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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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FIG. 11: Fit results to the differential distributions of τ , B,
ρ0, τC and the C-parameter in the (αs, α0) plane. The 1σ
contours correspond to χ2 = χ2

min +1, including statistical
and experimental systematic uncertainties. The value of
αs (vertical line) and its uncertainty (shaded band) are
taken from [14].
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FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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FIG. 11: Fit results to the differential distributions of τ , B,
ρ0, τC and the C-parameter in the (αs, α0) plane. The 1σ
contours correspond to χ2 = χ2

min +1, including statistical
and experimental systematic uncertainties. The value of
αs (vertical line) and its uncertainty (shaded band) are
taken from [14].
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FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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FIG. 11: Fit results to the differential distributions of τ , B,
ρ0, τC and the C-parameter in the (αs, α0) plane. The 1σ
contours correspond to χ2 = χ2

min +1, including statistical
and experimental systematic uncertainties. The value of
αs (vertical line) and its uncertainty (shaded band) are
taken from [14].
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FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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Fig. 5. Differential distributions for the event shapes 1 − Tγ and Bγ . Other details as in Fig. 4.

Fig. 6. Differential distributions for the event shapes M2, C and 1 − TT . The distributions are normalised such that n

refers to the number of events in the (x,Q2) bin after the Elim cut and N to the total number of events in the (x,Q2) bin
before the Elim cut. The differential cross section has been scaled for clarity by factors 10n , where n = 12, 10, 8, 6, 4, 2
for ⟨Q⟩ = 21, 29, 42, 59, 82 and 113 GeV, respectively. The solid (dashed) curves show the points used (omitted) in the
fit to NLL resummed calculation matched to NLO plus power corrections.

None of the three matching techniques discussed in Section 6.1 is strongly preferred theoreti-
cally. Although the modification terms should be used to ensure the correct behaviour of the cross
section, all options included in DISRESUM have been used. The results of fits using six different
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cally. Although the modification terms should be used to ensure the correct behaviour of the cross
section, all options included in DISRESUM have been used. The results of fits using six different
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Fig. 4. Differential distributions for the event shapes M2, C and 1 − TT . The distributions are normalised such that n
refers to the number of events in the (x,Q2) bin after the Elim cut and N to the total number of events in the (x,Q2) bin
before the Elim cut. The differential cross section has been scaled for clarity by factors 10n , where n = 12, 10, 8, 6, 4, 2
for ⟨Q⟩ = 21, 29, 42, 59, 82 and 113 GeV, respectively. Predictions of ARIADNE at the hadron (solid lines) and parton
(dashed lines) levels are shown.

the power correction becomes positive and the fitted values of αs (α0) change to 0.1285(0.3541),
values that are in closer agreement with the other variables. If the model were robust, the fitted
values of αs would be independent of µI . However a dependence on µI is clearly evident in the
tables. In view of these results, no attempt to extract combined values of (α0,αS) from the mean
event shapes was made.

10.2. Differential distributions

The differential distributions of the event-shape variables for Q2 > 320 GeV2 are compared
to the predictions of ARIADNE in Figs. 4 and 5. For all variables, ARIADNE describes the data
well. The parton level of ARIADNE is also shown. The difference between the hadron and parton
levels can be taken as illustrative of the hadronisation correction.

The differential distributions for (1 − Tγ ), Bγ , M2, C and (1 − TT ), for which the theoretical
predictions are available, have been fitted with NLL+NLO+PC calculations as shown in Figs. 6
and 7. The solid (dashed) bars show the bins that were used (unused) in the fit as described in
Section 7.

Higher precision 
possible?
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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FIG. 11: Fit results to the differential distributions of τ , B,
ρ0, τC and the C-parameter in the (αs, α0) plane. The 1σ
contours correspond to χ2 = χ2

min +1, including statistical
and experimental systematic uncertainties. The value of
αs (vertical line) and its uncertainty (shaded band) are
taken from [14].
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FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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FIG. 11: Fit results to the differential distributions of τ , B,
ρ0, τC and the C-parameter in the (αs, α0) plane. The 1σ
contours correspond to χ2 = χ2

min +1, including statistical
and experimental systematic uncertainties. The value of
αs (vertical line) and its uncertainty (shaded band) are
taken from [14].
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FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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XXVI Physics in Collison, Búzios, Rio de Janeiro, 6-9 July 2006 5

c!
0.0 0.2 0.4

c!
/d
"

 d
"

1/

-410

-210

1

210

410

610

710

H1

!
0.0 0.5 1.0

!
/d
"

 d
"

1/

-410

-210

1

210

410

610

710

H1

B
0.0 0.2 0.4

/d
B

"
 d
"

1/

-410

-210

1

210

410

610

710

H1

H1 Data

<Q>= 15 GeV  )6 ( x 20

<Q>= 18 GeV  )5 ( x 20

<Q>= 24 GeV  )4 ( x 20

<Q>= 37 GeV  )3 ( x 20

<Q>= 58 GeV  )2 ( x 20

<Q>= 81 GeV  )1 ( x 20

<Q>=116 GeV  )0 ( x 20

)+NLL+PC2
s#NLO( (fitted)

)+NLL+PC2
s#NLO( (extrapolated)

c!
0.0 0.2 0.4

c!
/d
"

 d
"

1/

-410

-210

1

210

410

610

710

H1

!
0.0 0.5 1.0

!
/d
"

 d
"

1/

-410

-210

1

210

410

610

710

H1

B
0.0 0.2 0.4

/d
B

"
 d
"

1/

-410

-210

1

210

410

610

710

H1

FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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Fig. 6. Differential distributions for the event shapes M2, C and 1 − TT . The distributions are normalised such that n

refers to the number of events in the (x,Q2) bin after the Elim cut and N to the total number of events in the (x,Q2) bin
before the Elim cut. The differential cross section has been scaled for clarity by factors 10n , where n = 12, 10, 8, 6, 4, 2
for ⟨Q⟩ = 21, 29, 42, 59, 82 and 113 GeV, respectively. The solid (dashed) curves show the points used (omitted) in the
fit to NLL resummed calculation matched to NLO plus power corrections.

None of the three matching techniques discussed in Section 6.1 is strongly preferred theoreti-
cally. Although the modification terms should be used to ensure the correct behaviour of the cross
section, all options included in DISRESUM have been used. The results of fits using six different
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Fig. 4. Differential distributions for the event shapes M2, C and 1 − TT . The distributions are normalised such that n
refers to the number of events in the (x,Q2) bin after the Elim cut and N to the total number of events in the (x,Q2) bin
before the Elim cut. The differential cross section has been scaled for clarity by factors 10n , where n = 12, 10, 8, 6, 4, 2
for ⟨Q⟩ = 21, 29, 42, 59, 82 and 113 GeV, respectively. Predictions of ARIADNE at the hadron (solid lines) and parton
(dashed lines) levels are shown.

the power correction becomes positive and the fitted values of αs (α0) change to 0.1285(0.3541),
values that are in closer agreement with the other variables. If the model were robust, the fitted
values of αs would be independent of µI . However a dependence on µI is clearly evident in the
tables. In view of these results, no attempt to extract combined values of (α0,αS) from the mean
event shapes was made.

10.2. Differential distributions

The differential distributions of the event-shape variables for Q2 > 320 GeV2 are compared
to the predictions of ARIADNE in Figs. 4 and 5. For all variables, ARIADNE describes the data
well. The parton level of ARIADNE is also shown. The difference between the hadron and parton
levels can be taken as illustrative of the hadronisation correction.

The differential distributions for (1 − Tγ ), Bγ , M2, C and (1 − TT ), for which the theoretical
predictions are available, have been fitted with NLL+NLO+PC calculations as shown in Figs. 6
and 7. The solid (dashed) bars show the bins that were used (unused) in the fit as described in
Section 7.
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FIG. 13: Thrust distribution at N3LL′ order and Q = mZ

including QED and mb corrections using the best fit values
for αs(mZ) and Ω1 in the R-gap scheme given in Eq. (68). The
pink band represents the perturbative error determined from
the scan method described in Sec. VI. Data from DELPHI,
ALEPH, OPAL, L3, and SLD are also shown.

αs(mZ) is ±0.0009 compared to ±0.0021 with Ω̄1 in the
MS scheme. Also at NNLL′ and N3LL we see that the
removal of the O(ΛQCD) renormalon leads to a reduction
of the theoretical uncertainties by about a factor of two
in comparison to the results with Ω̄1 in the MS scheme
without renormalon subtraction. The proper treatment
of the renormalon subtraction is thus a substantial part
of a high-precision analysis for Ω1 as well as for αs.

It is instructive to analyze the minimal χ2 values for
the best fit points shown in Fig. 11. In Fig. 12 the dis-
tributions of the best fits in the αs-χ2

min/dof plane are
shown using the color scheme of Fig. 11. Figure 12a dis-
plays the results in R-gap scheme, and Fig. 12b the ones
in the MS scheme. For both schemes we find that the
χ2
min values and the size of the covered area in the αs-

χ2
min/dof plane systematically decrease with increasing

order. While the analysis in the MS scheme for Ω̄1 leads
to χ2

min/dof values around unity and thus an adequate
description of the entire global data set at N3LL′ order,
we see that accounting for the renormalon subtraction in
the R-gap scheme leads to a substantially improved the-
oretical description having χ2

min/dof values below unity
already at NNLL′ and N3LL orders, with the N3LL′ or-
der result slightly lower at χ2

min/dof ≃ 0.91. This demon-
strates the excellent description of the experimental data
contained in our global data set. It also validates the
smaller theoretical uncertainties we obtain for αs and Ω1

at N3LL′ order in the R-gap scheme.

