Large Angle Energy Flow in Medium Modified Jets

Yacine Mehtar-Tani
INT, University of Washington

January 11, 2016
Jets and Heavy Flavor Workshop, Santa Fe, NM

Collaborations: Jean-Paul Blaizot, Leonard Fister, Edmond Iancu and Marcus Torres
Phys.Rev.Lett. 111 (2013) arXiv:1301.6102 [hep-ph]
Phys.Rev.Lett. 114 (2015) 22 arXiv:1407.0326
Nucl.Phys. A940 (2015) 67 arXiv:1409.6202

Jet Nuclear Modification Factor

Jets or high pt partons lose energy mostly by radiating gluons at large angles: Jet in $\mathrm{Pb}-\mathrm{Pb}$ collisions are strongly suppressed compared to proton-proton collisions

$$
\mathrm{R}_{\mathrm{AA}} \equiv \frac{1}{\mathrm{~N}_{\mathrm{coll}}} \frac{\mathrm{~d} \mathrm{~N}_{\mathrm{AA}}}{\mathrm{dN}}
$$

Jets in $\mathrm{e}^{+} \mathrm{e}^{-}$

[Azimov, Dokshitzer, Khoze, Troyan (1985)]

$\square \quad$ Large angle soft gluon radiation: sensitive to total charge of the jet
\square Coherence: destructive interferences at large angles
\square Out-Of-Cone energy flow: Banfi-Marchesini- Smye Eq. (global logs, Sudakov suppression). Intrajet structure: Angular Ordering, MLLA Eq.

Interjet hadronic activity:
Dragg effect: "stringy" fragmentation from QCD

Jets in $\mathrm{e}^{+} \mathrm{e}^{-}$

Jets in the QGP

- Color Decoherence: Coherence suppressed by in-medium color randomization
[MT, Salgado, Tywoniuk (2010-2011)
Casalderrey-Solana, Iancu (2011)]
- Additional component: large angle mediuminduced gluon cascade (This talk)
\square No logarithmic enhancements for the mediuminduced part but length enhancement

New (obvious) time scale: the medium length L

- Final state rescattering

$$
\left\langle\mathrm{p}_{\perp}^{2}\right\rangle \equiv \hat{q} \mathrm{~L}
$$

- Coherent medium-induced soft gluon radiation: no logarithm enhancement but length enhancement
$\omega \frac{d N}{d \omega}=\alpha_{s} \frac{(\mathrm{~L}}{\mathrm{t}_{f}} \equiv \alpha_{s} N_{e f f}$
[Guylassy, Wang, Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov, Vitev, Levai, Wiedemann, Arnold ,Moore, Yaffe (1992-2000)]

Missing energy in asymmetric dijets

\square Selection of dijet events with large momentum Imbalance $\mathrm{p}_{\mathrm{T} 1}>120 \mathrm{GeV}$ and $\mathrm{p}_{\mathrm{T} 2}>50 \mathrm{GeV}$

CMS: energy is lost in soft particles at large angles

Out-of-cone energy distribution

\square Recovering the missing energy (angular distribution of particles away from the jet axis)

momentum imbalance:

Projection of particle p_{T} 's along the jet axis.

$$
\left\langle\mathrm{p}^{\|}\right\rangle=\left(\mathrm{k}_{1}-\mathrm{k}_{2}\right)^{\|}
$$

Vanishes due to mom.
conservation when $\Delta R=\pi$

CMS (2014-2015): energy is lost in soft particles at large angles

Coupling to the medium

\square The jet couples to the medium via (local) transport coefficient

$$
\hat{q} \equiv \frac{m_{D}^{2}}{\lambda} \sim \frac{(\text { Debye mass })^{2}}{\text { mean free path }}
$$

$$
\text { pt-broadening }\left\langle\mathrm{k}_{\perp}^{2}\right\rangle \sim \hat{q} \mathrm{~L}
$$

\square Weak coupling:

Independent multiple scattering approximation
\square Formally: Wilson lines

$$
\mathrm{U}(x) \equiv \mathcal{P} \exp \left(\mathfrak{i g} \int_{0}^{\mathrm{L}} \mathrm{~d} x^{+} A^{-}\left(x, x^{+}\right)\right)
$$

