

Rapidity evolution of gluon TMDs from small to moderate x

Andrey Tarasov

FACTORIZATION

Confined system of strongly interacting quarks and gluons

TMD DISTRIBUTION

One-dimensional picture

Three-dimensional picture
(Transverse momentum dependent distribution functions)

Quark TMD distributions

TMD distributions at EIC

REACHING FOR THE HORIZON

The 2015
LONG RANGE PLAN for NUCLEAR SCIENCE

- Region of much smaller x
- We will be able to study gluon-matter distributions

DGLAP vs. BFKL/BK

Saturation/CGC

- CGC with $N_{0}=0.7$ and $m_{9}=140 \mathrm{MeV}$ BFKL without saturation
E. lancu, K. Itakura, S. Munier Phys. Lett. B 590 (2004) 199

DGLAP AND BFKL/BK

$\ln x$

PARTICLE PRODUCTION

Total cross section (collinear distributions):

$$
W^{\mu \nu}=\frac{1}{4 \pi} \sum_{X} \int d^{4} z e^{i q z}\langle P| j^{\mu}(z)|X\rangle\langle X| j^{\nu}(0)|P\rangle
$$

Particle production (TMD distributions):

$$
W^{\mu \nu}=\frac{1}{4 \pi} \sum_{X} \int d^{4} z e^{i q z}\langle P| j^{\mu}(z)|X+p\rangle\langle X+p| j^{\nu}(0)|P\rangle
$$

Scalar particle production:

$$
\mathcal{L}_{h}=-\frac{1}{4} g_{h} F^{a \mu \nu}(z) F_{\mu \nu}^{a}(z) \phi(z)
$$

PARTICLE PRODUCTION

Particle production (TMD distributions):

$$
\begin{aligned}
& W^{\mu \nu}=\frac{1}{4 \pi} \sum_{X} \int d^{4} z e^{i q z}\langle P| j^{\mu}(z)|X+p\rangle\langle X+p| j^{\nu}(0)|P\rangle \\
& W^{\mu \nu}=\frac{g_{h}^{2}}{64 \pi} \int d^{4} z \int d^{4} z_{1} \int d^{4} z_{2} e^{i q z-i p z_{1}+i p z_{2}} \\
& \times \sum_{X}\langle P| \tilde{T}\left\{j^{\mu}(z) F^{a \rho \sigma}\left(z_{1}\right) F_{\rho \sigma}^{a}\left(z_{1}\right)\right\}|X\rangle\langle X| T\left\{j^{\nu}(0) F^{b \lambda \tau}\left(z_{2}\right) F_{\lambda \tau}^{b}\left(z_{2}\right)\right\}|P\rangle
\end{aligned}
$$

different time-ordering

$$
\begin{aligned}
& W^{\mu \nu}=\frac{g_{h}^{2}}{64 \pi} \int d^{4} z \int d^{4} z_{1} \int d^{4} z_{2} e^{i q z-i p z_{1}+i p z_{2}} \\
\times & \int D \tilde{A} D \tilde{\psi} \Psi_{p}^{*}(\tilde{A}, \tilde{\psi}) e^{-i S_{Q C D}(\tilde{A}, \tilde{\psi})} \tilde{j}^{\mu}(z) \tilde{F}^{a \rho \sigma}\left(z_{1}\right) \tilde{F}_{\rho \sigma}^{a}\left(z_{1}\right) \\
\times & \left.\int D\right\rangle\langle \\
& \int A D \psi \Psi_{p}(A, \psi) e^{i S_{Q C D(A, \psi)}} j^{\nu}(0) F^{b \lambda \tau}\left(z_{2}\right) F_{\lambda \tau}^{b}\left(z_{2}\right) \times \delta\left(\left.\tilde{A}\right|_{t=+\infty}-\left.A\right|_{t=+\infty}\right) \delta\left(\left.\tilde{\psi}\right|_{t=+\infty}-\left.\psi\right|_{t=+\infty}\right)
\end{aligned}
$$

KinEMATIC VARIABLES

Light-like vectors:

$$
p_{1}^{\mu} \simeq q^{\mu}+\frac{Q^{2}}{s} P^{\mu} \quad p_{2}^{\mu} \simeq P^{\mu}-\frac{M^{2}}{s} q^{\mu}
$$