As an illustration of the accuracy of the fit, in Fig. 13
we show the theory thrust distributions at Q = mZ for
the full N3LL′ order with the R-gap scheme for Ω1, for
the default theory parameters and the corresponding best
fit values shown in bold in Tabs. IV and V. The pink

Band Band Our scan
method 1 method 2 method

N3LL′ with ΩRgap
1 0.0004 0.0008 0.0009

N3LL′ with Ω̄MS
1 0.0016 0.0019 0.0021

N3LL′ without Smod
τ 0.0018 0.0021 0.0034

O(α3
s) fixed-order 0.0018 0.0026 0.0046

TABLE VI: Theoretical uncertainties for αs(mZ) obtained at
N3LL′ order from two versions of the error band method, and
from our theory scan method. The uncertainties in the R-gap
scheme (first line) include renormalon subtractions, while the
ones in the MS scheme (second line) do not and are therefore
larger. The same uncertainties are obtained in the analysis
without nonperturbative function (third line). Larger uncer-
tainties are obtained from a pure O(α3

s) fixed-order analysis
(lowest line). Our theory scan method is more conservative
than the error band method.

band displays the theoretical uncertainty from the scan
method. The fit result is shown in comparison with data
from DELPHI, ALEPH, OPAL, L3, and SLD, and agrees
very well. (Note that the theory values displayed are
actually binned according to the ALEPH data set and
then joined by a smooth interpolation.)

Band Method

It is useful to compare our scan method to determine the
perturbative errors with the error band method [26] that
was employed in the analyses of Refs. [20, 22, 25]. In the
error band method first each theory parameter is varied
separately in the respective ranges specified in Tab. III
while the rest are kept fixed at their default values. The
resulting envelope of all these separate variations with
the fit parameters αs(mZ) and Ω1 held at their best fit
values determines the error bands for the thrust distri-
bution at the different Q values. Then, the perturbative
error is determined by varying αs(mZ) keeping all the-
ory parameters to their default values and the value of
the moment Ω1 to its best fit value. The resulting per-
turbative errors of αs(mZ) for our full N3LL′ analysis in
the R-gap scheme are given in the first line of Tab. VI.
In the second line the corresponding errors for αs(mZ)
in the MS scheme for Ω̄1 are displayed. The left column
gives the error when the band method is applied such
that the αs(mZ) variation leads to curves strictly inside
the error bands for all Q values. For this method it turns
out that the band for the highest Q value is the most
restrictive and sets the size of the error. The resulting
error for the N3LL′ analysis in the R-gap scheme is more
than a factor of two smaller than the error obtained from
our theory scan method, which is shown in the right col-
umn. Since the high Q data has a much lower statistical
weight than the data from Q = mZ , we do not consider
this method to be sufficiently conservative and conclude
that it should not be used. The middle column gives the
perturbative error when the band method is applied such
that the αs(mZ) variation minimizes a χ2 function which
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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Q from an average of the results obtained by fitting the
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the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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FIG. 10: Normalised event shape distributions corrected
to the hadron level for the τC , τ and B variables. The
measurements are compared with fits based on a NLO
QCD calculation including resummation (NLL) and sup-
plemented by power corrections (PC). The fit results are
shown as solid lines and are extended as dashed lines to
those data points which are not included in the QCD fit.

nisation Dokshitzer/Webber power corrections (PC)
have been used, which depends on the parameter α0

representing an effective strong coupling constant in
the infrared regime. An overall good description is
obtained for part of the phase space (higher Q and
moderate event shape values), where the theory is
expected to be valid. Simultaneous fits of αs(mZ)
and the power correction parameter α0 are shown in
Fig. 11. An average value of

αs(mZ) = 0.1198 ± 0.0013(exp.)
+0.0056
−0.0043(th.)

is obtained, which is consistent with the results from
jet and inclusive DIS cross sections. The fit was also
performed separately for all scales covered by the data,
see Fig. 12, where the asymptotic freedom of QCD
is clearly demonstrated. Due to the more inclusive
definition compared to jets, a larger range in scale is
accessible for the event shape analysis.

Since inclusive DIS and jet analyses offer different
sensitivity to the PDFs of the proton and αs, it is
desirable to have a combined QCD analysis based on
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min +1, including statistical
and experimental systematic uncertainties. The value of
αs (vertical line) and its uncertainty (shaded band) are
taken from [14].
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FIG. 12: The strong coupling αs as a function of the scale
Q from an average of the results obtained by fitting the
differential event shape distributions. The errors represent
the total experimental uncertainties. A value of αs(mZ) is
indicated in the plot, determined from a fit to the αs(Q) re-
sults using the QCD renormalisation group equation. The
fit curve is shown as the full line. The inner (outer) shaded
band represents the uncertainty of the fitted αs(Q) from
experimental errors (the renormalisation scale variation).
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FIG. 20: Comparison of selected determinations of αs(mZ) defined in the MS scheme.

of two compared to the pure MS definition, Ω̄1, where
renormalon effects are not treated.
The code we use in this analysis represents the most

complete theoretical treatment of thrust existing at this
time. As our final result we obtain

αs(mZ) = 0.1135 ± 0.0011,

Ω1(R∆, µ∆) = 0.323 ± 0.051 GeV, (70)

where αs is defined in the MS scheme, and Ω1 in the R-
gap scheme at the reference scales R∆ = µ∆ = 2 GeV.
Here the respective total 1-sigma errors are shown. The
results with individual 1-sigma errors quoted separately
for the different sources of uncertainties are given in
Eq. (68). Neglecting the nonperturbative effects incor-
porated in the soft function, and in particular Ω1, from
the fits gives αs(mZ) = 0.1241 which exceeds the result
in Eq. (70) by 9%. This is consistent with a simple scal-
ing argument one can derive from experimental data, see
Eq. (3) in Sec. I.
Analyses of event shapes with a simultaneous fit of

αs and a power correction have been carried out earlier
with the effective coupling model. Davison and Web-
ber [23] analyzed the thrust distribution and determined
αs(mZ) = 0.1164 ± 0.0028 also using O(α3

s) fixed-order
input, but implementing the summation of logarithms
only at NLL order (for further discussion see Sec. IX).
Recently Gehrmann et al. [95] analyzed moments of dif-
ferent event shape distributions, also with the effective
coupling model, and obtained αs(mZ) = 0.1153± 0.0029
using fixed-order perturbation theory at O(α3

s). Both
analyses neglected bottom mass and QED corrections.
Our result in Eq. (70) is compatible with these analyses
at 1-sigma, but has smaller uncertainties.
These results and our result for αs(mZ) in Eq. (70)

are substantially smaller than the results of event shape
analyses employing input from Monte Carlo generators

to determine nonperturbative effects. We emphasize that
using parton-to-hadron level transfer matrices obtained
from Monte Carlo generators to incorporate nonpertur-
bative effects is not compatible with a high-order theo-
retical analysis such as ours, and thus analyses relying on
such Monte Carlo input contain systematic errors in the
determination of αs from thrust data. The small effect
of hadronization corrections on thrust observed in Monte
Carlo generators at Q = mZ and the corresponding small
shift in αs(mZ) do not agree with the 9% shift we have
obtained from our fits as mentioned above. For the rea-
sons discussed earlier, we believe Monte Carlo should not
be used for hadronization uncertainties in higher order
analyses.

Although our theoretical approach represents the most
complete treatment of thrust at this time, and all sources
of uncertainties known to us have been incorporated in
our error budget, there are a number of theoretical is-
sues related to subleading contributions that deserve fur-
ther investigation. These issues include (i) the summa-
tion of logarithms for the nonsingular partonic cross sec-
tion, (ii) the structure of the O(αsΛQCD/Q) power cor-
rections, (iii) analytic perturbative computations of the
O(α2

s) and O(α3
s) nonlogarithmic coefficients s2 and s3

in the partonic soft function, the O(α3
s) nonlogarithmic

coefficient j3 in the partonic jet function, and the 4-loop
QCD cusp anomalous dimension Γcusp

3 . Concerning is-
sue (i) we have incorporated in our analysis the non-
singular contributions in fixed-order perturbation theory
and estimated the uncertainty related to the higher order
logarithms through the usual renormalization scale vari-
ation. Further theoretical work is needed to derive the
renormalization group structure of subleading jet, soft,
and hard functions in the nonsingular contributions and
to use these results to sum the corresponding logarithms.
Concerning issue (ii) we have shown that our theoretical
description for the thrust distribution contains a remain-
ing theoretical uncertainty from nonperturbative effects

Becher	and	Schwartz	

Farhi	
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Some Recent             Results�s(mZ)
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Outline	

!   1-je3ness	in	3	ways	in	DIS	

!   Factoriza/on	theorems	

!   Preliminary	N3LL	results	

!   Sensi/vity	to	αs, PDFs 
	

M.Klein,R.Yoshida/ProgressinParticleandNuclearPhysics61(2008)343–393351

Fig.3.DeepinelasticeventfromneutralcurrentepscatteringasregisteredintheH1apparatusinitsupgraded,HERAII,configuration.Theelectronbeam
entersfromtheleftandtheprotonbeamfromtheright.Ontheleft,anrzcrosssectionshowsthemaincomponentsoftheH1detectorasdenoted,see
text.Theeventhasatransversemomentumofthescatteredelectronof91GeVandaQ2of18600GeV2whichcorrespondtoy=0.55andx=0.33.Thus
theelectronscatteringangleisabout✓e=30�andE0e=180GeV,i.e.athighQ2andlargextheincomingelectronisscatteredintheforwarddirectionand
carriesaratherlargeenergy(cf.Fig.2).Therighttopfigureshowstheeventinthex,yprojectionexhibitingtransversemomentumbalancebetweenthe
scatteredelectronandthehadronicfinalstateasischaracteristicforNCevents.ThelegoplotvisualizestheenergydepositionintheLArcellsexhibiting
thenarrowjetstructureofthehadronicfinalstateemergingfromthestruckquark.

Fig.4.DeepinelasticeventfromepchargedcurrentscatteringasregisteredintheZEUSapparatus,initsHERAIconfiguration.Theelectronbeamenters
fromtheleftandtheprotonbeamfromtheright.Ontheleft,anrzcrosssectionshowsthemaincomponentsoftheZEUSdetectorasdenoted,seetext.
Therightfigureshowsthemeasuredtransverseenergyinthecalorimeter.Theeventisatypicalchargedcurrentscatteringeventwithanenergeticjet,
unbalancedintransversemomentum,andsomeenergyproducedfromtheprotonremnantinforwarddirection.Forthiseventonefinds✓h'90�and
pt,h'33GeV.FromEqs.(4)–(7)thiscorrespondstoQ2'2700GeV2,y'0.6andthusx'0.05,sinceatthistime,HERAwasoperatedwithEp=820GeV.

