ = ⌧

max

cancels against the sum of the inclusive jet
function and the soft function contributions, so the in-
tegrated distribution plateaus at its constant value at
⌧ = ⌧

max

. The final term �alg.

c (⌧
max

) in Eq. (40) is then
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FIG. 3: Scales in SCET++ for the jet thrust cross section. The scaling of the light-cone components of momentum (p±, p⌥, p?)
for each mode is shown. Hard virtual modes of scale Q are integrated out. The jet scale is the same as the global thrust
distribution; the usual soft scale is increased by 1/R due to the restriction of measured soft radiation to a cone of radius R,
like the csoft mode of [46]. The soft veto on the energy ⇤ of additional jets induces a global soft veto mode that cannot resolve
the angle R as well as the soft-collinear modes that can, see Eq. (12). The csoft scale here could also be below the soft veto
and/or soft-collinear scales.

and (37) are power suppressed relative to J incl.. Thus
in that limit, as in [15], the jet thrust cross section is
independent of the algorithm to O(↵s). However, to ob-
tain the total 2-jet rate later, we will integrate the cross
section up to kinematically maximum allowed value of
⌧
max

= R2 (cone) or ⌧
max

= R2/4 (kT ), where �Jalg. is
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and (37) are power suppressed relative to J incl.. Thus
in that limit, as in [15], the jet thrust cross section is
independent of the algorithm to O(↵s). However, to ob-
tain the total 2-jet rate later, we will integrate the cross
section up to kinematically maximum allowed value of
⌧
max

= R2 (cone) or ⌧
max

= R2/4 (kT ), where �Jalg. is
no longer power suppressed. Thus we keep the contribu-
tions of both J incl. and �Jalg. in what follows.

The soft function in Eq. (30), meanwhile, receives con-
tributions from soft gluons emitted within the jets and
contributing to the jet thrust, and those outside and
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(integrated up to ⇤) in the energy veto. Note that the
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above ⌧ = ⌧
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Putting together the hard function Eq. (7a), the jet
function Eq. (34) including the contributions Eqs. (36)
and (37), and the soft function Eq. (39), the prediction of
Eqs. (30) and (31) for the (total) jet thrust cross section
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and (37) are power suppressed relative to J incl.. Thus
in that limit, as in [15], the jet thrust cross section is
independent of the algorithm to O(↵s). However, to ob-
tain the total 2-jet rate later, we will integrate the cross
section up to kinematically maximum allowed value of
⌧
max

= R2 (cone) or ⌧
max

= R2/4 (kT ), where �Jalg. is
no longer power suppressed. Thus we keep the contribu-
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The soft function in Eq. (30), meanwhile, receives con-
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contributing to the jet thrust, and those outside and
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which in this form is di↵erential in kn,n̄ but cumulative
(integrated up to ⇤) in the energy veto. Note that the
parts of �Jalg. in Eqs. (36) and (37) for t > Q2⌧
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cancel the total contribution of J incl. and S in Eq. (30)
above ⌧ = ⌧
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[15].

Putting together the hard function Eq. (7a), the jet
function Eq. (34) including the contributions Eqs. (36)
and (37), and the soft function Eq. (39), the prediction of
Eqs. (30) and (31) for the (total) jet thrust cross section
to O(↵s), presented in integrated form, is
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To compare Eq. (61) to the expression for S(k, ⇤, R, µ) given in [38], we perform the inverse Laplace transform of
Eq. (61) back to momentum space, using the formulae in Eq. (B5),
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for the cumulative soft function in k and ⇤, resulting in:

Sc(k, ⇤, R, µ) = 1 +
↵s

4⇡

h

2�
0

⇣

� ln2

µR

k
+ ln R ln

µ2

4⇤2R

⌘

� ⇡2

3
CF

i

+
⇣↵s

4⇡

⌘

2

⇢

2(�
0

)2
⇣

� ln2

µR

k
+ ln R ln

µ2

4⇤2R

⌘

2

+
4

3
�

0

�
0

⇣

� ln3

µR

k
+ ln3

µ

2⇤
� ln3

µ

2⇤R

⌘

+ S(2)

ng

(k, ⇤, R, µ) (63)