Sudakov momentum decomposition:

$$
p^{\mu}=\alpha p_{1}^{\mu}+\beta p_{2}^{\mu}+p_{\perp}^{\mu}
$$

Coordinate vector decomposition:

$$
\begin{gathered}
z^{\mu}=\frac{2}{s} z_{*} p_{1}^{\mu}+\frac{2}{s} z_{\bullet} p_{2}^{\mu}+z_{\perp}^{\mu} \\
z_{*}=\sqrt{\frac{s}{2}} z_{+} \quad z_{\bullet}=\sqrt{\frac{s}{2}} z_{-} \\
\times W^{\mu \nu}=\frac{g_{h}^{2}}{64 \pi} \int d^{4} z \int d^{4} z_{1} \int d^{4} z_{2} e^{i q z-i p z_{1}+i p z_{2}} \\
\times \int \tilde{A} D \tilde{\psi} \Psi_{p}^{*}(\tilde{A}, \tilde{\psi}) e^{-i S_{Q C D}(\tilde{A}, \tilde{\psi})} \tilde{j}^{\mu}(z) \tilde{F}^{a \rho \sigma}\left(z_{1}\right) \tilde{F}_{\rho \sigma}^{a}\left(z_{1}\right) \\
\text { separation in } \alpha \\
\text { rapidity: } y=\log \alpha
\end{gathered}
$$

RAPIDITY FACTORIZATION

$$
\begin{aligned}
& \quad W^{\mu \nu}=\frac{g_{h}^{2}}{64 \pi} \int d^{4} z \int d^{4} z_{1} \int d^{4} z_{2} e^{i q z-i p z_{1}+i p z_{2}} \\
& \times \int D \tilde{A} D \tilde{\psi} \Psi_{p}^{*}(\tilde{A}, \tilde{\psi}) e^{-i S_{Q C D}(\tilde{A}, \tilde{\psi}) \tilde{j}^{\mu}(z) \tilde{F}^{a \rho \sigma}\left(z_{1}\right) \tilde{F}_{\rho \sigma}^{a}\left(z_{1}\right)} \\
& \times \int D A D \psi \Psi_{p}(A, \psi) e^{i S_{Q C D(A, \psi)} j^{\nu}(0) F^{b \lambda \tau}\left(z_{2}\right) F_{\lambda \tau}^{b}\left(z_{2}\right) \times \delta\left(\left.\tilde{A}\right|_{t=+\infty}-\left.A\right|_{t=+\infty}\right) \delta\left(\left.\tilde{\psi}\right|_{t=+\infty}-\left.\psi\right|_{t=+\infty}\right)} \\
& \times\left.\int \rightarrow A\right|_{\alpha>\sigma}+\left.A\right|_{\alpha<\sigma} D \tilde{A} D \tilde{\psi} \int D A D \psi e^{-i S_{Q C D}(\tilde{A}, \tilde{\psi})} e^{i S_{Q C D}(\tilde{A}, \tilde{\psi})} \Psi_{p}^{*}(\tilde{A}, \tilde{\psi}) \Psi_{p}(A, \psi) \delta\left(\left.\tilde{A}\right|_{t=+\infty}-\left.A\right|_{t=+\infty}\right) \delta\left(\left.\tilde{\psi}\right|_{t=+\infty}-\left.A\right|_{t=+\infty}\right) \\
& \times \sum_{X}\langle 0| \tilde{T}\left\{j^{\mu}(z) F^{a \rho \sigma}\left(z_{1}\right) \tilde{F}_{\rho \sigma}^{a}\left(z_{1}\right)\right\}|X\rangle_{A}\langle X| T\left\{j^{\nu}(0) F^{b \lambda \tau}\left(z_{2}\right) F_{\lambda \tau}^{b}\left(z_{2}\right)\right\}|0\rangle_{A}
\end{aligned}
$$

RAPIDITY FACTORIZATION

$W^{\mu \nu}=\frac{g_{n}^{2}}{64 \pi} \int d^{4} z \int d^{4} z_{1} \int d^{4} z e^{t} e^{d z z-i p p_{1}+i p p_{2}}$
$\times \int D \tilde{A} D \tilde{\psi} \int D A D \psi e^{-i S_{Q C D}(\tilde{A}, \tilde{\psi})} e^{i S_{Q C D}(\tilde{A}, \tilde{\psi})} \Psi_{p}^{*}(\tilde{A}, \tilde{\psi}) \Psi_{p}(A, \psi) \delta\left(\left.\tilde{A}\right|_{t=+\infty}-\left.A\right|_{t=+\infty}\right) \delta\left(\left.\tilde{\psi}\right|_{t=+\infty}-\left.A\right|_{t=+\infty}\right)$
$\times \sum_{X}\langle 0| \tilde{T}\left\{j^{\mu}(z) F^{a \rho \sigma}\left(z_{1}\right) \tilde{F}_{\rho \sigma}^{a}\left(z_{1}\right)\right\}|X\rangle_{A}\langle X| T\left\{j^{\nu}(0) F^{b \lambda \tau}\left(z_{2}\right) F_{\lambda \tau}^{b}\left(z_{2}\right)\right\}|0\rangle_{A}$

WILSON LINES

$$
\operatorname{tr}\langle P| \tilde{T}\left\{\left[-\infty, x_{*}\right]_{x} F_{\bullet i}\left(x_{*}, x_{\perp}\right)\left[x_{*},-\infty\right]_{x}\right\} T\left\{\left[-\infty, y_{*}\right]_{y} F_{\bullet j}\left(y_{*}, y_{\perp}\right)\left[y_{*},-\infty\right]_{y}\left[x_{\perp}, y_{\perp}\right]_{-\infty}\right\}|P\rangle
$$