H1	Event	from	www-h1.desy.de	

e-	
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!   N-jeJness	
!   Generaliza/on	of	thrust	
!   N-jet	limit:		
	

!   1-jeJness:	1	jet		+	1	ISR		
! qB,	qJ	are	axes	to	project	par/cle	mom.	
!   Considering	3	ways	to	define	qJ	
!   min.	groups	par/cles	into	2	regions	
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Event	shape:	1-jeJness	

⌧1 =
2

Q2

X

i2X

min{qB · pi, qJ · pi}

⌧N =
2

Q2

X

i

min{qB · pi, q1 · pi, . . . , qN · pi}

⌧N ! 0

Why	1-jeRness?	

DIS	thrusts	(measured):	Non-Global	Log	beyond	NLL		

			Recent	progress	to	resum	NGL		

1-jeRness:	No	NGL,	NnLL	(n>1)	accessible		

			derive	factoriza/on	thm.	by	using	SCET	

accuracy	systema/cally	improved	with	higher	order	ME’s	

Stewart,	Tackmann,	Waalewijn	

HJHB

qB

qJ

Dasgupta,	Salam	

Neill,	Larkoski,	Moult	
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1-jeJness	in	3	ways	
9

FIG. 3: (a) 1-jettiness τa
1 measures the small light-cone component of the momentum in the jet region HJ along the “true” jet

axis qaJ , which is proportional to the jet invariant mass and is thus insensitive at leading order in λ to the transverse momentum
p⊥B of ISR. Thus p⊥B gets averaged over in calculating the τa

1 cross section. (b) 1-jettiness τ b
1 measures the small light-cone

component of pJ along the fixed axis qbJ = q + xP . This projection is sensitive to and balances the transverse momentum p⊥B
of ISR. The transverse momenta of pB and pJ get convolved together in calculating the cross section. Both τa

1 and τ b
1 divide

the final state into hemispheres in the Breit frame. (c) 1-jettiness τ c
1 divides event into back-to-back hemispheres in the CM

frame and projects beam and jet momenta onto nz, n̄z axes. These projections are sensitive to the transverse momentum p⊥B
of ISR. The momentum transfer q has a nonzero transverse component in these coordinates, and the jet and beam momenta
are convolved in p⊥B in calculating the cross section.

not directly required for calculating the objects such as
hard and soft functions that appear in the factorization
theorem. For the other versions of 1-jettiness we consider
below, the reference vector qJ is not aligned exactly with
the jet, and the transverse momentum between qJ and
the jet momentum pJ will be nonzero, as illustrated in
Fig. 3. This will change the structure of the correspond-
ing factorization theorems, introducing convolutions over
the transverse momenta of radiation from the beam and
from the final-state jet.

2. τ b
1 : hemisphere 1-jettiness in the Breit frame

A second way to define 1-jettiness in DIS is

τb1 =
2

Q2

∑

i∈X

min{qbB · pi, qbJ · pi} , (31)

where

qbB
µ
= xPµ , qbJ

µ
= qµ + xPµ . (32)

In this case, qbJ is given exactly by the quantity q + xP
which can be constructed from the electron and proton
momenta k, k′, P , and needs no information about the
jet momentum given by any jet-finding algorithm. Thus
in general qbJ differs by a transverse momentum q⊥J ∼ Qλ
from the vector qaJ used in the τa1 definition of 1-jettiness
we introduced above in Eq. (29). Note that since q =
qbJ − qbB, q itself has zero tranverse momentum q⊥ with
respect to the directions nb

J , n
b
B of qbJ , q

b
B .

This choice of vectors is natural in the Breit frame
(hence the name τb1 ), in which it divides the final state
into back-to-back hemispheres. In the Breit frame,

τb1
Breit
=

1

Q

∑

i∈X

min{n̄z ·pi, nz ·pi} . (33)

This definition directly corresponds to the thrust τQ in
DIS defined in [15] .
We will often work in the CM frame in intermediate

stages of calculation below. Expressing qbB,J in the CM
frame, we find

qbB
µ
= x

√
s
n̄µ
z

2
, (34)

qbJ
µ
= y

√
s
nµ
z

2
+ x(1 − y)

√
s
n̄µ
z

2
+ qµT ,

where q2
T = (1− y)Q2 and qbJ is a massless vector. qbJ in

Eq. (34) can also be written in the form

qbJ
µ
= PT e

Y nµ
z

2
+ PT e

−Y n̄µ
z

2
+ PT n̂µ

T , (35)

where the jet transverse momentum and rapidity are

PT = Q
√
1− y , Y =

1

2
ln

y

x(1 − y)
, (36)

and n̂T is a unit vector in the direction of qT . These
relations can be inverted to give

x =
PT e−Y

√
s− PT eY

, y =
PT eY√

s
. (37)

Equating the 0th components of Eqs. (28) and (35), we
find that

ωb
J = 2PT coshY = [y + x(1− y)]

√
s . (38)

Calculating τb1 in the CM frame groups particles into
non-hemisphere-like regions. Particles with momenta p
are grouped into the beam or jet regions according to
which dot product is smaller:

HB :
x
√
snb

B ·p
2

<
ωb
Jn

b
J ·p
2

,

HJ :
x
√
s nb

B ·p
2

>
ωb
Jn

b
J ·p
2

. (39)

Kang,	Mantry,	Qiu						PRD2012,	2013	

CM	frame	 Breit	frame	

HJHB

qJ = q + xP

qB = xP

pB

pJ
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FIG. 3: (a) 1-jettiness τa
1 measures the small light-cone component of the momentum in the jet region HJ along the “true” jet

axis qaJ , which is proportional to the jet invariant mass and is thus insensitive at leading order in λ to the transverse momentum
p⊥B of ISR. Thus p⊥B gets averaged over in calculating the τa

1 cross section. (b) 1-jettiness τ b
1 measures the small light-cone

component of pJ along the fixed axis qbJ = q + xP . This projection is sensitive to and balances the transverse momentum p⊥B
of ISR. The transverse momenta of pB and pJ get convolved together in calculating the cross section. Both τa

1 and τ b
1 divide

the final state into hemispheres in the Breit frame. (c) 1-jettiness τ c
1 divides event into back-to-back hemispheres in the CM

frame and projects beam and jet momenta onto nz, n̄z axes. These projections are sensitive to the transverse momentum p⊥B
of ISR. The momentum transfer q has a nonzero transverse component in these coordinates, and the jet and beam momenta
are convolved in p⊥B in calculating the cross section.

not directly required for calculating the objects such as
hard and soft functions that appear in the factorization
theorem. For the other versions of 1-jettiness we consider
below, the reference vector qJ is not aligned exactly with
the jet, and the transverse momentum between qJ and
the jet momentum pJ will be nonzero, as illustrated in
Fig. 3. This will change the structure of the correspond-
ing factorization theorems, introducing convolutions over
the transverse momenta of radiation from the beam and
from the final-state jet.

2. τ b
1 : hemisphere 1-jettiness in the Breit frame

A second way to define 1-jettiness in DIS is

τb1 =
2

Q2

∑

i∈X

min{qbB · pi, qbJ · pi} , (31)

where

qbB
µ
= xPµ , qbJ

µ
= qµ + xPµ . (32)

In this case, qbJ is given exactly by the quantity q + xP
which can be constructed from the electron and proton
momenta k, k′, P , and needs no information about the
jet momentum given by any jet-finding algorithm. Thus
in general qbJ differs by a transverse momentum q⊥J ∼ Qλ
from the vector qaJ used in the τa1 definition of 1-jettiness
we introduced above in Eq. (29). Note that since q =
qbJ − qbB, q itself has zero tranverse momentum q⊥ with
respect to the directions nb

J , n
b
B of qbJ , q

b
B .

This choice of vectors is natural in the Breit frame
(hence the name τb1 ), in which it divides the final state
into back-to-back hemispheres. In the Breit frame,

τb1
Breit
=

1

Q

∑

i∈X

min{n̄z ·pi, nz ·pi} . (33)

This definition directly corresponds to the thrust τQ in
DIS defined in [15] .
We will often work in the CM frame in intermediate

stages of calculation below. Expressing qbB,J in the CM
frame, we find

qbB
µ
= x

√
s
n̄µ
z

2
, (34)

qbJ
µ
= y

√
s
nµ
z

2
+ x(1 − y)

√
s
n̄µ
z

2
+ qµT ,

where q2
T = (1− y)Q2 and qbJ is a massless vector. qbJ in

Eq. (34) can also be written in the form

qbJ
µ
= PT e

Y nµ
z

2
+ PT e

−Y n̄µ
z

2
+ PT n̂µ

T , (35)

where the jet transverse momentum and rapidity are

PT = Q
√
1− y , Y =

1

2
ln

y

x(1 − y)
, (36)

and n̂T is a unit vector in the direction of qT . These
relations can be inverted to give

x =
PT e−Y

√
s− PT eY

, y =
PT eY√

s
. (37)

Equating the 0th components of Eqs. (28) and (35), we
find that

ωb
J = 2PT coshY = [y + x(1− y)]

√
s . (38)

Calculating τb1 in the CM frame groups particles into
non-hemisphere-like regions. Particles with momenta p
are grouped into the beam or jet regions according to
which dot product is smaller:

HB :
x
√
snb

B ·p
2

<
ωb
Jn

b
J ·p
2

,

HJ :
x
√
s nb

B ·p
2

>
ωb
Jn

b
J ·p
2

. (39)

CM	frame	⌧1 =
2

Q2

X

i2X

min{qB · pi, qJ · pi}

same	axes	as										but	different	weigh/ng	
for	Jet	and	Beam	regions	
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Factoriza/on	theorems	
1

�0

d�

dx dQ2 d⌧a1
= Hq(µ)

Z
dtB dtJ dks �

✓
⌧a1 � tB

Q2
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Q2
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Q

◆
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d�

dx dQ2 d⌧ b1
= Hq(µ)

Z
dtB dtJ dks �

✓
⌧a1 � tB

Q2
� tJ

Q2
� ks

Q

◆

1

�0

d�

dx dQ2 d⌧ c1
= Hq(µ)

Z
dtB dtJ dks �

✓
⌧a1 � tB

Q2
� tJ

xQ2
� ksp

xQ

◆

⇥
Z

d

2
~p? Bq

�
tB , x, ~p

2
?, µ

�
Jq

�
tJ � ~p

2
?, µ

�
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�
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Transverse	momentum	dependent	
Beam	func/on	



Beam,	Jet,	SoV	func/ons	

u
ud

u
ud

x

0

“beam function”

“jet function” “soft function”

u
ud

u
ud

µ ⌫

x 0

from	Chris	Lee’s	talk	

	in	SCET	2013	
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NNLL	predic/ons	
40

FIG. 11: Difference between τ b
1 and τa

1 cumulant cross sec-
tions at Q = 80 GeV and x = 0.2 and at Q = 40 GeV and
x = 0.02. The difference at NLL is zero for both parameter
sets.