+ 2
⇣

�
1

� �
0

⇡2

3
CF

⌘⇣

� ln2

µR

k
+ ln R ln

µ2

4⇤2R

⌘

� 4⇡2

3
(�

0

)2
⇣

ln2

µR

k
+ ln2 R

⌘

+ 2(�1

in

+ 2�
0

c1

in

� 8⇣
3

�2

0

) ln
µR

k
+ (�1

ss + 2�
0

c1

ss) ln
µ

2⇤
+ 2(�1

sc + 2�
0

c1

sc) ln
µ

2⇤R
+ c2

S
tot

,

where c2

S
tot

is the constant term in this momentum-space total soft function.
We can separate the purely Abelian (↵sCF and ↵2

sC
2

F ) terms and non-Abelian (CF CA, CF TF nF ) terms of Eq. (63),
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In [38], an expression is given for the non-Abelian terms of the 2-loop soft function both for arbitrary R and also in
the limit that R ! 0. We are interested only in these terms that do not vanish as R ! 0. These terms can be directly
compared to Eq. (66) for extraction of the unknown anomalous dimensions �1

in,ss,sc. We quote the formula from [38]
App. C. In terms of known cusp anomalous dimension and beta functions coe�cients, their result can be reorganized
into the form:
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On the last line we have separated out those logs which
are non-global in origin, coming from correlated emis-

sions into two separated phase space regions. These cor-
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In [38], an expression is given for the non-Abelian terms of the 2-loop soft function both for arbitrary R and also in
the limit that R ! 0. We are interested only in these terms that do not vanish as R ! 0. These terms can be directly
compared to Eq. (66) for extraction of the unknown anomalous dimensions �1

in,ss,sc. We quote the formula from [38]
App. C. In terms of known cusp anomalous dimension and beta functions coe�cients, their result can be reorganized
into the form:
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(67)

On the last line we have separated out those logs which
are non-global in origin, coming from correlated emis-

sions into two separated phase space regions. These cor-
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To compare Eq. (61) to the expression for S(k, ⇤, R, µ) given in [38], we perform the inverse Laplace transform of
Eq. (61) back to momentum space, using the formulae in Eq. (B5),
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for the cumulative soft function in k and ⇤, resulting in:
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where c2

S
tot

is the constant term in this momentum-space total soft function.
We can separate the purely Abelian (↵sCF and ↵2
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2

F ) terms and non-Abelian (CF CA, CF TF nF ) terms of Eq. (63),
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In [38], an expression is given for the non-Abelian terms of the 2-loop soft function both for arbitrary R and also in
the limit that R ! 0. We are interested only in these terms that do not vanish as R ! 0. These terms can be directly
compared to Eq. (66) for extraction of the unknown anomalous dimensions �1

in,ss,sc. We quote the formula from [38]
App. C. In terms of known cusp anomalous dimension and beta functions coe�cients, their result can be reorganized
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On the last line we have separated out those logs which
are non-global in origin, coming from correlated emis-

sions into two separated phase space regions. These cor-

❖ comparison to α2 result ⇒ all logs of 2Λ, 2ΛR, and Qτ/R!
❖ this also gives the anom. dimensions to α2 for free!!
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respond to the S
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ng term in Eq. (66):
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the leading coe�cient of which was computed in [43], and
the single log coe�cient in [37, 38] . (Ref. [43], however,
only identified one power of R in the argument of the
NGLs). The computation of Eq. (67) in [37, 38] together
with the factorization conjecture Eq. (50) confirm that
the argument of the NGL is, in fact, k/(2⇤R2) [42], which
we notice is the ratio of the measured in-jet soft scale
k/R and the soft-collinear scale 2⇤R in Fig. 3. From the
“in-out” and “in-in” NGL coe�cients computed in [43]
and the results of [38], we can also form the correspond-
ing non-global contribution to the double-di↵erential jet
thrust soft function in Eq. (50),
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In the limit R ! 0, no NGL of kn/kn̄ appears [43], as the
phase space for soft gluons inside the two cones vanishes.
A resummation of the NGLs requires a more advanced
factorization theorem using technology such as that in
[21, 45].

