

Jet-Hadron Correlations Examined with Monte Carlo Models

R. Ehlers, <u>Kirill Lapidus</u>, M. Oliver Yale University, RHI group

Introduction: Jet-Hadron Correlations

Azimuthal distribution of hadrons in jet-triggered events

Near-Side Peak:

surface biased(trigger conditions)

Away-Side Peak:

- ▶ longer in-medium path
- shower broadening
- softening of the FF

Reference:

"vacuum" AS peak, measured in pp collisions

Experimental Measurements

Phys.Rev.Lett. 112 (2014) 12, 122301

STAR jet-hadron measurement

- ▶ hint for the AS peak broadening in AuAu collisions w.r.t. pp reference
- systematics doesn't allow for a conclusive statement
- ▶ data well described by YaJEM

On-going analysis:

- ▶ PbPb at 2.76 TeV J.Phys.Conf.Ser. 446 (2013) 012009
- ▶ also feasible with new 5.02 TeV data

Need for theoretical predictions!

Models

JEWEL — explicit pQCD treatment of hard parton scattering on partons of the medium (recoils can be kept or discarded)

K. Zapp et al. JHEP 1303 (2013) 080, EPJC C60 (2009) 617

YaJEM — scattering on constituents is not modeled explicitly Hard parton acquires virtuality from the medium:

$$\Delta Q^2 = \kappa \int \epsilon^{3/4} (\xi) d\xi$$

enhanced radiation \Rightarrow broadening and softening of the shower Free parameter κ must be tuned to reproduce exp. data (R_{AA})

T. Renk, Phys. Rev. C 84 (2011) 067902 and refs therein

Models

JEWEL 2.0.2

- complete event generator
- ▶ 1+1 Bjorken-type hydro
- ▶ hard scatterings from PYTHIA

YaJEM 1.15

- not an event generator
- ▶ in-medium showering routine
- "user" has to implement own workflow:
 - ▶ hydro input $\varepsilon(x,y,z,t)$
 - ▶ (1+1) hydro from JEWEL
 - ▶ (2+1) hydro superSONIC

https://sites.google.com/site/revihy/

hard scattering events(vertex, energy, parton type)

Simulation and Analysis Setup

- AuAu@200 GeV, b = 0
- T_{in} = 370 MeV, T_{fin} = 170 MeV
- $t_{in} = 0.5 \text{ fm}$

Jet reconstruction:

- FastJet, antikt, **R** = **0.4**
- constituents p_T > 2 GeV
- hard track p_T > 6 GeV

- PbPb@2.76(5) TeV, b = 0
- T_{in} = 470 (500) MeV, T_{fin} = 170 MeV
- $t_{in} = 0.5 \text{ fm}$

Jet reconstruction:

- FastJet, antikt, R = 0.2
- constituents p_T > 3 GeV
- hard track p_T > 6 GeV

Hadron R_{AA} AuAu @ 200 GeV

- ▶ YaJEM tuned to reproduce hadron R_{AA} at RHIC, κ ~ 2
- ▶ JEWEL default parameters v2.0.2
- ▶ Models agree very well in pt range (15,40) GeV

YaJEM TRANSPARENT MEDIUM

- ▶ XY-distribution of hard scattering vertices
- w/o jet quenching hard scattering vertices are distributed according to the overlap function

YaJEM 2+1 hydro

constituents $p_T > 2$ GeV & hard track $p_T > 6$ GeV leading jet 20-40 GeV

YaJEM 2+1 hydro

constituents $p_T > 2$ GeV & hard track $p_T > 6$ GeV leading jet 10-15 GeV

constituents $p_T > 2$ GeV & hard track $p_T > 6$ GeV leading jet 20-40 GeV

YaJEM 1+1 hydro

JEWEL 1+1 hydro

leading jet 20-40 GeV constituents $p_T > 2$ GeV & hard track $p_T > 6$ GeV

- same hydro input used for two models
- same qualitative picture, details differ

Surface biases for AuAu@200

$$s = N_{\text{vertices}} (x < 0) / N_{\text{vertices}} (x > 0)$$

- ▶ Surface bias depends on the trigger configuration
- ▶ Many more variables: R, hard track requirement, ...

pp@200 AS fits jet 20-40 GeV

AuAu@200 AS fits jet 20-40 GeV

AS widths: AuAu @ 200 GeV

constituents $p_T > 2$ GeV & hard track $p_T > 6$ GeV

- ▶ test of the YaJEM implementation
- ▶ different results for JEWEL with and without recoils

Hadron R_{AA} PbPb @ 2.76 TeV

▶ Model parameters fixed at RHIC energies

Surface Bias: PbPb @ 2.76 TeV

JEWEL 1+1 hydro

▶ less pronounced surface bias at LHC

AS widths: PbPb @ 2.76 (5) TeV

constituents $p_T > 3$ GeV & hard track $p_T > 6$ GeV leading jet 20-40 GeV

PbPb 2.76 TeV

PbPb 5 TeV

▶ increased effect to be expected at LHC

Summary and outlook

- YaJEM workflow implemented
- Jet-hadron correlations and surface biases studied with YaJEM and JEWEL
- Predictions for LHC are made
- New high-precision data are awaited

- Other observables (dijets, ...)
- Other models (q-PYTHIA, AdS/CFT MC?)

Backup slides

Jet R_{AA} AuAu @ 200 GeV

YaJEM 1+1 hydro

leading jet 10-15, 2 GeV, 6 GeV

leading jet 20-40, 2 GeV, 6 GeV

Jet R_{AA} PbPb @ 2.76 TeV

Hadron R_{AA} PbPb @ 5 TeV

Jet R_{AA} PbPb @ 5 TeV

Medium as seen by a parton

Shower profile

$q_E = 20 \text{ GeV}$, 2 GeV const cut

YaJEM 2+1 hydro

constituents $p_T > 2$ GeV & hard track $p_T > 6$ GeV leading jet 20-40 GeV

constituents $p_T > 2$ GeV & hard track $p_T > 6$ GeV leading jet 20-40 GeV