B. τ b
1 cross section

The τb1 cumulant cross section is different from τa1 by a
single term at NLO in Eq. (185). The term contains ln z
where z is integrated over from x to 1, and so the term
becomes larger for smaller x. Fig. 11 shows their per-
cent difference at NLL and NNLL for two sets of (Q, x):
(80, 0.2) and (40, 0.02). The difference at NLL is zero
because at LO fixed order τa1 and τb1 cross section are
identical and the NLL logs are the same. At NNLL for
x = 0.2 the size of difference is small, a few percent. The
difference at the value x = 0.02 is larger than that for
x = 0.2, becoming now a 10-15% effect. This difference
is roughly constant in Q because of the mild Q depen-
dence in Fig. 10.

C. τ c
1 cross section

The 1-jettiness τc1 is designed to measure a jet close to
the z axis (incoming electron direction), and the factor-
ization theorem for τc1 in Eq. (153) is valid for a jet with
small transverse momentum q2⊥ = (1− y)Q2. So, the pa-
rameters Q and x should be chosen such that 1− y ≪ 1
in other words, Q2/(xs) ≈ 1. The parameters in Fig. 6
cannot be used because y ≈ 0.36 for Q = 80 GeV and
x = 0.2. For τc1 in Figs. 12 and 13 we choose Q = 90 GeV
and x = 0.1 for which y = 0.9. Note that the profile
functions for τc1 given in Eq. (206) are also different from
those for τa,b1 .
Fig. 12 shows the cumulant τc1 cross section resummed

to LL, NLL, and NNLL accuracy. The most notable fea-
ture in the τc1 spectrum is the threshold θ(τc1 − 1+ y) in-
dicated by an arrow in the plot. The threshold is exactly
respected in LL and NLL results and is effectively true at
NNLL because, although Eq. (189b) contains terms vio-
lating this threshold at O(αs), their size is numerically
small (∼ 0.1%). In the region near this threshold nonper-

FIG. 12: τ c
1 cumulant cross section at Q = 90 GeV and

x = 0.1, giving y = 0.9. Colored bands show theoretical
uncertainties around central values for resummed results to
LL (dotted, green), NLL (dashed, blue), and NNLL (solid,
red) accuracy. The horizontal line is the total cross section.
The arrow at 1− y indicates the threshold in τ c

1 spectrum.

FIG. 13: Difference between τ c
1 cumulant cross sections in

comparison to τa
1 results at Q = 90 GeV and x = 0.1 which

gives y = 0.9. The horizontal dashed line is the total cross
section at this x,Q2.

turbative corrections are quite important, and the purely
perturbative cross section actually has a small negative
dip (almost invisible in the plot).
Fig. 13 shows τc1 in comparison with the τa1 cumulant

cross section at NNLL. In addition to the threshold dis-
cussed in Fig. 12, the τc1 curve increases more slowly than
the τa1 curve does. This is because the normalization of
the τc1 axes in Eq. (42) are different from those for τa1 .
The beam axis qB for τc1 is larger than for τa1 by a factor
of 1/x while the jet axis qJ is approximately the same in
the limit y → 1. This increases the projection of the par-
ticle momentum qB · pi by the factor of 1/x in 1-jettiness
Eq. (24), but τc1 is not increased by quite the same factor
because fewer particles are grouped into the HB region
due to the minimum in Eq. (24). Still, in Fig. 13 for the
same value of the cross section the departure of τc1 from
its threshold is larger than that of τa1 due to this factor.
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FIG. 6: Cumulant cross section in τa
1 at Q = 80 GeV and

x = 0.2. Colored bands show theoretical uncertainties around
central values (lines) to LL (dotted line, green band), NLL
(dashed line, blue band), and NNLL (solid line, red band) ac-
curacy and the horizontal dashed line is the total cross section
at fixed x,Q2.

VIII. RESULTS

In this section we present our numerical results for the
three versions of DIS 1-jettiness: τa1 , τ

b
1 , and τc1 . We

plot the cross sections accurate for small τ1 resummed
from LL to NNLL accuracy, and also the singular terms
at fixed order O(αs) (NLO) for comparison. (We esti-
mate the size of the small missing non-singular terms by
comparing to the known O(αs) cross section integrated
over all τ1.) We start by describing the τa1 spectrum in
detail, and then compare the features of the τb1 and τc1
cross sections relative to the results for τa1 . We choose
s = (300 GeV)2 as in the H1 and ZEUS experiments.
For the PDFs, we use the MSTW2008 [110] set at NLO
and include five quark and antiquark flavors excluding
top. To be consistent with the αs used in the NLO
PDFs we use the 2-loop beta function for running αs

and αs(mZ) = 0.1202.
We present results for the cumulant cross section σc(τ1)

defined in Eq. (183) and the dimensionless distribution

dσ̂

dτ1
=

1

σ0

dσ

dτ1
=

d

dτ1
σc(τ1) . (224)

Note that both the cumulant σc(τ1) and the differential
distribution dσ̂/dτ1 are differential in x and Q2. How-
ever, for notational simplicity we made their x and Q2

dependences implicit in this section.

A. τa
1 cross section

In this subsection, we present results for the cumulant
cross section σc(τ1) and differential cross section dσ̂/dτ1
for the “aligned” 1-jettiness τ1 = τa1 .
Fig. 6 shows the τa1 cumulant cross section, defined

by Eq. (183), at Q = 80 GeV and x = 0.2. In or-

FIG. 7: Weighted differential cross section in τa
1 at Q =

80 GeV and x = 0.2. Colored bands show theoretical uncer-
tainties around central values (lines) at fixed order αs (dot-
ted line, gray band) and resummed to NLL (dashed line, blue
band) and NNLL (solid line, red band) accuracy.

FIG. 8: Differential cross section in τa
1 at Q = 80 GeV and

x = 0.2 in the peak region, NNLL with nonperturbative shape
function taken into account (NNLL PT+NP, dashed, orange),
and without NP shape function at fixed-order αs (NLO PT,
dotted, gray) and resummed (NNLL PT, solid, red).

der to illustrate perturbative convergence the results re-
summed to LL, NLL, and NNLL accuracy are shown.
The bands indicate perturbative uncertainties by vary-
ing the scales µH,B,J,S given by “profile functions” as
described in Sec. VIIC 1, and there is excellent order-by-
order convergence, and beautiful precision at NNLL or-
der. The cumulant cross section increases monotonically
from the small τa1 region and begins to saturate near for
large τa1 where the integral defining this cumulant be-
comes that for the total cross section. There is a small
gap between the total cross section at O(αs) (dashed
horizontal line) and our NNLL cumulant at large τa1 , re-
flecting the small size of nonsingular terms not taken into
account in this paper. Note however that these terms are
important at the level of precision of our cumulant cross
section, and hence they will be considered in the future.
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FIG. 6: Cumulant cross section in τa
1 at Q = 80 GeV and

x = 0.2. Colored bands show theoretical uncertainties around
central values (lines) to LL (dotted line, green band), NLL
(dashed line, blue band), and NNLL (solid line, red band) ac-
curacy and the horizontal dashed line is the total cross section
at fixed x,Q2.
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In this section we present our numerical results for the
three versions of DIS 1-jettiness: τa1 , τ

b
1 , and τc1 . We

plot the cross sections accurate for small τ1 resummed
from LL to NNLL accuracy, and also the singular terms
at fixed order O(αs) (NLO) for comparison. (We esti-
mate the size of the small missing non-singular terms by
comparing to the known O(αs) cross section integrated
over all τ1.) We start by describing the τa1 spectrum in
detail, and then compare the features of the τb1 and τc1
cross sections relative to the results for τa1 . We choose
s = (300 GeV)2 as in the H1 and ZEUS experiments.
For the PDFs, we use the MSTW2008 [110] set at NLO
and include five quark and antiquark flavors excluding
top. To be consistent with the αs used in the NLO
PDFs we use the 2-loop beta function for running αs

and αs(mZ) = 0.1202.
We present results for the cumulant cross section σc(τ1)

defined in Eq. (183) and the dimensionless distribution
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Note that both the cumulant σc(τ1) and the differential
distribution dσ̂/dτ1 are differential in x and Q2. How-
ever, for notational simplicity we made their x and Q2

dependences implicit in this section.

A. τa
1 cross section

In this subsection, we present results for the cumulant
cross section σc(τ1) and differential cross section dσ̂/dτ1
for the “aligned” 1-jettiness τ1 = τa1 .
Fig. 6 shows the τa1 cumulant cross section, defined

by Eq. (183), at Q = 80 GeV and x = 0.2. In or-
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1 at Q =

80 GeV and x = 0.2. Colored bands show theoretical uncer-
tainties around central values (lines) at fixed order αs (dot-
ted line, gray band) and resummed to NLL (dashed line, blue
band) and NNLL (solid line, red band) accuracy.