TMD DISTRIBUTION

$$
\begin{aligned}
& \mathcal{G}_{i}^{a}\left(x_{B}, x_{\perp}\right) \\
\equiv & \frac{2}{s} \int d x_{*} e^{i x_{B} x_{*}}\left[-\infty, x_{*}\right]_{x}^{a m} g F_{\bullet i}^{m}\left(x_{*}, x_{\perp}\right)
\end{aligned}
$$

$$
\langle P| \mathcal{G}_{i}^{a}\left(x_{*}, x_{\perp}\right)\left[x_{\perp}, y_{\perp}\right]_{-\infty}^{a b} \mathcal{G}_{j}^{b}\left(y_{*}, y_{\perp}\right)|P\rangle_{\uparrow}^{\sigma}
$$

$$
\begin{aligned}
& \quad \tilde{\mathcal{G}}_{j}^{a}\left(x_{B}, y_{\perp}\right) \\
& \equiv \frac{2}{s} \int d y_{*} e^{-i x_{B} y_{*}} g \tilde{F}_{\bullet j}^{m}\left(y_{*}, y_{\perp}\right)\left[y_{*},-\infty\right]_{y}^{m a}
\end{aligned}
$$

distribution

$$
\alpha<\sigma^{\prime}
$$

Evolution For future-POINT WILSON LINES

$\frac{d}{d \ln \sigma}\langle p| \mathcal{F}_{i}^{a}\left(x_{B}, x_{\perp}\right) \mathcal{F}_{j}^{a}\left(x_{B}, y_{\perp}\right)|p\rangle$
Ian Balitsky, A.T. (2015)
$=-\alpha_{s} \operatorname{Tr}\left\{\langle p| \int む^{2} k_{\perp} L_{i}{ }^{\mu}\left(k, x_{\perp}, x_{B}\right)^{\text {light }}\right.$ like $\theta\left(1-x_{B}-\frac{k_{\perp}^{2}}{\sigma s}\right) L_{\mu j}\left(k, y_{\perp}, x_{B}\right)^{\text {light-like }}$
$+2 \mathcal{F}_{i}\left(x_{B}, x_{\perp}\right)\left(y_{\perp} \left\lvert\,-\frac{p^{m}}{p_{\perp}^{2}} \mathcal{F}_{k}\left(x_{B}\right)\left(i \overleftarrow{\partial}_{l}+U_{l}\right)\left(2 \delta_{m}^{k} \delta_{j}^{l}-g_{j m} g^{k l}\right) U \frac{1}{\sigma x_{B} s+p_{\perp}^{2}} U^{\dagger}\right.\right.$
$\left.\left.+\mathcal{F}_{j}\left(x_{B}\right) \frac{\sigma x_{B} s}{p_{\perp}^{2}\left(\sigma x_{B} s+p_{\perp}^{2}\right)} \right\rvert\, y_{\perp}\right)$
$+2\left(x_{\perp} \left\lvert\, U \frac{1}{\sigma x_{B} s+p_{\perp}^{2}} U^{\dagger}\left(2 \delta_{i}^{k} \delta_{m}^{l}-g_{i m} g^{k l}\right)\left(i \partial_{k}-U_{k}\right) \mathcal{F}_{l}\left(x_{B}\right) \frac{p^{m}}{p_{\perp}^{2}}\right.\right.$
$\left.\left.\left.+\mathcal{F}_{i}\left(x_{B}\right) \frac{\sigma x_{B} \bar{S}}{p_{\perp}^{2}\left(\sigma x_{B} s+p_{\perp}^{2}\right)} \right\rvert\, x_{\perp}\right) \mathcal{F}_{j}\left(x_{B}, y_{\perp}\right)|p\rangle\right\}+O\left(\alpha_{s}^{2}\right)$

Small-x. Non-linear evolution
$x_{B} \ll 1$ and $k_{\perp}^{2} \sim(x-y)_{\perp}^{-2} \ll s$

The equation describes the rapidity evolution of gluon TMD operator for any x_{B} and transverse momenta

This expression is UV and IR convergent

LIPATOV'S VERTEX

$$
\left\langle\tilde{\mathcal{F}}_{i}^{a}\left(\beta_{B}, x_{\perp}\right) \mathcal{F}_{j}^{a}\left(\beta_{B}, y_{\perp}\right)\right\rangle^{\ln \sigma}=-\int_{\sigma^{\prime}}^{\sigma} \frac{d \alpha}{2 \alpha} d^{2} k_{\perp} \tilde{L}_{i}^{a m ; \rho}\left(k, x_{\perp}, \beta_{B}\right) L_{\rho j}^{m a}\left(k, y_{\perp}, \beta_{B}\right)^{\ln \sigma^{\prime}}
$$