Comparing Eqs. (66) and (67) and using Eqs. (25) and
(49) for the one-loop constants c1

ss,sc,in, we are able to
read o↵ the non-cusp anomalous dimensions:
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The relation amongst the three anomalous dimensions in
Eq. (70) should, in fact, generalize to all orders in ↵s. In
the R = 1 limit, the in-jet regions each become a whole
hemisphere, so Eq. (56) directly implies for the non-cusp
anomalous dimensions:

�
in

= �
hemi

�ss = �2�sc . (71)

We can derive several more useful relations amongst
anomalous dimensions. To start, �ss is the same anoma-
lous dimension as for the timelike soft function that arises
in threshold resummation in Drell-Yan, a property that
was in fact already noted in [15]. This follows from the
definition of Ss(E, µ) in Eq. (26). The only di↵erence
with Drell-Yan is the direction of the Wilson lines (in-
coming vs. outgoing), which does not a↵ect the anoma-
lous dimension (nor the value of the function itself to at

least O(↵2

s) [68]) and so

�H + 2�qq + �ss = 0 , (72)

where �qq is the non-cusp part of DGLAP evolution of
quark parton distribution functions, which for example
appears in the Altarelli-Parisi splitting function as

Pqq(z) =
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(1 � z)
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+ �qq[↵s]�(1 � z) + · · · , (73)

where the ellipses denote terms that are non-singular as
z ! 1. Then, we use the condition for the consistency of
factorization in thrust (e.g., [56, 57, 69, 70]),

�H + 2�J + 2�
hemi

= 0 (74)

and the relation satisfied by �H,J,qq in DIS as x ! 1 [65],

�H + �J + �qq = 0 , (75)

which together imply
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= �qq . (76)

Finally, Eqs. (72), (74), and (76) together imply
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Combining this with Eq. (71), we derive the all-orders
relations among non-cusp anomalous dimensions,

�
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2
. (78)

We give �
hemi

to three loops using the known results
quoted in Eq. (D8).

The relations Eqs. (71) and (74) imply the consistency
of anomalous dimensions in our jet thrust factorization
theorem Eqs. (30) and (50),

�H + 2�J + 2�
in

+ �ss + 2�sc = 0 , (79)

which in this form is satisfied by both the cusp and non-
cusp parts.

VI. TWO-LOOP FIXED-ORDER CROSS
SECTIONS

With the results for the two-loop soft functions in
Sec. V and the known results for the two-loop hard and
jet functions in App. D, we can construct our prediction
for the logarithmic terms in the full jet thrust cross sec-
tion to two loops, and integrate it up to ⌧ = ⌧

max

to
obtain our prediction for the logarithmic terms of the
two-loop jet rate for the thrust cone algorithm.
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the leading coe�cient of which was computed in [43], and
the single log coe�cient in [37, 38] . (Ref. [43], however,
only identified one power of R in the argument of the
NGLs). The computation of Eq. (67) in [37, 38] together
with the factorization conjecture Eq. (50) confirm that
the argument of the NGL is, in fact, k/(2⇤R2) [42], which
we notice is the ratio of the measured in-jet soft scale
k/R and the soft-collinear scale 2⇤R in Fig. 3. From the
“in-out” and “in-in” NGL coe�cients computed in [43]
and the results of [38], we can also form the correspond-
ing non-global contribution to the double-di↵erential jet
thrust soft function in Eq. (50),
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In the limit R ! 0, no NGL of kn/kn̄ appears [43], as the
phase space for soft gluons inside the two cones vanishes.
A resummation of the NGLs requires a more advanced
factorization theorem using technology such as that in
[21, 45].