FIG. 8: Differential cross section in τa
1 at Q = 80 GeV and

x = 0.2 in the peak region, NNLL with nonperturbative shape
function taken into account (NNLL PT+NP, dashed, orange),
and without NP shape function at fixed-order αs (NLO PT,
dotted, gray) and resummed (NNLL PT, solid, red).

der to illustrate perturbative convergence the results re-
summed to LL, NLL, and NNLL accuracy are shown.
The bands indicate perturbative uncertainties by vary-
ing the scales µH,B,J,S given by “profile functions” as
described in Sec. VIIC 1, and there is excellent order-by-
order convergence, and beautiful precision at NNLL or-
der. The cumulant cross section increases monotonically
from the small τa1 region and begins to saturate near for
large τa1 where the integral defining this cumulant be-
comes that for the total cross section. There is a small
gap between the total cross section at O(αs) (dashed
horizontal line) and our NNLL cumulant at large τa1 , re-
flecting the small size of nonsingular terms not taken into
account in this paper. Note however that these terms are
important at the level of precision of our cumulant cross
section, and hence they will be considered in the future.

!   One	order	higher	than		

DIS	thrust	resumma/on	(NLL)	

!   Higher	precision?			
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FIG. 12: τ c
1 cumulant cross section at Q = 90 GeV and

x = 0.1, giving y = 0.9. Colored bands show theoretical
uncertainties around central values for resummed results to
LL (dotted, green), NLL (dashed, blue), and NNLL (solid,
red) accuracy. The horizontal line is the total cross section.
The arrow at 1− y indicates the threshold in τ c

1 spectrum.

Each τ1 is similar to thrust, measuring how closely
final-state hadrons are collimated along “beam” and
“jet” reference axes, but with important variations. τa1
measures the small light-cone momentum along two axes
aligned with the proton direction and the actual jet di-
rection, and averages over the transverse momentum of
ISR in the calculation of the cross section. τb1 projects
onto fixed axes such that the beam and jet regions are
back-to-back hemispheres in the Breit frame. The fixed
jet axis is not quite equal to the physical jet axis in the
final state, causing τb1 to be sensitive to the transverse
momentum p⊥ of ISR and requiring a convolution over
p⊥ in the jet and beam functions in the τb1 factoriza-
tion theorem. Finally τc1 groups final-state hadrons into
back-to-back hemispheres in the CM frame, projecting
momenta onto the initial proton and electron directions,
and also requires a convolution over the transverse mo-
menta of the ISR and final-state jets. Furthermore, the
case of small τc1 also requires the DIS variable y to be
near 1.
We proved factorization theorems for all three versions

of τ1 using the tools of SCET, carefully accounting for
the differing dependences on the transverse momentum
of ISR. These differences lead to the appearance of the
ordinary beam function in the τa1 factorization theorem
and the generalized k⊥-dependent beam function in the
τb1 and τc1 factorization theorems. We were able to re-
late the soft function appearing in any of these factor-
ization theorems in any reference frame to the ordinary
DIS hemisphere soft function by suitable rescaling of the
arguments, using boost invariance.
The relevant hard, jet, beam, and soft functions and

their anomalous dimensions are known to sufficiently
high order that we could immediately achieve NNLL re-
summed accuracy in our predictions for the τa,b,c1 cross
sections (using the factorization theorems we derived).
We gave predictions for the differential and cumulant τ1

FIG. 13: τ c
1 cumulant cross section in comparison to τa

1 re-
sult at Q = 90 GeV and x = 0.1 which gives y = 0.9. The
horizontal dashed line is the total cross section at this x,Q2.

cross sections, illustrating the differences among τa,b,c1
due to the different dependences on the transverse mo-
mentum of ISR. We presented numerical predictions at
x and Q2 values explored at the HERA collider, but our
analytical predictions can easily be applied to a much
wider range of kinematics relevant at other experiments,
such as at JLab [77] and the future EIC [78] and LHeC
[79].

The resummed predictions we presented are accurate
for small values of τ1 where final-state hadrons are well
collimated into two jets. For large τ1 our predictions
have to be matched onto fixed-order predictions of non-
singular terms in τ1 from full QCD. We leave the perfor-
mance of this matching at O(αs) and beyond to future
work. However, we compared our cumulant τ1 cross sec-
tions for large τ1 to the known total cross section at fixed
x and Q2, and found that the cumulative effect of these
corrections on the whole cross section is roughly at the
several percent level for the kinematics we considered.

To achieve higher perturbative accuracy in the over-
all τ1 distributions we require both singular and the
above-mentioned non-singular corrections to higher or-
der. Here we achieved NNLL resummed accuracy, but
without non-singular matching corrections needed to
achieve NNLL+NLO accuracy. To go to NNLL′+NNLO
accuracy, we need the fixed-order hard, jet, beam, and
soft functions in SCET and non-singular terms in full
QCD to O(α2

s). These are already known for the hard
and jet functions. The soft function (known for e+e− to
O(α2

s) but not yet for DIS) and beam function (including
both t and p⊥ dependence for τb,c1 ) are not yet known.
Once they are, we could actually achieve N3LL accuracy
immediately since the necessary anomalous dimensions
are all known to sufficiently high order. In extractions
of αs from e+e− event shapes, it was found that adding
another order of accuracy in the fixed-order SCET and
full QCD calculations (i.e. adding a ′) reduces theoreti-
cal uncertainty in the final value for αs by about a factor

d�̃ = exp


L

1X

k=1

(↵sL)
k
+

1X

k=1

(↵sL)
k
+ ↵s

1X

k=0

(↵sL)
k
+ · · ·

�

singular	part:	LL,	NLL,	NNLL,	N3LL,…	 nonsingular	part:		

O(αs),	O(αs
2),…			

DK,	Lee,	Stewart	2013	
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Nonsingular	part	at	O(αs)	
!   										is	done	analy/cally.	

!   A				requires	jet	algorithm	and	is	done	numerically.	

!   H1	and	ZEUS	experiments	measured	Jet	region	

!   	difficult	to	measure	the	beam	region	

!   B,							C		can	be	obtained	from	measuring	jet	region	alone,		
while										requires	measuring	two	regions.	

HJHB

qJ = q + xP

qB = xP

pB

pJ

13

where in the middle step we simply multiplied top and
bottom by the large component n̄J · pJ of the total
collinear momentum in region HJ , and in the last step
we used in the denominator n̄J · pJ = n̄J · q + O(Qλ2).
The large component of the jet momentum can only come
from the momentum transferred into the collision by the
virtual boson of momentum q—the proton with which it
collides only has a large component in the nJ · p compo-
nent. Similarly, the nB-collinear contribution to τ1 is

τcB ≡
nB ·pcB
QB

=
−n̄B ·px nB ·px
n̄B ·px QB

=
tB

−n̄B ·q QB
+O(λ4) ,

(57)
where px is the momentum of the parton that is struck
by the virtual boson of momentum q. In the middle step
we used that nB ·pcB = −nB ·px since the struck parton
recoils against the ISR and balances the small component
of momentum in the nB direction. In the last step, we
defined the positive virtuality tB ≡ −n̄B ·px nB ·px of
the spacelike struck parton and in the denominator used
that n̄B ·px = −n̄B ·q + O(Qλ2). This is because the
collision of the virtual boson and struck parton is the nJ -
collinear jet which has no large momentum in the nB · p
component. Thus momentum conservation requires that
the large components of n̄B · q and n̄B · px cancel.
The quantities in the denominators of the relations

Eqs. (56) and (57) are Lorentz invariant:

sJ ≡ n̄J ·q QJ =
qB ·q
qB ·qJ

Q2 , (58a)

sB ≡ −n̄B ·q QB =
−qJ ·q
qB ·qJ

Q2 , (58b)

where the minus sign in sB makes it positive since n̄B ·q <
0. For the cases τa,b,c1 , sJ and sB take the special values
given in Table II.
Using the definitions of QR and sJ,B in Eqs. (54) and

(58) these factors can be combined to give the transverse
virtuality of the exchanged boson q:

sJsB
Q2

R

= −n̄B ·qn̄J ·q
nB ·nJ

2
= Q2(1 − q2

⊥/Q
2) , (59)

where we used

q = n̄B ·q
nB

2
+ n̄J ·q

nJ

2
+ q⊥ , (60)

and q2 = −Q2. The transverse momentum q⊥ is orthog-
onal to nB,J . The relation Eq. (59) will be useful in
evaluating the fixed-order τ1 cross section in App. G. We
will use that q2

⊥/Q
2 ∼ λ2 when 1-jettiness is measured

to be small, τ1 ∼ λ2. A larger q⊥ cannot be transferred
into the final state for this to be true, since particles have
to be collimated along qJ,B or be soft.

D. Momentum Conservation and the Beam Region

We noted earlier that the contribution of proton rem-
nants to τ1 is exponentially suppressed, by a factor

e−|∆Y | of their rapidity with respect to qB. Only the
energetic ISR and soft radiation at larger angles in HB

contribute to τ1. Although these contributions are easier
to measure, one may still prefer to measure particles only
in the HJ jet region in the direction of qJ . In general,
such a restriction in the final state is non-global, and
leads to NGLs. However, by momentum conservation,
we can show that each of the global τa,b,c1 observables we
consider can be rewritten in terms of momenta of parti-
cles only in the HJ region (for case a this is true only in
the 2-jet region τa1 ≪ 1).
First, consider τb1 . In the Breit frame,

τb1
Breit
=

1

Q

∑

i∈X

min{nz · pi, n̄z · pi} (61)

=
1

Q

[∑

i∈Hb
J

(Ei − pz i) +
∑

i∈Hb
B

(Ei + pz i)

]

=
1

Q

[∑

i∈X

(Ei + pz i)− 2
∑

i∈Hb
J

pz i

]
,

where X = Hb
J +Hb

B denotes the entire final state. Note
that in the Breit frame,

pX = P + q =
( Q

2x
, 0, 0, Q−

Q

2x

)
, (62)

where pµX ≡
∑

i∈X pµi . Thus, EX + pzX = Q, and we
obtain

τb1
Breit
= 1−

2

Q

∑

i∈Hb
J

pz i ≡ τQ , (63)

where in the last equality we recall that Eq. (63) is pre-
cisely the definition in Eq. (46) of the DIS thrust variable
called τQ in [15], where the hemisphere Hb

J in the Breit
frame was called the “current hemisphere” HC . We will
comment further on the relation between the results of
[15] for τQ and our results for τb1 in Sec. VII B below.
Eq. (63) shows that τb1 can always be computed just in
terms of the measurements of momenta of particles in the
current hemisphere HC = Hb

J .
The same arguments as for τb1 in the Breit frame apply

to τc1 in the CM frame. In the CM frame,

τc1
CM
=

1

xy
√
s

∑

i∈X

min{nz ·pi, n̄z ·pi} (64)

=
1

xy
√
s

[∑

i∈X

(Ei + pz i)− 2
∑

i∈Hc
J

pz i

]
.