[Baier, Dokshitzer, Mueller, Peigné, Schiff (1995-2000)]
correlation length < mean-free-path < L

$$
\stackrel{\vdash m_{\mathrm{D}}^{-1} \dashv}{\longmapsto} \lambda \underset{\mathrm{~L}}{\square}
$$

In-medium radiation mechanism

\square Radiation triggered by multiple scatterings
\square Landau-Pomeranchuk-Migdal suppression (coherent radiation)

$$
\omega \frac{\mathrm{dN}}{\mathrm{~d} \omega}=\alpha_{\mathrm{s}} \frac{\mathrm{~L}}{\mathrm{t}_{\mathrm{f}}} \equiv \alpha_{\mathrm{s}} \mathrm{~N}_{\mathrm{eff}}
$$

$$
\longleftarrow \mathrm{t}_{\mathrm{f}}=\frac{\omega}{\mathrm{k}_{\perp}^{2}} \sim \sqrt{\frac{\omega}{\hat{q}}} \longrightarrow
$$

formation time
\square Maximum suppression when $\mathrm{t}_{\mathrm{f}} \gtrsim \mathrm{L} \quad \Rightarrow \quad \omega>\omega_{c}=\widehat{q} L^{2}$
\square Minimum radiation angle

$$
\theta>\theta_{c} \equiv 1 / \sqrt{\hat{q_{L}}}
$$

[Baier, Dokshitzer, Mueller, Peigné, Schiff (1995-2000) Zakharov (1996)] [Gyulassy, Levai, Litev (2001) Wiedemann (2001) Arnold, Moore,Yaffe (2002)]

Probabilistic picture

\square Multiple (independent) branchings regime:

$$
\mathrm{t}_{\mathrm{f}} \ll \mathrm{t}_{*} \ll \mathrm{~L}
$$

\square Incoherent branchings: randomization of color due to rescatterings
[Blaizot, Dominguez, Iancu, MT (2013-2014)]
[Apolinário, Armesto, Milhano, Salgado (2014)]

$$
\longmapsto \mathrm{t}_{*} \longrightarrow
$$

effective inelastic mean free path

$$
t_{*}(\omega) \sim \frac{1}{\alpha_{s}} t_{f}(\omega)
$$

Structure of branchings: angle-energy correspondence

E

$$
\theta \gg \frac{1}{\alpha_{s}^{2}} \theta_{c} \gg \theta_{c}
$$

Structure of branchings: angle-energy correspondence

E

Structure of branchings: angle-energy correspondence

Numerical estimate: $\mathrm{L}=5 \mathrm{fm}, \hat{\mathrm{q}}=2 \mathrm{GeV}^{2} / \mathrm{fm}, \alpha_{\mathrm{s}}=0.3$

$$
\frac{1}{\alpha_{s}^{2}} \theta_{c} \sim 1>\theta_{\mathrm{jet}}=0.3
$$

\Rightarrow Geometrical separation between medium-induced multiple gluon branchings and collimated vacuum shower

Rate equation for the gluon distribution

Evolution of the gluon distribution up to $t=L$ in collinear branching approx.

$$
\mathrm{D}(\omega, \theta) \equiv \omega \frac{\mathrm{dN}}{\mathrm{~d} \omega \mathrm{~d} \theta^{2}}
$$

$$
\frac{\partial}{\partial t} D(\omega, \theta)=\int_{0}^{1} \mathrm{~d} z \mathcal{K}(z)\left[\frac{D(\omega / z, \theta)}{t_{*}(\omega / z)}-\frac{D(\omega, \theta)}{t_{*}(\omega)}\right]-\frac{\hat{q}}{\omega^{2}} \nabla_{\theta}^{2} D(\omega, \theta)
$$

Energy loss: Baier, Mueller, Schiff, Son [2001], Moore, Jeon [2003]
Energy recovery: Blaizot, Dominguez, Iancu, MT [2013]