Comparing Eqs. (66) and (67) and using Eqs. (25) and
(49) for the one-loop constants c1

ss,sc,in, we are able to
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The relation amongst the three anomalous dimensions in
Eq. (70) should, in fact, generalize to all orders in ↵s. In
the R = 1 limit, the in-jet regions each become a whole
hemisphere, so Eq. (56) directly implies for the non-cusp
anomalous dimensions:
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We can derive several more useful relations amongst
anomalous dimensions. To start, �ss is the same anoma-
lous dimension as for the timelike soft function that arises
in threshold resummation in Drell-Yan, a property that
was in fact already noted in [15]. This follows from the
definition of Ss(E, µ) in Eq. (26). The only di↵erence
with Drell-Yan is the direction of the Wilson lines (in-
coming vs. outgoing), which does not a↵ect the anoma-
lous dimension (nor the value of the function itself to at

least O(↵2

s) [68]) and so

�H + 2�qq + �ss = 0 , (72)

where �qq is the non-cusp part of DGLAP evolution of
quark parton distribution functions, which for example
appears in the Altarelli-Parisi splitting function as

Pqq(z) =
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+
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where the ellipses denote terms that are non-singular as
z ! 1. Then, we use the condition for the consistency of
factorization in thrust (e.g., [56, 57, 69, 70]),

�H + 2�J + 2�
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= 0 (74)

and the relation satisfied by �H,J,qq in DIS as x ! 1 [65],
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Combining this with Eq. (71), we derive the all-orders
relations among non-cusp anomalous dimensions,
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We give �
hemi

to three loops using the known results
quoted in Eq. (D8).

The relations Eqs. (71) and (74) imply the consistency
of anomalous dimensions in our jet thrust factorization
theorem Eqs. (30) and (50),

�H + 2�J + 2�
in

+ �ss + 2�sc = 0 , (79)

which in this form is satisfied by both the cusp and non-
cusp parts.

VI. TWO-LOOP FIXED-ORDER CROSS
SECTIONS

With the results for the two-loop soft functions in
Sec. V and the known results for the two-loop hard and
jet functions in App. D, we can construct our prediction
for the logarithmic terms in the full jet thrust cross sec-
tion to two loops, and integrate it up to ⌧ = ⌧

max

to
obtain our prediction for the logarithmic terms of the
two-loop jet rate for the thrust cone algorithm.

❖ can argue to all orders (ingredients known to α3)!!!
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FIG. 3: Scales in SCET++ for the jet thrust cross section. The scaling of the light-cone components of momentum (p±, p⌥, p?)
for each mode is shown. Hard virtual modes of scale Q are integrated out. The jet scale is the same as the global thrust
distribution; the usual soft scale is increased by 1/R due to the restriction of measured soft radiation to a cone of radius R,
like the csoft mode of [46]. The soft veto on the energy ⇤ of additional jets induces a global soft veto mode that cannot resolve
the angle R as well as the soft-collinear modes that can, see Eq. (12). The csoft scale here could also be below the soft veto
and/or soft-collinear scales.

and (37) are power suppressed relative to J incl.. Thus
in that limit, as in [15], the jet thrust cross section is
independent of the algorithm to O(↵s). However, to ob-
tain the total 2-jet rate later, we will integrate the cross
section up to kinematically maximum allowed value of
⌧
max

= R2 (cone) or ⌧
max

= R2/4 (kT ), where �Jalg. is
no longer power suppressed. Thus we keep the contribu-
tions of both J incl. and �Jalg. in what follows.

The soft function in Eq. (30), meanwhile, receives con-
tributions from soft gluons emitted within the jets and
contributing to the jet thrust, and those outside and
encountering the jet veto ⇤ but not contributing to ⌧ .
Putting together these di↵erent contributions at O(↵s)
from [15] for two measured jets in the final state, we ob-
tain
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which in this form is di↵erential in kn,n̄ but cumulative
(integrated up to ⇤) in the energy veto. Note that the
parts of �Jalg. in Eqs. (36) and (37) for t > Q2⌧

max

cancel the total contribution of J incl. and S in Eq. (30)
above ⌧ = ⌧

max

[15].