In this frame, we have that

pX = P + q (65)

=

√
s

2

(
y+1−x

(
1−

q2
T

Q2

)
,
2qT√

s
, y−1+x

(
1−

q2
T

Q2

))
,
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where in the middle step we simply multiplied top and
bottom by the large component n̄J · pJ of the total
collinear momentum in region HJ , and in the last step
we used in the denominator n̄J · pJ = n̄J · q + O(Qλ2).
The large component of the jet momentum can only come
from the momentum transferred into the collision by the
virtual boson of momentum q—the proton with which it
collides only has a large component in the nJ · p compo-
nent. Similarly, the nB-collinear contribution to τ1 is

τcB ≡
nB ·pcB
QB

=
−n̄B ·px nB ·px
n̄B ·px QB

=
tB

−n̄B ·q QB
+O(λ4) ,

(57)
where px is the momentum of the parton that is struck
by the virtual boson of momentum q. In the middle step
we used that nB ·pcB = −nB ·px since the struck parton
recoils against the ISR and balances the small component
of momentum in the nB direction. In the last step, we
defined the positive virtuality tB ≡ −n̄B ·px nB ·px of
the spacelike struck parton and in the denominator used
that n̄B ·px = −n̄B ·q + O(Qλ2). This is because the
collision of the virtual boson and struck parton is the nJ -
collinear jet which has no large momentum in the nB · p
component. Thus momentum conservation requires that
the large components of n̄B · q and n̄B · px cancel.
The quantities in the denominators of the relations

Eqs. (56) and (57) are Lorentz invariant:

sJ ≡ n̄J ·q QJ =
qB ·q
qB ·qJ

Q2 , (58a)

sB ≡ −n̄B ·q QB =
−qJ ·q
qB ·qJ

Q2 , (58b)

where the minus sign in sB makes it positive since n̄B ·q <
0. For the cases τa,b,c1 , sJ and sB take the special values
given in Table II.
Using the definitions of QR and sJ,B in Eqs. (54) and

(58) these factors can be combined to give the transverse
virtuality of the exchanged boson q:

sJsB
Q2

R

= −n̄B ·qn̄J ·q
nB ·nJ

2
= Q2(1 − q2

⊥/Q
2) , (59)

where we used

q = n̄B ·q
nB

2
+ n̄J ·q

nJ

2
+ q⊥ , (60)

and q2 = −Q2. The transverse momentum q⊥ is orthog-
onal to nB,J . The relation Eq. (59) will be useful in
evaluating the fixed-order τ1 cross section in App. G. We
will use that q2

⊥/Q
2 ∼ λ2 when 1-jettiness is measured

to be small, τ1 ∼ λ2. A larger q⊥ cannot be transferred
into the final state for this to be true, since particles have
to be collimated along qJ,B or be soft.

D. Momentum Conservation and the Beam Region

We noted earlier that the contribution of proton rem-
nants to τ1 is exponentially suppressed, by a factor

e−|∆Y | of their rapidity with respect to qB. Only the
energetic ISR and soft radiation at larger angles in HB

contribute to τ1. Although these contributions are easier
to measure, one may still prefer to measure particles only
in the HJ jet region in the direction of qJ . In general,
such a restriction in the final state is non-global, and
leads to NGLs. However, by momentum conservation,
we can show that each of the global τa,b,c1 observables we
consider can be rewritten in terms of momenta of parti-
cles only in the HJ region (for case a this is true only in
the 2-jet region τa1 ≪ 1).
First, consider τb1 . In the Breit frame,

τb1
Breit
=

1

Q

∑

i∈X

min{nz · pi, n̄z · pi} (61)

=
1

Q

[∑

i∈Hb
J

(Ei − pz i) +
∑

i∈Hb
B

(Ei + pz i)

]

=
1

Q

[∑

i∈X

(Ei + pz i)− 2
∑

i∈Hb
J

pz i

]
,

where X = Hb
J +Hb

B denotes the entire final state. Note
that in the Breit frame,

pX = P + q =
( Q

2x
, 0, 0, Q−

Q

2x

)
, (62)

where pµX ≡
∑

i∈X pµi . Thus, EX + pzX = Q, and we
obtain

τb1
Breit
= 1−

2

Q

∑

i∈Hb
J

pz i ≡ τQ , (63)

where in the last equality we recall that Eq. (63) is pre-
cisely the definition in Eq. (46) of the DIS thrust variable
called τQ in [15], where the hemisphere Hb

J in the Breit
frame was called the “current hemisphere” HC . We will
comment further on the relation between the results of
[15] for τQ and our results for τb1 in Sec. VII B below.
Eq. (63) shows that τb1 can always be computed just in
terms of the measurements of momenta of particles in the
current hemisphere HC = Hb

J .
The same arguments as for τb1 in the Breit frame apply

to τc1 in the CM frame. In the CM frame,

τc1
CM
=

1

xy
√
s

∑

i∈X

min{nz ·pi, n̄z ·pi} (64)

=
1

xy
√
s

[∑

i∈X

(Ei + pz i)− 2
∑

i∈Hc
J

pz i

]
.

In this frame, we have that

pX = P + q (65)

=

√
s

2

(
y+1−x

(
1−

q2
T

Q2

)
,
2qT√

s
, y−1+x

(
1−

q2
T

Q2

))
,
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where in the middle step we simply multiplied top and
bottom by the large component n̄J · pJ of the total
collinear momentum in region HJ , and in the last step
we used in the denominator n̄J · pJ = n̄J · q + O(Qλ2).
The large component of the jet momentum can only come
from the momentum transferred into the collision by the
virtual boson of momentum q—the proton with which it
collides only has a large component in the nJ · p compo-
nent. Similarly, the nB-collinear contribution to τ1 is

τcB ≡
nB ·pcB
QB

=
−n̄B ·px nB ·px
n̄B ·px QB

=
tB

−n̄B ·q QB
+O(λ4) ,

(57)
where px is the momentum of the parton that is struck
by the virtual boson of momentum q. In the middle step
we used that nB ·pcB = −nB ·px since the struck parton
recoils against the ISR and balances the small component
of momentum in the nB direction. In the last step, we
defined the positive virtuality tB ≡ −n̄B ·px nB ·px of
the spacelike struck parton and in the denominator used
that n̄B ·px = −n̄B ·q + O(Qλ2). This is because the
collision of the virtual boson and struck parton is the nJ -
collinear jet which has no large momentum in the nB · p
component. Thus momentum conservation requires that
the large components of n̄B · q and n̄B · px cancel.
The quantities in the denominators of the relations

Eqs. (56) and (57) are Lorentz invariant:

sJ ≡ n̄J ·q QJ =
qB ·q
qB ·qJ

Q2 , (58a)

sB ≡ −n̄B ·q QB =
−qJ ·q
qB ·qJ

Q2 , (58b)

where the minus sign in sB makes it positive since n̄B ·q <
0. For the cases τa,b,c1 , sJ and sB take the special values
given in Table II.
Using the definitions of QR and sJ,B in Eqs. (54) and

(58) these factors can be combined to give the transverse
virtuality of the exchanged boson q:

sJsB
Q2

R

= −n̄B ·qn̄J ·q
nB ·nJ

2
= Q2(1 − q2

⊥/Q
2) , (59)

where we used

q = n̄B ·q
nB

2
+ n̄J ·q

nJ

2
+ q⊥ , (60)

and q2 = −Q2. The transverse momentum q⊥ is orthog-
onal to nB,J . The relation Eq. (59) will be useful in
evaluating the fixed-order τ1 cross section in App. G. We
will use that q2

⊥/Q
2 ∼ λ2 when 1-jettiness is measured

to be small, τ1 ∼ λ2. A larger q⊥ cannot be transferred
into the final state for this to be true, since particles have
to be collimated along qJ,B or be soft.

D. Momentum Conservation and the Beam Region

We noted earlier that the contribution of proton rem-
nants to τ1 is exponentially suppressed, by a factor

e−|∆Y | of their rapidity with respect to qB. Only the
energetic ISR and soft radiation at larger angles in HB

contribute to τ1. Although these contributions are easier
to measure, one may still prefer to measure particles only
in the HJ jet region in the direction of qJ . In general,
such a restriction in the final state is non-global, and
leads to NGLs. However, by momentum conservation,
we can show that each of the global τa,b,c1 observables we
consider can be rewritten in terms of momenta of parti-
cles only in the HJ region (for case a this is true only in
the 2-jet region τa1 ≪ 1).
First, consider τb1 . In the Breit frame,

τb1
Breit
=

1

Q

∑

i∈X

min{nz · pi, n̄z · pi} (61)

=
1

Q

[∑

i∈Hb
J

(Ei − pz i) +
∑

i∈Hb
B

(Ei + pz i)

]

=
1

Q

[∑

i∈X

(Ei + pz i)− 2
∑

i∈Hb
J

pz i

]
,

where X = Hb
J +Hb

B denotes the entire final state. Note
that in the Breit frame,

pX = P + q =
( Q

2x
, 0, 0, Q−

Q

2x

)
, (62)

where pµX ≡
∑

i∈X pµi . Thus, EX + pzX = Q, and we
obtain

τb1
Breit
= 1−

2

Q

∑

i∈Hb
J

pz i ≡ τQ , (63)

where in the last equality we recall that Eq. (63) is pre-
cisely the definition in Eq. (46) of the DIS thrust variable
called τQ in [15], where the hemisphere Hb

J in the Breit
frame was called the “current hemisphere” HC . We will
comment further on the relation between the results of
[15] for τQ and our results for τb1 in Sec. VII B below.
Eq. (63) shows that τb1 can always be computed just in
terms of the measurements of momenta of particles in the
current hemisphere HC = Hb

J .
The same arguments as for τb1 in the Breit frame apply

to τc1 in the CM frame. In the CM frame,

τc1
CM
=

1

xy
√
s

∑

i∈X

min{nz ·pi, n̄z ·pi} (64)

=
1

xy
√
s

[∑

i∈X

(Ei + pz i)− 2
∑

i∈Hc
J

pz i

]
.