Splitting kernel

$$
\mathcal{K}(z) \sim \frac{1}{z^{3 / 2}(1-z)^{3 / 2}}
$$

Inelastic mean-free-path

$$
t_{*}(\omega)=\frac{1}{\alpha_{s}} \sqrt{\frac{\omega}{\hat{q}}}
$$

Rate equation for the gluon distribution

$$
\frac{\partial}{\partial t} D(\omega, \theta)=\int_{0}^{1} \mathrm{~d} z \mathcal{K}(z, \hat{q})\left[\frac{D(\omega / z, \theta)}{t_{*}(\omega / z)}-\frac{D(\omega, \theta)}{t_{*}(\omega)}\right]-\frac{\hat{q}}{\omega^{2}} \nabla_{\theta}^{2} D(\omega, \theta)
$$

Broadening due to branchings logarithmically enhanced
Mueller, Liou, Wu [2013]
This large correction can be fully absorbed in a renormalization of the quenching parameter

$$
\hat{q} \equiv \hat{q}_{0}\left(1+\frac{2 \alpha_{s} N_{c}}{\pi} \ln ^{2} \frac{k_{\perp}^{2}}{m_{D}^{2}}\right)
$$

Solution of the rate equation

Blaizot, Dominguez, Iancu, MT, PRL 111 (2013)

Integrating over angles
Initial condition

$$
D(\omega)=\int \mathrm{d}^{2} \theta D(\omega, \theta)
$$

$$
D_{0}(\omega)=\delta(\omega-E)
$$

Scaling solution (for $\omega \ll \mathrm{E}$) \Rightarrow Fixed-point of the collision term

$$
D(\omega) \sim \frac{\tau}{\sqrt{\omega}} \mathrm{e}^{-\pi \tau^{2}}
$$

where

$$
\tau=\frac{L}{t_{*}(E)}
$$

Energy flow at low frequencies

Although the rate equation conserves energy at each branching, the integrated energy is not conserved

$$
\int_{0}^{E} d \omega D(\omega)=E \mathrm{e}^{-\pi \tau}<E
$$

Where does the missing energy go?

Energy flow at low frequencies

The flow of energy is positive and constant in the soft sector

$$
\mathcal{F}(\omega)=\frac{\partial}{\partial t} \int_{\omega}^{E} \mathrm{~d} \omega^{\prime} D\left(\omega^{\prime}\right)
$$

$$
\mathcal{F}(\omega)=2 \pi \tau \mathrm{e}^{-\pi \tau^{2}}
$$

Condensation: Energy accumulates at $\omega=0$ (in real life energy dissipates at $\omega=$ temperature of the QGP)

For a jet that escapes the medium $\mathrm{t}_{*}(\mathrm{E}) \gg \mathrm{L} \quad($ or $\tau \ll 1)$ the energy that is injected in the medium is

$$
E_{0}=\pi \omega_{s} \sim \alpha_{s}^{2} \hat{q} L^{2}
$$

Wave Turbulence in Jets

Soft particles at large angles

Richardson Cascade 1921
Energy injection

\square Gain $=$ Loss \Rightarrow Constant Energy Flow
\square Inertial range: Energy flows from high to low frequencies without accumulating (inverse energy cascade)

Efficient mechanism for energy transport to large angles

Angular distribution

I - Leading particle $\omega \sim$ E
II - Rare BDMPS radiation: $\omega_{\mathrm{s}} \ll \omega<\omega_{\mathrm{c}}<\mathrm{E}$
III — Multiple branching regime $\omega \ll \omega_{\mathrm{s}} \ll \mathrm{E}$

I - Leading particle $\omega \sim \mathrm{E}$

Not sensitive to gluon radiation (or only via the renormalized quenching parameter)

$$
D(\omega, \theta) \sim D(\omega) \mathcal{P}(\theta, \omega) \sim \omega \delta(\omega-E) \mathcal{P}(\theta, \omega)
$$

- Broadening Prob.

$$
\mathcal{P}(\theta, \omega) \equiv \frac{4 \pi}{\langle\theta\rangle^{2}} \mathrm{e}^{-\theta^{2} /\langle\theta\rangle^{2}}
$$

$$
\langle\theta\rangle^{2} \equiv \frac{\hat{q} L}{E^{2}} \quad(\sim 0.001)
$$

The deflection of the jet is negligible!