Putting together the hard function Eq. (7a), the jet
function Eq. (34) including the contributions Eqs. (36)
and (37), and the soft function Eq. (39), the prediction of
Eqs. (30) and (31) for the (total) jet thrust cross section
to O(↵s), presented in integrated form, is
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where ��alg.
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is given by
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dt �Jalg.(t, R) . (41)

As noted above, the contribution of �Jalg.(⌧) above
⌧ = ⌧

max

cancels against the sum of the inclusive jet
function and the soft function contributions, so the in-
tegrated distribution plateaus at its constant value at
⌧ = ⌧

max

. The final term �alg.

c (⌧
max

) in Eq. (40) is then

❖ complete EFT over all physical values of τ
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FIG. 3: Scales in SCET++ for the jet thrust cross section. The scaling of the light-cone components of momentum (p±, p⌥, p?)
for each mode is shown. Hard virtual modes of scale Q are integrated out. The jet scale is the same as the global thrust
distribution; the usual soft scale is increased by 1/R due to the restriction of measured soft radiation to a cone of radius R,
like the csoft mode of [46]. The soft veto on the energy ⇤ of additional jets induces a global soft veto mode that cannot resolve
the angle R as well as the soft-collinear modes that can, see Eq. (12). The csoft scale here could also be below the soft veto
and/or soft-collinear scales.

and (37) are power suppressed relative to J incl.. Thus
in that limit, as in [15], the jet thrust cross section is
independent of the algorithm to O(↵s). However, to ob-
tain the total 2-jet rate later, we will integrate the cross
section up to kinematically maximum allowed value of
⌧
max

= R2 (cone) or ⌧
max

= R2/4 (kT ), where �Jalg. is
no longer power suppressed. Thus we keep the contribu-
tions of both J incl. and �Jalg. in what follows.

The soft function in Eq. (30), meanwhile, receives con-
tributions from soft gluons emitted within the jets and
contributing to the jet thrust, and those outside and
encountering the jet veto ⇤ but not contributing to ⌧ .
Putting together these di↵erent contributions at O(↵s)
from [15] for two measured jets in the final state, we ob-
tain

S(kn, kn̄, ⇤, R, µ) = �(k)
h

1 +
↵sCF

4⇡

⇣

4 ln R ln
µ2

4⇤2R

� ⇡2

3

⌘i

�
X

i=n,n̄

2↵sCF

⇡

1

µR



✓(ki)µR

ki
ln

ki

µR

�

+

, (39)

which in this form is di↵erential in kn,n̄ but cumulative
(integrated up to ⇤) in the energy veto. Note that the
parts of �Jalg. in Eqs. (36) and (37) for t > Q2⌧

max

cancel the total contribution of J incl. and S in Eq. (30)
above ⌧ = ⌧

max

[15].

Putting together the hard function Eq. (7a), the jet
function Eq. (34) including the contributions Eqs. (36)
and (37), and the soft function Eq. (39), the prediction of
Eqs. (30) and (31) for the (total) jet thrust cross section
to O(↵s), presented in integrated form, is

�alg.

c

(⌧) =
1

�
0

Z ⌧

0

d⌧ 0 d�(⇤, R)

d⌧ 0 (40)

= ✓(⌧)✓(⌧
max

� ⌧)

⇢

1 +
↵sCF

2⇡

h

�2 ln2 ⌧ � 3 ln ⌧

� 8 ln R ln
2⇤R

Q⌧
� 1

i

+ 2��alg.

c (⌧)

�

+ ✓(⌧ � ⌧
max

)�alg.

c

(⌧
max

) ,

where ��alg.

c

is given by

��alg.

c

(⌧) = ✓(⌧
max

� ⌧)

Z Q2⌧

0

dt �Jalg.(t, R) . (41)

As noted above, the contribution of �Jalg.(⌧) above
⌧ = ⌧

max

cancels against the sum of the inclusive jet
function and the soft function contributions, so the in-
tegrated distribution plateaus at its constant value at
⌧ = ⌧

max

. The final term �alg.

c (⌧
max

) in Eq. (40) is then

⌧ ! ⌧max ⇠ R2
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these modes coincide @ τmax ~  R2