Past-point Wilson lines:

$$
\begin{gathered}
L_{\mu i}^{a b}\left(k, y_{\perp}, \beta_{B}\right)^{l i g h t-l i k e}=i \lim _{k^{2} \rightarrow 0} k^{2}\left\langle A_{\mu}^{a}(k) \mathcal{G}_{i}^{b}\left(\beta_{B}, y_{\perp}\right)\right\rangle^{l i g h t-l i k e} \stackrel{l}{=}\left(k_{\perp}\left|2\left\{-\frac{k_{\mu}^{\perp}}{k_{\perp}^{2}} U+U \frac{p_{\mu}^{\perp}}{p_{\perp}^{2}}\right\} \mathcal{G}_{i}\left(\beta_{B}, y_{\perp}\right)\right| y_{\perp}\right)^{a b} \\
+g\left(k_{\perp}\left|U \frac{p_{\perp}^{2} g_{\mu i}+2 p_{\mu}^{\perp} p_{i}}{\alpha \beta_{B} s+p_{\perp}^{2}}-\frac{k_{\perp}^{2} g_{\mu i}+2 k_{\mu}^{\perp} k_{i}}{\alpha \beta_{B} s+k_{\perp}^{2}} U\right| y_{\perp}\right)^{a b}+\frac{2 g k_{\mu}^{\perp}}{k_{\perp}^{2}} e^{-i(k, y)_{\perp}} U_{y_{\perp}}^{a e} \mathcal{G}_{i}^{e b}\left(\beta_{B}+\frac{k_{\perp}^{2}}{\alpha s}, y_{\perp}\right) \\
-2 g e^{-i(k, y)_{\perp}\left\{\frac{\delta_{\mu}^{j} k_{i}+\delta_{i}^{j} k_{\mu}^{\perp}-g_{\mu i} k^{j}}{\alpha \beta_{B} s+k_{\perp}^{2}}+\frac{g_{\mu i} k_{\perp}^{2} k^{j}+2 k_{\mu}^{\perp} k_{i} k^{j}}{\left(\alpha \beta_{B} s+k_{\perp}^{2}\right)^{2}}\right\}\left(U_{y_{\perp}}^{a e} \mathcal{G}_{j}^{e n}\left(\beta_{B}+\frac{k_{\perp}^{2}}{\alpha s}, y_{\perp}\right)-i \partial_{j} U^{a n}\right)+O\left(p_{2 \mu}\right)}
\end{gathered}
$$

Future-point Wilson lines:

$$
\begin{aligned}
& L_{\mu i}^{a b}\left(k, y_{\perp}, \beta_{B}\right)^{l i g h t-l i k e}=i \lim _{k^{2} \rightarrow 0} k^{2}\left\langle A_{\mu}^{a}(k) \mathcal{F}_{i}^{b}\left(\beta_{B}, y_{\perp}\right)\right\rangle^{l i g h t-l i k e} \\
= & g\left(k_{\perp}\left|U \frac{p_{\perp}^{2} g_{\mu i}+2 p_{\mu}^{\perp} p_{i}}{\alpha \beta_{B} s+p_{\perp}^{2}} U^{\dagger}-\frac{k_{\perp}^{2} g_{\mu i}+2 k_{\mu}^{\perp} k_{i}}{\alpha \beta_{B} s+k_{\perp}^{2}}\right| y_{\perp}\right)^{a b}+\frac{2 g k_{\mu}^{\perp}}{k_{\perp}^{2}} e^{-i(k, y)_{\perp}} \mathcal{F}_{i}^{a b}\left(\beta_{B}+\frac{k_{\perp}^{2}}{\alpha s}, y_{\perp}\right) \\
- & 2 g e^{-i(k, y)_{\perp}}\left[\frac{\delta_{\mu}^{j} k_{i}+\delta_{i}^{j} k_{\mu}^{\perp}-g_{\mu i} k^{j}}{\alpha \beta_{B} s+k_{\perp}^{2}}+\frac{g_{\mu i} k_{\perp}^{2} k^{j}+2 k_{\mu}^{\perp} k_{i} k^{j}}{\left(\alpha \beta_{B} s+k_{\perp}^{2}\right)^{2}}\right]\left(\mathcal{F}_{j}\left(\beta_{B}+\frac{k_{\perp}^{2}}{\alpha s}, y_{\perp}\right)-i \partial_{j} U_{y} U_{y}^{\dagger}\right)+O\left(p_{2 \mu}\right)
\end{aligned}
$$