II - Rare BDMPS radiation: $\omega_{\mathrm{s}}<\omega<\omega_{\mathrm{c}}<\mathrm{E}$

Single gluon radiation $\mathrm{O}\left(\alpha_{s}\right)$. The broadening is determined by the diffusion of the radiated gluon

$$
D(\omega, \theta) \simeq \alpha_{s} \int_{0}^{L} \mathrm{~d} t \mathcal{P}(\theta, \omega, L-t) \sqrt{\frac{\hat{q}}{\omega}}
$$

The typical angular broadening reads (the factor $1 / 2$ comes from the time integral)

$$
\left\langle\theta^{2}\right\rangle \equiv \frac{\left\langle k_{\perp}^{2}\right\rangle}{\omega^{2}}=\frac{\hat{q} L}{2 \omega^{2}} \quad>\theta_{c}^{2}
$$

III - Multiple branching regime $\omega \ll \omega_{\mathrm{s}} \ll \mathrm{E}$

Multiple branching + multiple scatterings

III - Multiple branching regime $\omega \ll \omega_{\mathrm{s}} \ll \mathrm{E}$

The evolution equation may be solved in Fourier space ($r_{T} \sim u_{T} / \omega \sim$ transverse dipole size)

$$
D(\omega, \boldsymbol{u}) \equiv \int \mathrm{d}^{2} \boldsymbol{\theta} D(\omega, \boldsymbol{\theta}) \mathrm{e}^{-i \boldsymbol{u} \cdot \boldsymbol{\theta}}
$$

Opacity Expansion: (order by order in elastic scatterings but all order in branchings)

$$
D(\omega, \boldsymbol{u})=\sum_{n=0}^{\infty} D_{n}(\omega, \boldsymbol{u})
$$

III — Multiple branching regime $\omega \ll \omega_{\mathrm{s}} \ll$
E
The general term reads

$$
\begin{aligned}
D_{n}(\omega, \boldsymbol{u})=c_{n}[& \left.\sigma(\omega, \boldsymbol{u}) t_{*}(\omega)\right]^{n} D(\omega) \\
& \text { dipole cross-section }
\end{aligned}
$$

where the coefficients C_{n} are solved recursively

$$
c_{n}=\prod_{m=1}^{n} \frac{2}{\sqrt{\pi}} \frac{\Gamma\left(\frac{3 m}{2}\right)}{\Gamma\left(\frac{3 m+1}{2}\right)}
$$

Why $t_{*}(\omega)$ and not L ? a gluon ω can not survive in the medium longer than $\mathrm{t}_{*}(\omega)$ therefore, to be measured it must be produced close to the surface within the shell L-t* (ω)

III - Multiple branching regime $\omega \ll \omega_{\mathrm{s}} \ll \mathrm{E}$
The solution can be written in the factorized form

$$
D(\omega, \theta)=D(\omega) \eta\left(\theta^{2} / \theta_{*}^{2}(\omega)\right) \quad \text { where } \quad \theta_{*}^{2}(\omega)=\frac{1}{\alpha_{s}}\left(\frac{\hat{q}}{\omega}\right)^{1 / 2}
$$

Normalized angular distribution (to all orders in opacity expansion)

$$
\begin{aligned}
& \eta(z)=\int_{0}^{\infty} \mathrm{d} \beta J_{0}(2 \sqrt{z \beta}) \sum_{n=0}^{\infty}(-1)^{n} c_{n} \beta^{2 n} \\
& \eta_{\mathrm{fit}}(z)=\frac{4 a^{3 / 2}}{3 \sqrt{\pi}} \mathrm{e}^{-a z^{2 / 3}} \\
& z=\theta^{2} / \theta_{*}^{2} \quad a \simeq 1.68 \\
&
\end{aligned}
$$

Understanding Dijet asymmetry?

CMS: energy is lost in soft particles at large angles

Dijet asymmetry (model vs. data)

Leading jet: $L_{1}=1 \mathrm{fm}, \quad$ Subleading jet: $L_{2}=5 \mathrm{fm}$,

Summary and outlook

\square Jets in HIC are composed of a coherent inner core and large angle decoherent gluon cascades that are characterized by a constant energy flow from large to low momenta down to the QCD scale where energy is dissipated.
\square Geometrical separation : The cascade develop at parametrically large angles away from the jet axis. Genuine QCD phenomenon. Seen in CMS data on missing energy in imbalanced dijet events?
\square Comparison with CMS data: need a Monte Carlo event generator (to deal with experimental biases) and a realistic treatment of the geometry of the collision, etc.