9

FIG. 3: Scales in SCET++ for the jet thrust cross section. The scaling of the light-cone components of momentum (p±, p⌥, p?)
for each mode is shown. Hard virtual modes of scale Q are integrated out. The jet scale is the same as the global thrust
distribution; the usual soft scale is increased by 1/R due to the restriction of measured soft radiation to a cone of radius R,
like the csoft mode of [46]. The soft veto on the energy ⇤ of additional jets induces a global soft veto mode that cannot resolve
the angle R as well as the soft-collinear modes that can, see Eq. (12). The csoft scale here could also be below the soft veto
and/or soft-collinear scales.

where ��alg.

c is given by

��alg.

c (⌧) = ✓(⌧
max

� ⌧)

Z Q2⌧

0

dt�Jalg.(t, R) . (40)

As noted above, the contribution of �Jalg.(⌧) above
⌧ = ⌧

max

cancels against the sum of the inclusive jet
function and the soft function contributions, so the in-
tegrated distribution plateaus at its constant value at
⌧ = ⌧

max

. The final term �alg.

c (⌧
max

) in Eq. (39) is then
simply the expression in braces for ⌧ < ⌧

max

evaluated at
⌧ = ⌧

max

. For the cone and kT /S-W algorithms, the inte-
grals of the algorithm-dependent contributions Eqs. (35)
and (36) are given by

��cone

c (⌧) = ✓(R2 � ⌧)
↵sCF

4⇡
6 ln

⌧ +R2

R2

, (41)

and

��kT
c (⌧) = ✓

⇣R2

4
� ⌧

⌘↵sCF

4⇡

⇢

6



1�
r

1� 4⌧

R2

(42)

+ ln

✓

1

2
+

1

2

r

1� 4⌧

R2

◆�

+ 4 ln2
✓

1

2
+

1

2

r

1� 4⌧

R2

◆

� 8Li
2

✓

1

2
� 1

2

r

1� 4⌧

R2

◆�

.

At the maximum values ⌧ = ⌧
max

, these simplify to

��cone

c (⌧ = R2) =
↵sCF

4⇡
6 ln 2 (43)

��kT
c

⇣

⌧ =
R2

4

⌘

=
↵sCF

4⇡

⇣

6� 2⇡2

3
� 6 ln 2 + 8 ln2 2

⌘

.

Thus the predictions of Eq. (39) at ⌧ = ⌧
max

are

�cone

c (⌧=R2) = 1 +
↵sCF

2⇡

⇣

� 8 lnR ln
2⇤

Q
� 6 lnR

+ 6 ln 2� 1
⌘

, (44)

and

�kT
c

⇣

⌧=
R2

4

⌘

= 1 +
↵sCF

2⇡

⇣

� 8 lnR ln
2⇤

Q
� 6 lnR

+ 5� 2⇡2

3

⌘

, (45)

agreeing with Eqs. (1) and (2).
Note that the di↵erential jet functions Jalg.(t, R, µ)

when integrated up to t = Q2⌧
max

do not by them-
selves reproduce the unmeasured jet functions J(R,µ)
in Eq. (7b)—the coe�cient of the double log di↵ers.
However, after combining Jalg.(t, R, µ) with S(k,⇤, R)

�(R,⇤) ! H(Q)Junmeas(QR)Ss(⇤)Sc(⇤R)❖ now we have:

Junmeas(QR) =

Z ⌧max(R)

0
d⌧ Jmeas(⌧, R)Sin(

Q⌧

R
)

d�

d⌧
= H(Q)⇤Jmeas(⌧, R)⇤Smeas(R,⇤/Q, ⌧)

Sin(
Q⌧

R
)Ss(⇤)Sc(⇤R)
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FIG. 6: Resummed integrated jet thrust cross section. The integrated jet thrust cross section at Q = 100 GeV, R = 0.3
and ⇤ = 10 GeV using the thrust cone algorithm computed from Eq. (112) is shown with (left) and without (right) the
refactorization of soft- and soft-collinear modes in the soft function Eq. (50). The central values of scales on the left are
µss = 2⇤ and µsc = 2⇤R, and, on the right, µss = µsc = 2⇤

p
R. The uncertainty bands come from the scale variations

described in the main text. In both plots there is good convergence from NLL to NNLL accuracy (in global logs). Without
refactorization, however, the overall scale variation is significantly larger, indicating better control of the perturbative series on
the left. (The NGLs are not included in these plots.)

in quadrature. These give the uncertainty bands plotted
in Fig. 6.

