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TMD DISTRIBUTION
One-dimensional picture

Three-dimensional picture 
(Transverse momentum dependent distribution functions)

xf(x)

the uncertainty on the contributions from
the unmeasured small-x region. While the
central values of the helicity contributions in
Fig. 1.2 are derived from existing data, they
could change as new data become available
in the low- x region. The uncertainties cal-
culated here are based on the state-of-the art
theoretical treatment of all available data re-
lated to the nucleon spin puzzle. Clearly, the

EIC will make a huge impact on our knowl-
edge of these quantities, unmatched by any
other existing or anticipated facility. The
reduced uncertainties would definitively re-
solve the question of whether parton spin
preferences alone can account for the over-
all proton spin, or whether additional contri-
butions are needed from the orbital angular
momentum of partons in the nucleon.

The Confined Motion of Partons Inside the Nucleon

Semi-inclusive DIS (SIDIS) measure-
ments have two natural momentum scales:
the large momentum transfer from the elec-
tron beam needed to achieve the desired spa-
tial resolution, and the momentum of the
produced hadrons perpendicular to the direc-
tion of the momentum transfer, which prefers
a small value sensitive to the motion of con-
fined partons. Remarkable theoretical ad-
vances over the past decade have led to a
rigorous framework where information on the
confined motion of the partons inside a fast-
moving nucleon is matched to transverse-
momentum dependent parton distributions
(TMDs). In particular, TMDs are sensitive

to correlations between the motion of par-
tons and their spin, as well as the spin of the
parent nucleon. These correlations can arise
from spin-orbit coupling among the partons,
about which very little is known to date.
TMDs thus allow us to investigate the full
three-dimensional dynamics of the proton,
going well beyond the information about lon-
gitudional momentum contained in conven-
tional parton distributions. With both elec-
tron and nucleon beams polarized at collider
energies, the EIC will dramatically advance
our knowledge of the motion of confined glu-
ons and sea quarks in ways not achievable at
any existing or proposed facility.
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Figure 1.3: Left: The transverse-momentum distribution of an up quark with longitudinal
momentum fraction x = 0.1 in a transversely polarized proton moving in the z-direction, while
polarized in the y-direction. The color code indicates the probability of finding the up quarks.
Right: The transverse-momentum profile of the up quark Sivers function at five x values
accessible to the EIC, and corresponding statistical uncertainties.
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QUARK TMD DISTRIBUTIONS
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Figure 1.3: Left: The transverse-momentum distribution of an up quark with longitudinal
momentum fraction x = 0.1 in a transversely polarized proton moving in the z-direction, while
polarized in the y-direction. The color code indicates the probability of finding the up quarks.
Right: The transverse-momentum profile of the up quark Sivers function at five x values
accessible to the EIC, and corresponding statistical uncertainties.
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TMD DISTRIBUTIONS AT EIC
xf(x)

Electron Ion Collider:
The Next QCD Frontier

Understanding the glue
that binds us all
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The 12 GeV upgrade of CEBAF at JLab and the COMPASS at CERN will initiate such
studies in predominantly valence quark region. However, these programs will be dramati-
cally extended at the EIC to explore the role of the gluons and sea quarks in determining
the hadron structure and properties. This will resolve crucial questions, such as whether
a substantial “missing” portion of nucleon spin resides in the gluons. By providing high-
energy probes of partons’ transverse momenta, the EIC should also illuminate the role of
their orbital motion contributing to nucleon spin.

The Spin and Flavor Structure of the Nucleon

An intensive and worldwide experimen-
tal program over the past two decades has
shown that the spin of quarks and antiquarks
is only responsible for ⇠ 30% of the pro-
ton spin. Recent RHIC results indicate that
the gluons’ spin contribution in the currently
explored kinematic region is non-zero, but
not yet su�cient to account for the missing
70%. The partons’ total helicity contribu-
tion to the proton spin is very sensitive to
their minimum momentum fraction x acces-
sible by the experiments. With the unique
capability to reach two orders of magnitude

lower in x and to span a wider range of mo-
mentum transferQ than previously achieved,
the EIC would o↵er the most powerful tool
to precisely quantify how the spin of gluons
and that of quarks of various flavors con-
tribute to the protons spin. The EIC would
realize this by colliding longitudinally polar-
ized electrons and nucleons, with both inclu-
sive and semi-inclusive DIS measurements.
In the former, only the scattered electron is
detected, while in the latter, an additional
hadron created in the collisions is to be de-
tected and identified.
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Current polarized DIS data:

CERN DESY JLab SLAC

Current polarized BNL-RHIC pp data:
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Figure 1.2: Left: The range in parton momentum fraction x vs. the square of the momentum
transferred by the electron to the proton Q2 accessible with the EIC in e+p collisions at two
di↵erent center-of-mass energies, compared to existing data. Right: The projected reduction
in the uncertainties of the gluon’s helicity contribution �G vs. the quark helicity contribution
�⌃/2 to the proton spin from the region of parton momentum fractions x > 0.001 that would
be achieved by the EIC for di↵erent center-of-mass energies.

Figure 1.2 (Right) shows the reduction in
uncertainties of the contributions to the nu-
cleon spin from the spin of the gluons, quarks
and antiquarks, evaluated in the x range

from 0.001 to 1.0. This would be achieved by
the EIC in its early operations. In future, the
kinematic range could be further extended
down to x ⇠ 0.0001 reducing significantly
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DGLAP VS. BFKL/BK
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DGLAP AND BFKL/BK

1.2.2 The Nucleus, a QCD Laboratory

The nucleus is a QCD “molecule”, with a complex structure corresponding to bound states
of nucleons. Understanding the formation of nuclei in QCD is an ultimate long-term goal of
nuclear physics. With its wide kinematic reach, as shown in Fig. 1.5 (Left), the capability
to probe a variety of nuclei in both inclusive and semi-inclusive DIS measurements, the
EIC will be the first experimental facility capable of exploring the internal 3-dimensional
sea quark and gluon structure of a fast-moving nucleus. Furthermore, the nucleus itself is
an unprecedented QCD laboratory for discovering the collective behavior of gluonic matter
at an unprecedented occupation number of gluons, and for studying the propagation of
fast-moving color charges in a nuclear medium.
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Figure 1.5: Left: The range in the square of the transferred momentum by the electron to the
nucleus, Q2, versus the parton momentum fraction x accessible to the EIC in e-A collisions at
two di↵erent center-of-mass energies, compared with the existing data. Right: The schematic
probe resolution vs. energy landscape, indicating regions of non-perturbative and perturbative
QCD, including in the latter, low to high saturated parton density, and the transition region
between them.

QCD at Extreme Parton Densities
In QCD, the large soft-gluon density enables
the non-linear process of gluon-gluon recom-
bination to limit the density growth. Such a
QCD self-regulation mechanism necessarily
generates a dynamic scale from the interac-
tion of high density massless gluons, known
as the saturation scale, Q

s

, at which gluon
splitting and recombination reach a balance.
At this scale, the density of gluons is ex-
pected to saturate, producing new and uni-
versal properties of hadronic matter. The
saturation scale Q

s

separates the condensed
and saturated soft gluonic matter from the
dilute, but confined, quarks and gluons in a
hadron, as shown in Fig. 1.5 (Right).

The existence of such a state of satu-
rated, soft gluon matter, often referred to as
the Color Glass Condensate (CGC), is a di-
rect consequence of gluon self-interactions in
QCD. It has been conjectured that the CGC
of QCD has universal properties common to
nucleons and all nuclei, which could be sys-
tematically computed if the dynamic satu-
ration scale Q

s

is su�ciently large. How-
ever, such a semi-hard Q

s

is di�cult to
reach unambiguously in electron-proton scat-
tering without a multi-TeV proton beam.
Heavy ion beams at the EIC could provide
precocious access to the saturation regime
and the properties of the CGC because the
virtual photon in forward lepton scattering

7

TMD approach

The 12 GeV upgrade of CEBAF at JLab and the COMPASS at CERN will initiate such
studies in predominantly valence quark region. However, these programs will be dramati-
cally extended at the EIC to explore the role of the gluons and sea quarks in determining
the hadron structure and properties. This will resolve crucial questions, such as whether
a substantial “missing” portion of nucleon spin resides in the gluons. By providing high-
energy probes of partons’ transverse momenta, the EIC should also illuminate the role of
their orbital motion contributing to nucleon spin.