VIRTUAL CORRECTION

Past-point Wilson lines:

$$
\begin{array}{r}
\left\langle\mathcal{G}_{i}^{n}\left(\beta_{B}, y_{\perp}\right)\right\rangle=-i g^{2} f^{n k l} \int_{\sigma^{\prime}}^{\sigma} \frac{d \alpha}{\alpha}\left(y_{\perp} \left\lvert\,-U^{\dagger} \frac{1}{\alpha \beta_{B} s-p_{\perp}^{2}} U\left(2 \delta_{i}^{k} \delta_{j}^{l}-g_{i j} g^{k l}\right)\right.\right. \\
\times\left(i \vec{\partial}_{k}+i U^{\dagger} \partial_{k} U\right) \mathcal{G}_{l}\left(\beta_{B}\right) \frac{p^{j}}{p_{\perp}^{2}}+\mathcal{G}_{i}^{k l}\left(\beta_{B}\right)\left(y_{\perp}\left|\frac{\alpha \beta_{B} s}{p_{\perp}^{2}\left(\alpha \beta_{B} s-p_{\perp}^{2}+i \epsilon\right)}\right| y_{\perp}\right)^{k l}
\end{array}
$$

Future-point Wilson lines:

$$
\begin{gathered}
\left\langle\mathcal{F}_{i}^{n}\left(\beta_{B}, y_{\perp}\right)\right\rangle=-i g^{2} f^{n k l} \int_{\sigma^{\prime}}^{\sigma} \frac{\hbar \alpha}{\alpha}\left(y_{\perp} \left\lvert\,-\frac{p^{j}}{p_{\perp}^{2}} \mathcal{F}_{l}\left(\beta_{B}\right)\left(i \overleftarrow{\partial_{k}}+i \partial_{k} U U^{\dagger}\right)\right.\right. \\
\left.\left.\times\left(2 \delta_{i}^{k} \delta_{j}^{l}-g_{i j} g^{k l}\right) U \frac{1}{\alpha \beta_{B} s+p_{\perp}^{2}} U^{\dagger}+\mathcal{F}_{i}\left(\beta_{B}\right) \frac{\alpha \beta_{B} s}{p_{\perp}^{2}\left(\alpha \beta_{B} s+p_{\perp}^{2}\right)} \right\rvert\, y_{\perp}\right)^{k l}
\end{gathered}
$$