Backup

Inelastic rate $\mathcal{K}(z)$

Medium average
$g^{2}\left\langle A^{-}(\boldsymbol{q}, t) A^{-}\left(\boldsymbol{q}^{\prime}, t^{\prime}\right)\right\rangle_{\mathrm{med}}=\delta\left(t-t^{\prime}\right) \delta\left(\boldsymbol{q}-\boldsymbol{q}^{\prime}\right) \rho \frac{d \sigma_{\mathrm{el}}}{d^{2} \boldsymbol{q}}$

- 3-point function correlator accounts for multiple instantaneous scatterings of a 3 dipole system

$$
S^{(3)}\left(t_{2}, t_{1}\right)=S_{0}^{(3)}\left(t_{2}, t_{1}\right)+\int_{t_{1}}^{t_{2}} d t^{\prime} S_{0}^{(3)}\left(t_{2}, t^{\prime}\right) \sigma_{3}\left(t^{\prime}\right) S^{(3)}\left(t^{\prime}, t_{1}\right)
$$

$\square \mathrm{It}$ is related to the expectation value of 3 wilson lines at timedependent transverse coordinates (Brownian motion in T-space)

$$
\mathcal{K}(z) \sim S^{(3)} \sim\left\langle\operatorname{tr} T^{a} U_{F}\left(\boldsymbol{r}_{1}\right) T^{b} U_{F}^{\dagger}\left(\boldsymbol{r}_{0}\right) U_{a b}\left(\boldsymbol{r}_{2}\right)\right\rangle_{\mathrm{med}}
$$

(Universal) radiative corrections

- Radiative corrections to pt-broadening to Double Log accuracy

$$
\left\langle k_{\perp}^{2}\right\rangle=\hat{q} \mathrm{~L}\left(1+\frac{\alpha_{s} N_{c}}{2 \pi} \ln ^{2} \frac{L}{\tau_{0}}\right)
$$

[Wu (2011) Liou, Mueller, Wu (2014) Blaizot, Iancu, Dominguez, MT (2014)]

- Radiative corrections to energy loss

$$
\Delta \mathrm{E} \sim \alpha_{s} \mathrm{C}_{\mathrm{R}} \hat{\mathrm{q}} \mathrm{~L}^{2}\left(1+\frac{\alpha_{s} \mathrm{~N}_{\mathrm{c}}}{2 \pi} \ln ^{2} \frac{\mathrm{~L}}{\tau_{0}}\right)
$$

- Universality and renormalization

[Blaizot, MT (2014) Wu (2014)] of

$$
\frac{\partial}{\partial \tau} \hat{q}(k, \tau)=\frac{\alpha_{s} N_{c}}{\pi} \int_{\hat{q} \tau}^{k^{2}} \frac{d k^{\prime 2}}{k^{\prime 2}} \hat{q}\left(k^{\prime}, \tau\right)
$$

[Blaizot, MT (2014) Iancu (2014)]

How is the jet coupled to the medium?

- QCD evolution of jet quenching parameter smoothly interpolates between hard medium scale and "nonperturbative" scale
- Strong ordering in transverse $\mathrm{q}_{\perp} \sim \mathrm{m}_{\mathrm{D}} \ll \mathrm{k}_{\perp 1} \ll \ldots \ll \mathrm{p}_{\perp} \sim \mathrm{Q}_{s}=\mathrm{q} \mathrm{L}$

"Non-perturbative" initial condition for the evolution of the quenching parameter:
\square From HTL (LO+NLO)
[Aurenche, Gelis, Zaraket (2000) Caron-Huot (2008)] Ghirglieri, Hong, Kurkela, Moore, Teaney (2013-2015)]
\square Lattice
[Majumder (2012)]
[Panero, Rummukainen, Schäfer (2013)]
\square AdS/CFT
Eloss anomalous scaling: $\quad \Delta \mathrm{E} \sim \mathrm{L}^{2+\gamma} \quad$ with $\equiv \sqrt{\frac{4 \alpha_{s} \mathrm{~N}_{\mathrm{c}}}{\pi}}$Between BDMPS L^{2} and AdS/CFT results L^{3}
[Blaizot, MT (2014)]