In this frame, we have that

pX = P + q (65)

=

√
s

2

(
y+1−x

(
1−

q2
T

Q2

)
,
2qT√

s
, y−1+x

(
1−

q2
T

Q2

))
,

14

so

τc1
CM
=

1

x

(
1−

2

y
√
s

∑

i∈Hc
J

pz i

)
. (66)

Thus, τc1 also can be measured just from momenta of
particles in the HJ hemisphere in the CM frame.
Finally, the above argument can be extended to apply

also to the 1-jettiness τa1 , but only for the region where
τa1 ≪ 1. τa1 can be written

τa1 =
2

Q2

[∑

i∈Ha
J

qaJ ·pi +
∑

i∈Ha
B

qaB ·pi
]
. (67)

Now, qaB = qbB , while qaJ = qbJ + O(Qλ). Thus the re-
gions Ha

J,B differ from those for τb1 , Hb
J,B, by a change

in the region boundary of O(λ). This does not affect the
assignment of collinear particles to the two regions, since
none of them change regions under this small change in
boundary. An O(λ) fraction of the soft particles switch
from one region to the other, but this then produces a
correction suppressed by λ to the soft contribution τS in
Eq. (55). Thus, Eq. (67) can be expressed

τa1 =
2

Q2

[∑

i∈Hb
J

(qaJ−qbJ)·pi +
∑

i∈Hb
J

qbJ ·pi +
∑

i∈Hb
B

qbB ·pi
]
+O(λ3)

= τb1 +
2

Q2

∑

i∈Hb
J

(qaJ − qbJ )·pi +O(λ3) , (68)

in the regime where τ1 ∼ λ2 ≪ 1. This is the regime
we aim to predict accurately in this paper. Thus, in this
limit τa1 can also be computed just by measuring particles
in the “current hemisphere”Ha

J = HC in the Breit frame,
as long as both axes qaJ and qbJ are measured. For larger
τa1 , both regions Ha

J,B would need to be measured, and
we emphasize that the contribution of proton remnants
is still exponentially suppressed.
In summary, for small τ1 none of the three versions of

1-jettiness τa,b,c1 require direct measurement of particles
from initial state radiation in the beam region. Further-
more, for larger τ1 values the variables τb,c1 still do not
require such measurements (though τa1 does). All three
τ1’s are global observables since measurement of τ1 by
summing over the particles only in the HJ region is still
affected by ISR from the proton beam through momen-
tum conservation.

IV. CROSS SECTION IN QCD

In this Section we organize the full QCD cross section
into the usual leptonic and hadronic tensors, but with an
additional measurement of 1-jettiness inserted into the
definition of the hadronic tensor. We express it in a form
that will be easily matched or compared to the effective
theory cross section we consider in the following section.

A. Inclusive DIS cross section

We begin with the inclusive DIS cross section in QCD,
differential in the momentum transfer q,

dσ

d4q
=

1

2s

∫
dΦL

∑

X

〈
|M(eP → LX)|2

〉

× (2π)4δ4(P + q − pX)δ4(q − k + k′) ,

(69)

where L is the final lepton state with momentum k′, and
X is the final hadronic state with momentum pX . dΦL

is the phase space for the lepton states, and the
∑

X in-
cludes the phase space integrals for hadronic states. The
squared amplitude |M|2 is averaged over initial spins,
and summed over final spins. Recall that q (and x, y)
can be determined entirely by measurements of the lep-
ton momenta. Later in Sec. IVB we will insert additional
measurements such as 1-jettiness on the state X .
We wish to express the cross section differential in the

Lorentz-invariant variables Q2, x using Eqs. (7) and (8).
Although Q2, x are Lorentz-invariant, at intermediate
stages of integration we can work in a particular frame.
In either the CM or Breit frame, the proton momentum
is of the form P = nz ·P n̄z/2. So we decompose q along
the nz , n̄z directions, q = nz · q n̄z/2 + n̄z · q nz/2 + qT .
Then the delta functions defining Q2, x take the form

δ

(
x−

Q2

nz ·P n̄z ·q

)
δ
(
Q2 + nz ·q n̄z ·q − q2

T

)
. (70)

Inserting these into Eq. (69) and integrating over q+ and
q−, we obtain

dσ

dx dQ2
=

1

4xs

∫
d2qT

∫
dΦLδ

4(q − k + k′)

×
∑

X

(2π)4δ4(P + q − pX)⟨|M|2⟩ ,
(71)

where q is now given by the value

qµ =
Q2

xnz ·P
nµ
z

2
− xnz ·P

(
1−

q2
T

Q2

)
n̄µ
z

2
+ qµT . (72)

For a single electron final state L = e(k′) (which is
all we have at the leading order in αem at which we are
working), the integral over ΦL in Eq. (71) takes the form

∫
d3k′

(2π)32Ek′

=

∫
d4k′

(2π)3
δ(k′2) , (73)

so, performing the k′ integral, we obtain

dσ

dx dQ2
=

1

4(2π)3 xs

∫
d2qT δ((q − k)2)

×
∑

X

(2π)4δ4(P + q − pX)⟨|M|2⟩ .
(74)

To use the first delta function, we need to pick a partic-
ular frame in which to complete the qT integration. In

Kang,		Liu,		Mantry			1312.0301	

DK,	Lee,	Stewart	2014	
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Logs versus Non-Logs: Summary 
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• measurement of      is not affected by leading !
ln(x) terms:
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Figure 1. Regions of two-body phase space in the Breit frame. In this frame the incoming proton
has momentum along the ≠z direction given by P = Qn̄z/(2x). The figure shows a quark and a
gluon in the final state, corresponding to the Feynman diagrams in Fig. 7. For the diagrams in Fig. 8
there would be a quark and an antiquark in the final state. The 1-jettiness · groups particles into
back-to-back hemispheres in this frame, in the ±z directions. There are four distinct regions in x and
v © p≠

2 /Q space in which the particles are grouped di�erently, making · a function ·(x, v). In regions
(a) and (d) both particles end up in the same region, giving a constant value of · . In regions (b)
and (c) the two particles are in opposite regions, and · varies according to the projection of the two
particles’ momenta onto the ±z axes. The values of · in these four regions are given in Eq. (3.20),
and enter the phase space integral in Eq. (3.18).

where the two-dimensional step function �(i) covers each region (i) and · (i) is the value of
1-jettiness in the corresponding region:

· (i)(x, v) =

Y
______]

______[

1
1≠v

x
v
x
1≠x

x

, �(i)(x, v) =

Y
______]

______[

◊(≠v + (1 ≠ x)) ◊(v ≠ x) i = a ,

◊(v ≠ (1 ≠ x)) ◊(v ≠ x) i = b ,

◊(≠v + (1 ≠ x)) ◊(≠v + x) i = c ,

◊(v ≠ (1 ≠ x)) ◊(≠v + x) i = d .

(3.20)

Note that in regions i = a, d the value of · is constant in v and thus the delta function
comes outside the integral in Eq. (3.18). As illustrated in Fig. 1, in these two regions both
final state particles are in the same hemisphere, and · takes the v independent value shown
in Eq. (3.20) over the entire region, which corresponds to the maximum values of · given
in Eq. (2.9). In regions i = b, c, the value of · varies with v and thus the delta function
remaining in Eq. (3.18) can be used to evaluate the v integral.

– 11 –

Log	vs	Non-Logs:	Summary	

SCET	works	beHer	for	smaller	x	region	at	O(αs)!	
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	Toward	N3LL	

Pade	approx.	

�[–s] “[–s] —[–s] {H, J, B, S}[–s]
LL –s 1 –s 1

NLL –2

s –s –2

s 1
NNLL –3

s –2

s –3

s –s

N3LL –4

s –3

s –4

s –2

s

Table 1. Orders of logarithmic accuracy and required order of cusp (�) and non-cusp (“) anomalous
dimensions, beta function —, and fixed-order hard, jet, beam, and soft matching coe�cients H, J, B, S.

◊
n1+n2+1ÿ

¸1=≠1

¸1+n3+1ÿ

¸2=≠1

V n1n2
¸1

V ¸1n3
¸2

V ¸2
≠1

(�) , (2.2b)

where the exponent in Eq. (2.2a) is a resummation factor that resums the large logs and the
terms Wqj are fixed-order factors which do not contain large logs. The evolution kernels K
and � are given by

K © K(µH , µJ , µB, µS , µ) = KH(µH , µ) + KJ(µJ , µ) + KB(µB, µ) + 2KS(µS , µ) (2.3a)
� © �(µJ , µB, µS , µ) = ÷J(µJ , µ) + ÷B(µB, µ) + 2÷S(µS , µ) , (2.3b)

where the individual evolution kernels KH , KJ = KB, KS , ÷J = ÷B, and ÷S are integrals
of cusp and non-cusp anomalous dimension of each function and they are given below in
Eqs. (??), (??), and (??). Note that K and � are indpendent of µ because the µ dependence
cancels between the various Ki and ÷i factors in the sums. The coe�cients Jn, Iqq

n , Iqg
n , Sn

in Eq. (2.2b) are given in App. A.2. The constants V mn
k and V n

k (�) are given in App. ??.
Note that Eq. (2.2) resums the large logs at all order in –s if the kernels K and � and

coe�cients Jn, Iqj
n , and Sn are correct at all order in –s. This means that the logarithmic

accuracy of the resummed results are set by perturbative uncertainties in –s of anomalous
dimesions, QCD beta function, and H, J , B, and S

hemi

functions. Table 1 shows the counting
scheme of logarithmic accuracy in resummed perturbation theory. The counting is transparent
with Fourier or, Laplace transformed cross section. The logarithm of transformed cross section
can be schematically written as: ln ‡̃ ≥ L

q
n=1

(–sL)n+
q

n=1

(–sL)n+–s
q

n=0

(–sL)n+· · · ,
where L is the large log correponding to ln ·

1

in momentum space. Then, leading log (LL)
accuracy resums all terms with –n

s Ln+1. In general higher-order accuracy such as NkLL
resums all terms up to –k≠1

s (–sL)n where k = 1, 2, · · · . All the ingrediants to achieve N3LL

are known and are given in App. A and App. ?? except for the four-loop cusp anomalous
dimesion �. It is known that the missing four-loop contribution is small in e+e≠ thrust [8]
and the contribution is estimated by using the padé approximation with ±200 % uncertainties
as in [8].