Non-linear part
This result is valid for all β_{B} and k_{\perp}

GENERAL EVOLUTION EQUATION

$$
\begin{aligned}
& \quad \frac{d}{d \ln \sigma}\langle p| \mathcal{O}_{i}^{a}\left(\beta_{B}, x_{\perp}\right) \mathcal{O}_{j}^{a}\left(\beta_{B}, y_{\perp}\right)|p\rangle \\
& =-\alpha_{s}\langle p| T r\left\{\int d ^ { 2 } k _ { \perp } \theta (1 - \beta _ { B } - \frac { k _ { \perp } ^ { 2 } } { \sigma s }) \left[\left(x_{\perp} \left\lvert\,\left([\pm \infty , - \infty] \frac { 1 } { \sigma \beta _ { B } s + p _ { \perp } ^ { 2 } } \left([-\infty, \pm \infty] k_{k}\right.\right.\right.\right.\right.\right. \\
& \left.+p_{k}[-\infty, \pm \infty]\right) \frac{\sigma \beta_{B} s \delta_{i}^{\mu}-2 k_{\perp}^{\mu} k_{i}}{\sigma \beta_{B} s+k_{\perp}^{2}}-2 k_{\perp}^{\mu} g_{i k}[\pm \infty,-\infty] \frac{1}{\sigma \beta_{B} s+p_{\perp}^{2}}[-\infty, \pm \infty] \\
& \left.\left.-2 \delta_{k}^{\mu}[\pm \infty,-\infty] \frac{p_{i}}{\sigma \beta_{B} s+p_{\perp}^{2}}[-\infty, \pm \infty]\right) \left.\mathcal{O}^{k}\left(\beta_{B}+\frac{k_{\perp}^{2}}{\sigma s}\right)[\pm \infty, \infty] \right\rvert\, k_{\perp}\right) \\
& \times\left(k_{\perp} \left\lvert\,[\infty, \pm \infty] \mathcal{O}^{l}\left(\beta_{B}+\frac{k_{\perp}^{2}}{\sigma s}\right)\left(\frac{\sigma \beta_{B} s g_{\mu j}-2 k_{\mu}^{\perp} k_{j}}{\sigma \beta_{B} s+k_{\perp}^{2}}\left(k_{l}[\pm \infty,-\infty]+[\pm \infty,-\infty] p_{l}\right) \frac{1}{\sigma \beta_{B} s+p_{\perp}^{2}}[-\infty, \pm \infty]\right.\right.\right. \\
& \left.\left.-2 k_{\mu}^{\perp} g_{j l}[\pm \infty,-\infty] \frac{1}{\sigma \beta_{B} s+p_{\perp}^{2}}[-\infty, \pm \infty]-2 g_{\mu l}[\pm \infty,-\infty] \frac{p_{j}}{\sigma \beta_{B} s+p_{\perp}^{2}}[-\infty, \pm \infty]\right) \mid y_{\perp}\right) \\
& +2\left(x_{\perp}\left|\mathcal{O}_{i}\left(\beta_{B}+\frac{p_{\perp}^{2}}{\sigma s}\right) \frac{p_{\perp}^{\mu}}{p_{\perp}^{2}}[\pm \infty, \infty]\right| k_{\perp}\right) \\
& \times\left(k_{\perp} \left\lvert\,[\infty, \pm \infty] \mathcal{O}^{l}\left(\beta_{B}+\frac{k_{\perp}^{2}}{\sigma s}\right)\left(\frac{\sigma \beta_{B} s g_{\mu j}-2 k_{\mu}^{\perp} k_{j}}{\sigma \beta_{B} s+k_{\perp}^{2}}\left(k_{l}[\pm \infty,-\infty]+[\pm \infty,-\infty] p_{l}\right) \frac{1}{\sigma \beta_{B} s+p_{\perp}^{2}}[-\infty, \pm \infty]\right.\right.\right. \\
& \left.\left.-2 k_{\mu}^{\perp}[\pm \infty,-\infty] \frac{g_{j l}}{\sigma \beta_{B} s+p_{\perp}^{2}}[-\infty, \pm \infty]-2 g_{\mu l}[\pm \infty,-\infty] \frac{p_{j}}{\sigma \beta_{B} s+p_{\perp}^{2}}[-\infty, \pm \infty]\right) \mid y_{\perp}\right) \\
& +2\left(x_{\perp} \left\lvert\,\left([\pm \infty , - \infty] \frac { 1 } { \sigma \beta _ { B } s + p _ { \perp } ^ { 2 } } \left([-\infty, \pm \infty] k_{k}+p_{k}[-\infty, \pm \infty] \frac{\sigma \beta_{B} s \delta_{i}^{\mu}-2 k_{\perp}^{\mu} k_{i}}{\sigma \beta_{B} s+k_{\perp}^{2}}\right.\right.\right.\right. \\
& \left.\left.-2 k_{\perp}^{\mu}[\pm \infty,-\infty] \frac{g_{i k}}{\sigma \beta_{B} s+p_{\perp}^{2}}[-\infty, \pm \infty]-2 \delta_{k}^{\mu}[\pm \infty,-\infty] \frac{p_{i}}{\sigma \beta_{B} s+p_{\perp}^{2}}[-\infty, \pm \infty]\right) \left.\mathcal{O}^{k}\left(\beta_{B}+\frac{k_{\perp}^{2}}{\sigma s}\right)[\pm \infty, \infty] \right\rvert\, k_{\perp}\right) \\
& \left.\times\left(k_{\perp}\left|[\infty, \pm \infty] \frac{p_{\mu}^{\perp}}{p_{\perp}^{2}} \mathcal{O}_{j}\left(\beta_{B}+\frac{p_{\perp}^{2}}{\sigma s}, y_{\perp}\right)\right| y_{\perp}\right)\right] \\
& +2 \mathcal{O}_{i}\left(\beta_{B}, x_{\perp}\right)\left(y_{\perp} \left\lvert\,-\frac{p^{m}}{p_{\perp}^{2}} \mathcal{O}_{k}\left(\beta_{B}\right)\left(i \overleftarrow{\partial_{l}}+i \partial_{l}[\pm \infty, \mp \infty][\mp \infty, \pm \infty]\right)\right.\right. \\
& \left.\left.\times\left(2 \delta_{m}^{k} \delta_{j}^{l}-g_{j m} g^{k l}\right)[\pm \infty, \mp \infty] \frac{1}{\sigma \beta_{B} s \pm p_{\perp}^{2}}[\mp \infty, \pm \infty] \right\rvert\, y_{\perp}\right) \\
& +2\left(x_{\perp} \left\lvert\,[\pm \infty, \mp \infty] \frac{1}{\sigma \beta_{B} s \pm p_{\perp}^{2}}[\mp \infty, \pm \infty]\left(2 \delta_{i}^{k} \delta_{m}^{l}-g_{i m} g^{k l}\right)\right.\right. \\
& \left.\left.\left.\times\left(i \vec{\partial}{ }_{k}-i \partial_{k}[\pm \infty, \mp \infty][\mp \infty, \pm \infty]\right) \mathcal{O}_{l}\left(\beta_{B}\right) \frac{p^{m}}{p_{\perp}^{2}} \right\rvert\, x_{\perp}\right) \mathcal{O}_{j}\left(y_{\perp}, \beta_{B}\right)\right\} \\
& -4 \int \frac{d^{2} k_{\perp}}{k_{\perp}^{2}}\left[\theta\left(1-\beta_{B}-\frac{k_{\perp}^{2}}{\sigma s}\right) e^{i k_{\perp}(x-y) \perp \mathcal{O}_{i}\left(\beta_{B}+\frac{k_{\perp}^{2}}{\sigma s}, x_{\perp}\right) \mathcal{O}_{j}\left(\beta_{B}+\frac{k_{\perp}^{2}}{\sigma s}, y_{\perp}\right)-\frac{\sigma \beta_{B} s}{\sigma \beta_{B} s+k_{\perp}^{2}} \mathcal{O}_{i}\left(\beta_{B}, x_{\perp}\right) \mathcal{O}_{j}\left(\beta_{B}, y_{\perp}\right)}\right.
\end{aligned}
$$