The Spin and Flavor Structure of the Nucleon

An intensive and worldwide experimen-
tal program over the past two decades has
shown that the spin of quarks and antiquarks
is only responsible for ⇠ 30% of the pro-
ton spin. Recent RHIC results indicate that
the gluons’ spin contribution in the currently
explored kinematic region is non-zero, but
not yet su�cient to account for the missing
70%. The partons’ total helicity contribu-
tion to the proton spin is very sensitive to
their minimum momentum fraction x acces-
sible by the experiments. With the unique
capability to reach two orders of magnitude

lower in x and to span a wider range of mo-
mentum transferQ than previously achieved,
the EIC would o↵er the most powerful tool
to precisely quantify how the spin of gluons
and that of quarks of various flavors con-
tribute to the protons spin. The EIC would
realize this by colliding longitudinally polar-
ized electrons and nucleons, with both inclu-
sive and semi-inclusive DIS measurements.
In the former, only the scattered electron is
detected, while in the latter, an additional
hadron created in the collisions is to be de-
tected and identified.
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Figure 1.2: Left: The range in parton momentum fraction x vs. the square of the momentum
transferred by the electron to the proton Q2 accessible with the EIC in e+p collisions at two
di↵erent center-of-mass energies, compared to existing data. Right: The projected reduction
in the uncertainties of the gluon’s helicity contribution �G vs. the quark helicity contribution
�⌃/2 to the proton spin from the region of parton momentum fractions x > 0.001 that would
be achieved by the EIC for di↵erent center-of-mass energies.

Figure 1.2 (Right) shows the reduction in
uncertainties of the contributions to the nu-
cleon spin from the spin of the gluons, quarks
and antiquarks, evaluated in the x range

from 0.001 to 1.0. This would be achieved by
the EIC in its early operations. In future, the
kinematic range could be further extended
down to x ⇠ 0.0001 reducing significantly
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PARTICLE PRODUCTION
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PARTICLE PRODUCTION
Particle production (TMD distributions):
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KINEMATIC VARIABLES
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RAPIDITY FACTORIZATION
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RAPIDITY FACTORIZATION
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WILSON LINES

gauge invariant two different T-products
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TMD DISTRIBUTION
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EVOLUTION FOR FUTURE-POINT WILSON LINES
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LIPATOV’S VERTEX

Lab
µi(k, y?,�B)

light�like = i lim
k2!0

k2hAa
µ(k)Gb

i (�B , y?)i
light�like

= (k?|2
n

�
k?µ
k2?

U + U
p?µ
p2?

o

Gi(�B , y?)|y?)ab

+g(k?|U
p2?gµi + 2p?µ pi
↵�Bs+ p2?

�
k2?gµi + 2k?µ ki
↵�Bs+ k2?

U |y?)ab +
2gk?µ
k2?

e�i(k,y)?Uae
y?

Geb
i (�B +

k2?
↵s

, y?)

�2ge�i(k,y)?
n�jµki + �ji k

?
µ � gµik

j

↵�Bs+ k2?
+

gµik
2
?k

j + 2k?µ kik
j

(↵�Bs+ k2?)
2

o⇣

Uae
y?

Gen
j (�B +

k2?
↵s

, y?)� i@jU
an
⌘

+O(p2µ)

Lab
µi(k, y?,�B)

light�like = i lim
k2!0

k2hAa
µ(k)Fb

i (�B , y?)ilight�like

= g(k?|U
p2?gµi + 2p?µ pi
↵�Bs+ p2?

U† �
k2?gµi + 2k?µ ki
↵�Bs+ k2?

|y?)ab +
2gk?µ
k2?

e�i(k,y)?Fab
i

�
�B +

k2?
↵s

, y?
�

�2ge�i(k,y)?
h�jµki + �ji k

?
µ � gµik

j

↵�Bs+ k2?
+

gµik
2
?k

j + 2k?µ kik
j

(↵�Bs+ k2?)
2

i⇣
Fj

�
�B +

k2?
↵s

, y?
�
� i@jUyU

†
y

⌘
+ O(p2µ)

hF̃a
i (�B , x?)Fa

j (�B , y?)iln� = �
Z �

�0

d

�
↵

2↵
d

�2
k?L̃

am;⇢
i (k, x?,�B)L

ma
⇢j (k, y?,�B)

ln�0

Future-point Wilson lines:

Past-point Wilson lines:



VIRTUAL CORRECTION

Non-linear part
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GENERAL EVOLUTION EQUATION
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CONCUSSIONS. RAPIDITY FACTORIZATION


