The Need for Surface Bias Studies for Correlation Analyses

Megan Connors

Santa Fe
Jets and Heavy Flavor Workshop

January 11-13, 2016

What's in this talk?

- Motivation for studying correlations to study energy loss in the QGP
- Correlations of different types, h-h, jet-h, γ-h are useful in different ways
- Surface bias needs to be understood to disentangle effects between different observables
- Motivate theorist and experimentalists to work together to maximize the information from these correlations

Why Correlations?

- Quantify the transport coefficients of the QGP
 - Measure k_T
- Track lost energy as a function of p_T and angle
- Energy loss depends on the pathlength
 - $-v_2$ for high p_T particles and Jets
- Measurement for all experiments
 - Compare RHIC and LHC

Studying Energy Loss with Correlations

Hadron-hadron

-Surface bias by the trigger

-Broad parton energy distribution

Jet-hadron

- -Less surface bias
- -Several parameters to vary pathlength
- -Better constrains initial parton energy

-No surface bias by trigger

-Photon p_T approximates initial parton p_T

Complementary observables

γ-hadron at RHIC

- Measure per trigger yield on awayside
- I_{AA} quantifies the FF modification
- Suppression at low ξ and enhancement at high ξ
- Enhancement more pronounced for wider angles
- Qualitative agreement with models

 p_{hadron}

M. Connors Santa Fe 2016 6

Jet-hadrons at RHIC

- Surface bias jet with high p_T constituent & study away-side jet
- Enhanced low momentum particle production
- Width appears broader but large uncertainties
- High p_T suppression balanced by low p_T enhancement

$p_T^{ m jet,rec}$ (GeV/c)	ΣD_{AA} (GeV/c)	Detector uncertainty (GeV/c)	v_2 and v_3 uncertainty (GeV/c)	Jet energy scal uncertainty (GeV/c)
10–15	-0.6 ± 0.2	+0.2 -0.2	+3.7 -0.5	+2.3 -0.0

Jet-hadron at LHC

- Jet-track correlations with inclusive jet trigger
- Subtract large Δη to remove flow
- Study nearside for leading and subleading jets
- Stronger modification for subleading jets
- Wider widths observed in both $\Delta \phi$ and $\Delta \eta$

Di-hadrons

- First evidence of jet quenching in QGP
 - Suppression on the awayside
 - Observed at RHIC & LHC
- Nearside
 - RHIC: I_{AA} =1 → no modification
 - LHC: Enhancement on the nearside

d+Au FTPC-Au 0-20%

 $p_{T,assoc}$ (GeV/c)

p+p min. bias

★ Au+Au Central

9

Di-hadrons

- Nearside
 - RHIC: $I_{AA}=1 \rightarrow$ no modification
 - Surface biased
 - LHC: Enhancement
 - Modified jet probes a different Q² than pp baseline

T. Renk, 1212.0646 [hep-ph]

Surface Bias & Path-length

- The energy loss has a path length dependence
- The parton loses more energy the longer it travels through the medium
 - Reaction plane dependence will produce a v₂ signal: Jet v₂
- Surface biased high p_T hadrons
 - A hard scattering near the surface can emit a high momentum parton with little energy loss
- Less surface bias if clustering softer particles into a jet

Studying Energy Loss with Correlations

Jet-hadron

-Several parameters to vary

Direct photon-hadron

-Less surface bias

-No surface bias by trigger

Surface Bias Depends on...

- The trigger (previous slide)
- p_T of associated hadrons

Zhang et al, 0902.4000

Surface Bias Depends on...

- The trigger (previous slide)
- p_T of associated hadrons
- Steepness of hadron spectrum
 - Less surface bias at LHC

arXiv:1210.1330v1

Surface Bias Depends on...

- The trigger (previous slide)
- p_T of associated hadrons
- Steepness of hadron spectrum
 - Less surface bias at LHC
- The observable

Renk arXiv:1210.1330v1

Di-Jet Asymmetry at LHC

- Di-jet asymmetry with "ideal" jets
- Recent JEWEL study on di-jet asymmetry
 - Does Asymmetry arise from surface bias?
 - Compare full geometry to central production

Milhano & Zapp, arxiv:1512.08107

Di-Jet Asymmetry at LHC

- Di-jet asymmetry with "ideal" jets
- Recent JEWEL study on di-jet asymmetry
 - Does Asymmetry arise from surface bias?
 - Compare full geometry to central production
 - Surface bias not a significant effect on Pb-Pb Asymmetry

0.8

0.4

0.2

0.6

Di-Jet Asymmetry at LHC

- Pathlength effect is not significant
 - Leading jet has a longer pathlength than the subleading jet for 34% of di-jets
- Contributions to Pb+Pb Asymmetry
 - HI dijet asymmetry from fluctuations in vacuum fragmentation
 - Medium fluctuations
 - E loss depends on initial m/p_⊤ ratio

How to bias jets at the LHC

YaJEM at LHC T. Renk

arXiv:1210.1330v1

- Density of vertices for 30-60 GeV Jets
- Track cuts enhance surface bias
- Surface biased jets should be comparable to pp jets

Jet-Hadron Correlations

- This could be an extremely informative tool in our tool box if we understand the biases correctly
 - More from Kirill Lapidus this afternoon
- Possible at LHC but RHIC is better suited for such tomographic studies
 - Comparison between LHC and RHIC informative

Jets at RHIC vs LHC

- Stronger surface bias at RHIC
- RHIC jets spend more time in the medium
- Di-jet asymmetry for RHIC can differentiate between models
- q-hat as a function of temperature
 - Constrain models with variety of measurements at RHIC & LHC

Measurements On the Horizon

- Run 2 LHC data at 5.02 TeV
- Large Au+Au 2014 data set
- sPHENIX
 - High rate jet detector at RHIC
 - ideal for jet tomography

Summary

- Some predictions for surface biases in hand
 - Need details studies for both LHC and RHIC energies
- More precision correlation data coming soon
- Can the models match all of the correlation data?
 - Quark vs gluon energy loss?
 - Influence of fluctuations?
- Want more guidance from theorists
 - Use theoretical guidance to probe different pathlengths by tuning jet parameters to adjust the depth of the hard scattering inside the medium
 - Predictions for both LHC and RHIC
- Are there additional experimental measurements that could help guide theory?
 - Jet v₂