Sudakov evolution

$x_{B} \sim 1$ and $k_{\perp}^{2} \sim(x-y)_{\perp}^{-2} \ll s$

Small-x. Non-linear evolution
$x_{B} \ll 1 \quad$ and $k_{\perp}^{2} \sim(x-y)_{\perp}^{-2} \ll s$

MODERATE-X LIMIT

$$
\begin{aligned}
& \frac{d}{d \ln \sigma}\langle p| \mathcal{G}_{i}^{a}\left(x_{B}, x_{\perp}\right) \mathcal{G}_{j}^{a}\left(x_{B}, y_{\perp}\right)|p\rangle \\
= & -\alpha_{s} \operatorname{Tr}\left\{\langle p| \int d^{2} k_{\perp} L_{i}{ }^{\mu}\left(k, x_{\perp}, x_{B}\right) \theta\left(1-x_{B}-\frac{k_{\perp}^{2}}{\sigma s}\right) L_{\mu j}\left(k, y_{\perp}, x_{B}\right)|p\rangle\right\}+\text { virtual part }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d \ln \sigma}\left[g_{i j} \alpha_{s} \mathcal{D}\left(\beta_{B}, z_{\perp}\right)+\frac{4}{m^{2}}\left(2 z_{i} z_{j}+g_{i j} z_{\perp}^{2}\right) \alpha_{s} \mathcal{H}^{\prime \prime}\left(\beta_{B}, z_{\perp}\right)\right] \\
= & \frac{\alpha_{s} N_{c}}{\pi} \int_{\beta_{B}}^{1} \frac{d z^{\prime}}{z^{\prime}}\left\{g_{i j} J_{0}\left(\left|z_{\perp}\right| \sqrt{\sigma \beta_{B} s \frac{1-z^{\prime}}{z^{\prime}}}\right) \alpha_{s} \mathcal{D}\left(\frac{\beta_{B}}{z^{\prime}}, z_{\perp}\right)\left[\frac{1}{z^{\prime}\left(1-z^{\prime}\right)}-2+z^{\prime}-z^{\prime 2}\right]\right. \\
+ & J_{2}\left(\left|z_{\perp}\right| \sqrt{\left.\sigma \beta_{B} s \frac{1-z^{\prime}}{z^{\prime}}\right)\left(g_{i j}+\frac{2 z_{i} z_{j}}{z^{2}}\right) \alpha_{s} \mathcal{D}\left(\frac{\beta_{B}}{z^{\prime}}, z_{\perp}\right)\left[\frac{1}{z^{\prime}}-1\right]}\right. \\
+ & \frac{4}{m^{2}} J_{0}\left(\left|z_{\perp}\right| \sqrt{\sigma \beta_{B} s \frac{1-z^{\prime}}{z^{\prime}}}\right)\left(2 z_{i} z_{j}+g_{i j} z_{\perp}^{2}\right) \alpha_{s} \mathcal{H}^{\prime \prime}\left(\frac{\beta_{B}}{z^{\prime}}, z_{\perp}\right)\left[\frac{1}{z^{\prime}\left(1-z^{\prime}\right)}-\frac{1}{z^{\prime}}-1\right]
\end{aligned}
$$

Coincides with the equation for future-point Wilson lines

$$
\left.-\frac{4 g_{i j}}{m^{2}} J_{2}\left(\left|z_{\perp}\right| \sqrt{\sigma \beta_{B} s \frac{1-z^{\prime}}{z^{\prime}}}\right) z_{\perp}^{2} \alpha_{s} \mathcal{H}^{\prime \prime}\left(\frac{\beta_{B}}{z^{\prime}}, z_{\perp}\right)\left[-z^{\prime}+z^{\prime 2}\right]\right\}
$$

$$
-\frac{\alpha_{s} N_{c}}{\pi} \int_{0}^{1} \frac{d z^{\prime}}{\left(1-z^{\prime}\right)}\left[g_{i j} \alpha_{s} \mathcal{D}\left(\beta_{B}, z_{\perp}\right)+\frac{4}{m^{2}}\left(2 z_{i} z_{j}+g_{i j} z_{\perp}^{2}\right) \alpha_{s} \mathcal{H}^{\prime \prime}\left(\beta_{B}, z_{\perp}\right)\right]
$$