For a more robust uncertainty estimation, profile func-
tions should be used for the jet and csoft scales [11, 73]
instead of the canonical scales in Eq. (117), but this level
of detail is not what we are after here. We simply illus-
trate the broad qualitative e↵ect on the quality of the
resummation of logs of ⌧ and R with and without refac-
torization using the soft-collinear mode. In both plots
in Fig. 6 we see good convergence as uncertainty is re-
duced from NLL to NNLL. In the right-hand plots, with-
out refactorization, the overall uncertainties for the same
amount of scale variation are a bit larger. This indicates
better control over the perturbative series in the left-hand
plot with refactorization and resummed logs of R.

We do not include a numerical check against full QCD
results for the jet thrust cross section here; the validity of
the prediction of refactorization for the fixed-order global
logs up to O(↵2

s) and the leading NGLs in cone and kT -
type algorithms was tested against EVENT2 [74, 75] in
[43], where excellent agreement was found.

By integrating Eq. (112) up to ⌧ = ⌧
max

we could
obtain the jet rate with logs of global origin resummed
to NNLL, although in this case accounting for the NGLs
is more essential as they also turn into logs of 2⇤/Q as
in Eq. (101), indistinguishable from the global logs. We
leave the proper factorization and resummation of the
NGLs, applying, e.g., the formalism of [21, 22, 44], to
future work.

IX. SUMMARY OF NEW RESULTS

Here we collect, for convenience, the key new results of
our paper, up to O(↵2

s), in terms of anomalous dimension

and beta function coe�cients given in App. D. All of
these are in fact known to O(↵3

s).
The collinear-soft function appearing in Eq. (50) for

measured soft radiation in a two-jet event confined to be
inside a cone of radius R, in integrated form from 0 to k,
is given up to O(↵2

s) by

Sc

in

(k/R, µ) = 1 +
↵s

4⇡

⇣

��
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ln2
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k
+ c1

in

⌘

(119)

+
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4⇡
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

1

2
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3
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⇣
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3
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� 4⇣
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)2
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ln
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k
+ c2

in

�

,

where c1

in

= (⇡2/6)CF and �1

in

is given in Eq. (70).
The Laplace transform of Eq. (120) is given by the form
Eq. (57).

The global soft function, defined by Eq. (26), for soft
energy outside two back-to-back jets integrated up to the
veto E < ⇤, is given up to O(↵2

s) by

Sc

s(⇤, µ) = 1 +
↵s

4⇡

⇣

2�
0

ln2

µ

2⇤
+ c1

ss

⌘

(120)

+
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ln4
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2⇤
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4

3
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0
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0

ln3

µ

2⇤

+
⇣

2�
1

+ 2c1

ss�0

� 4⇡2

3
(�

0

)2
⌘

ln2

µ

2⇤

+
�

�1

ss + 2c1

ss�0

� 16⇣
3

(�
0

)2
�

ln
µ

2⇤
+ c2

ss

�

,

where c1

ss = �⇡2CF and �1

ss is given in Eq. (70). We leave
c2

ss undetermined. The Laplace transform of Eq. (121) is
given by the form Eq. (57).

❖ reduced normalization and scale uncertainty:
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❖ can resum logs or R with 2 additional modes:

1. “csoft” mode of SCET+!

2. soft-collinear mode (new) } SCET++

❖ all anomalous dimensions known to α3

❖ can integrate jet shapes to get jet rates
1. jet rate fact. thms now proven (with Junmeas) !

2. understand relation of  unmeas. and meas. funcs