Moderate-X Limit

$\frac{d}{d \ln \sigma}\langle p| \mathcal{G}_{i}^{a}\left(x_{B}, x_{\perp}\right) \mathcal{G}_{j}^{a}\left(x_{B}, y_{\perp}\right)|p\rangle$
$=-\alpha_{s} \operatorname{Tr}\left\{\langle p| \int d^{2} k_{\perp} L_{i}{ }^{\mu}\left(k, x_{\perp}, x_{B}\right) \theta\left(1-x_{B}-\frac{k_{\perp}^{2}}{\sigma s}\right) L_{\mu j}\left(k, y_{\perp}, x_{B}\right)|p\rangle\right\}+$ virtual part

$$
\begin{aligned}
& \langle p| \mathcal{F}_{i}^{a}\left(\beta_{B}, y_{\perp}\right) \mathcal{F}_{j}^{a}\left(\beta_{B}, 0_{\perp}\right)\left|p+\xi p_{2}\right\rangle= \\
= & 2 \pi^{2} \delta(\xi) g^{2}\left[-g_{i j} \mathcal{D}\left(\beta_{B}, y_{\perp}\right)-\frac{1}{m^{2}}\left(2 \partial_{i} \partial_{j}+g_{i j} \partial_{\perp}^{2}\right) \mathcal{H}\left(\beta_{B}, y_{\perp}\right)\right]
\end{aligned}
$$

strict ordering
linearization of the evolution equation

Coincides with the equation for future-point Wilson lines

$$
\begin{gathered}
\frac{d}{d \ln \sigma}\left[\alpha_{s} \mathcal{D}\left(\beta_{B}, z_{\perp}\right)\right]=\frac{\alpha_{s} N_{c}}{\pi} \int_{\beta_{B}}^{1} \frac{d z^{\prime}}{z^{\prime}}\left\{J_{0}\left(\left|z_{\perp}\right| \sqrt{\sigma \beta_{B} s \frac{1-z^{\prime}}{z^{\prime}}}\right) \alpha_{s} \mathcal{D}\left(\frac{\beta_{B}}{z^{\prime}}, z_{\perp}\right)\left[\frac{1}{z^{\prime}\left(1-z^{\prime}\right)_{+}}-2+z^{\prime}-z^{\prime 2}\right]\right. \\
\left.-\frac{4}{m^{2}} J_{2}\left(\left|z_{\perp}\right| \sqrt{\sigma \beta_{B} s \frac{1-z^{\prime}}{z^{\prime}}}\right) z_{\perp}^{2} \alpha_{s} \mathcal{H}^{\prime \prime}\left(\frac{\beta_{B}}{z^{\prime}}, z_{\perp}\right)\left[-z^{\prime}+z^{\prime 2}\right]\right\} \\
z_{\perp}=0 \mid \\
\quad--\cdots-\cdots-\cdots \\
\frac{d}{d \ln \sigma} \alpha_{s} \mathcal{D}\left(\beta_{B}, 0_{\perp}\right)=\frac{\alpha_{s} N_{c}}{\pi} \int_{\beta_{B}}^{1} \frac{d z^{\prime}}{z^{\prime}}\left[\frac{1}{z^{\prime}\left(1-z^{\prime}\right)_{+}}-2+z^{\prime}\left(1-z^{\prime}\right)\right] \alpha_{s} \mathcal{D}\left(\frac{\beta_{B}}{z^{\prime}}, 0_{\perp}\right)
\end{gathered}
$$

SMALL-X LIMIT

Past-point Wilson lines:

$$
\begin{gathered}
\frac{d}{d \ln \sigma}\left\langle\bar{U}_{i}^{a}\left(x_{\perp}\right) \bar{U}_{j}^{a}\left(y_{\perp}\right)\right\rangle \\
=-\frac{g^{2}}{8 \pi^{3}} \int d^{2} z_{\perp} \operatorname{Tr}\left\{\left(i \overrightarrow{\partial_{i}^{\vec{c}}}+\bar{U}_{i}^{x}\right)\left(U_{x}^{\dagger} U_{z}-1\right) \frac{(x-y)_{\perp}^{2}}{(x-z)_{\perp}^{2}(z-y)_{\perp}^{2}}\left(U_{z}^{\dagger} U_{y}-1\right)\left(-i \overleftarrow{\partial_{j}^{y}}+\bar{U}_{j}^{y}\right)\right\} \\
\text { BFKL/BK kernel }
\end{gathered}
$$

Future-point Wilson lines:

$$
\begin{aligned}
& \frac{d}{d \ln \sigma}\left\langle\tilde{U}_{i}^{a}\left(x_{\perp}\right) U_{j}^{a}\left(y_{\perp}\right)\right\rangle \\
= & -\frac{g^{2}}{8 \pi^{3}} \int d^{2} z_{\perp} \operatorname{Tr}\left\{\left(-i \overrightarrow{\partial_{i}^{\vec{x}}}+\tilde{U}_{i}^{x}\right)\left(\tilde{U}_{x} \tilde{U}_{z}^{\dagger}-1\right) \frac{(x-y)_{\perp}^{2}}{(x-z)_{\perp}^{2}(z-y)_{\perp}^{2}}\left(U_{z} U_{y}^{\dagger}-1\right)\left(\overleftarrow{\partial_{j}^{y}}+U_{j}^{y}\right)\right\}
\end{aligned}
$$

CONCUSSIONS. RAPIDITY FACTORIZATION