– 4 –
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K“(µ
0

, µ) = ÷
�

(µ
0

, µ)|
�iæ“i , (B.4)

where the coe�cients are B
2

= —2

1

/—2

0

≠ —
2

/—
0

and B
3

= ≠—3

1

/—3

0

+ 2—
1

—
2

/—2

0

≠ —
3

/—
0

. Here,
r = –s(µ)/–s(µ

0

) and the running coupling to four-loop order for number of active quarks
nf = 5 is given by the expression

1
–s(µ) = X

–s(µ
0

) + 0.401347248 ln X + –s(µ
0

)
X

#
0.01165228 (1 ≠ X) + 0.16107961 ln X

$

+ –2

s(µ
0

)
X2

#
0.1586117 (X2 ≠ 1) + 0.0599722 (X + ln X ≠ X2)

+ 0.0323244 {(1 ≠ X)2 ≠ ln2 X}$
, (B.5)

where X © 1 + –s(µ
0

)—
0

ln(µ/µ
0

)/(2fi).
In our analysis we use the full expressions for K

�,“ , ÷
�

in Eq. (B.4) for N3LL calculation.
However, for the value of –s(µ) we use the two-loop result, which is first line of Eq. (B.5) and
this choice is consistent with the value of –s(µ) in NLO PDFs.

The 4-loop beta function is given in [26] and the 3-loop cusp anomalous dimension is
obtained in [27]. Their coe�cients in MS scheme are given by

—
0

= 7.66667 , —
1

= 38.6667 , —
2

= 180.907 , —
3

= 4826.16 ,

�q
0

= 5.33333 , �q
1

= 36.8436 , �q
2

= 239.208 , , (B.6)

We use padé approximation for unknown 4-loop coe�cients �q
3

with 200 % unicertainties.

�q
3

= (1 ± 2)(�q
2

)2

�q
1

. (B.7)

The MS anomalous dimension “H = 2“q
C can be obtained [16, 17] from the IR divergences

of the on-shell massless quark form factor known to three loops [28]. The anomalous dimension
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See	=Sep=Spp	up	to	2	loops	
	

Gaunt,	Stahlhofen,			
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Figure 1: O(α2
s) opposite hemisphere diagrams. The endpoints of the gluons can be attached to

the points on the Wilson lines labeled by a ‘x’ in any order. Figure (a) gives the I diagrams, (b)
and (c) give the T diagrams, (d) gives the G diagrams, (e) the H diagrams with ghosts, and (f) the
Q diagrams with massless quarks.

We have explicitly checked that our final result is unchanged if the gluon propagators

in Fig. 1 are taken in a general covariant gauge. The gauge parameter cancellation occurs

individually for the T , G +H, and Q terms (and provides a non-trivial cross check on the

relative overall signs of G and H).

Next we present final results for the renormalized soft function that includes contribu-

tions from both the same hemisphere and opposite hemisphere terms, using the approach

described in Sec. 3.2. We first discuss position space and then the double cumulant distri-

bution in momentum space. Eqs. (3.30) and (3.36) are the main results of this paper.

3.3.1 Result in Position Space

In position space we find

S̃(x1, x2, µ) = 1−
αs(µ)CF

4π
π2 + R̃(x1, x2, µ) +

α2
s(µ)

4π2

[
C2
F
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8
+

1

2
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)]
, (3.30)

where
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)
= −CFCA

2π2

3
ln2
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)
(3.31)

+ 2 ln
(x1/x2 + x2/x1

2

)(
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+ CFTRnf
6− 4π2

9
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FQ
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+ FQ
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[
FN

(x1
x2

)
+ FN

(x2
x1

)
− 2FN (1)

]
+ CFCAs

[CFCA]
2 + CFTRnfs

[nf ]
2 ,

determining the non-global function appearing in Eq. (2.16). Here and throughout this

paper x1 and x2 have a small imaginary components, and should be regarded as x1 − i0+
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Table 1: Examples of various types of loop graphs which enter at O(α2
s) and their general proper-

ties. V2 and R2 are the O(α2
s) purely virtual and purely real graphs, V1R1 are the mixed virtual-real

graphs, and Z1 is the one-loop counterterm. For each class we indicate which of the three possible
color structures C2

F , CFCA, CFTRnF appear, and whether the graphs depend simultaneously on
x1,2 (in position space), on only a single variable at a time, or neither variable. The two-loop
counterterm Z2 is discussed in the text.

which will feed into the µ-dependent two-loop calculation. The remainder is the one-loop

renormalized soft function in momentum and position space

S1(ℓ1, ℓ2, µ) =
αs(µ)CF

π

{
−
2

µ
L1

(
ℓ1
µ

)
δ(ℓ2)−

2

µ
L1

(
ℓ2
µ

)
δ(ℓ1) +

π2

12
δ(ℓ1)δ(ℓ2)

}
,

S̃1(x1, x2, µ) =
αs(µ)CF

π

{
−(L̃2

1 + L̃2
2)−

π2

4

}
. (3.19)

3.2 Structure of the O(α2
s) Real and Virtual Terms

The structure of the various types of O(α2
s) diagrams for the calculation of S̃(x1, x2) are

shown in Table 1. In dimensional regularization the bare two-loop virtual graphs and

one-loop virtual graphs with a counterterm are scaleless and need not be considered. The

remaining terms can all be divided into single hemisphere contributions that depend on a

function of x1 plus the same function of x2, and opposite hemisphere contributions that

depend simultaneously on x1,2 and contribute non-global terms. The bare and counterterm

graphs can all be split into the form

S̃(x1, x2) =
[
S̃same(x1) + S̃same(x2)

]
+ S̃opp(x1, x2) (3.20)

as follows. Consider the two-loop counterterm Z̃2(x1, x2, µ), from Eq. (3.3)

Z̃2(x1, x2, µ) = Z̃2(x1, µ) + Z̃2(x2, µ) + Z̃1(x1, µ)Z̃1(x2, µ) , (3.21)

which is the appropriate form for Eq. (3.20), and shows that only Z̃1 contributes to S̃opp.

Graphs that have only a single parton crossing the cut involve M[1]
k (x1, x2) from Eq. (3.8)

and are part of the single hemisphere terms. This includes the mixed virtual-real graphs

denoted by V1R1 in Table 1. For the double cut real emission graphs the measurement

function M[2]
k1,k2

(x1, x2) in Eq. (3.9) splits the result into a sum of single hemisphere and

opposite hemisphere terms,

R2(x1, x2) =
[
Rsame

2 (x1) +Rsame
2 (x2)

]
+Ropp

2 (x1, x2) , (3.22)
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Figure 1: O(α2
s) opposite hemisphere diagrams. The endpoints of the gluons can be attached to

the points on the Wilson lines labeled by a ‘x’ in any order. Figure (a) gives the I diagrams, (b)
and (c) give the T diagrams, (d) gives the G diagrams, (e) the H diagrams with ghosts, and (f) the
Q diagrams with massless quarks.

We have explicitly checked that our final result is unchanged if the gluon propagators

in Fig. 1 are taken in a general covariant gauge. The gauge parameter cancellation occurs

individually for the T , G +H, and Q terms (and provides a non-trivial cross check on the

relative overall signs of G and H).

Next we present final results for the renormalized soft function that includes contribu-

tions from both the same hemisphere and opposite hemisphere terms, using the approach

described in Sec. 3.2. We first discuss position space and then the double cumulant distri-

bution in momentum space. Eqs. (3.30) and (3.36) are the main results of this paper.

3.3.1 Result in Position Space

In position space we find

S̃(x1, x2, µ) = 1−
αs(µ)CF

4π
π2 + R̃(x1, x2, µ) +

α2
s(µ)

4π2
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π4

8
+
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2
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, (3.30)

where
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3
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]
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x1

)
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]
+ CFCAs
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2 + CFTRnfs

[nf ]
2 ,

determining the non-global function appearing in Eq. (2.16). Here and throughout this

paper x1 and x2 have a small imaginary components, and should be regarded as x1 − i0+
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the points on the Wilson lines labeled by a ‘x’ in any order. Figure (a) gives the I diagrams, (b)
and (c) give the T diagrams, (d) gives the G diagrams, (e) the H diagrams with ghosts, and (f) the
Q diagrams with massless quarks.
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Table 1: Examples of various types of loop graphs which enter at O(α2
s) and their general proper-

ties. V2 and R2 are the O(α2
s) purely virtual and purely real graphs, V1R1 are the mixed virtual-real

graphs, and Z1 is the one-loop counterterm. For each class we indicate which of the three possible
color structures C2

F , CFCA, CFTRnF appear, and whether the graphs depend simultaneously on
x1,2 (in position space), on only a single variable at a time, or neither variable. The two-loop
counterterm Z2 is discussed in the text.

which will feed into the µ-dependent two-loop calculation. The remainder is the one-loop

renormalized soft function in momentum and position space
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3.2 Structure of the O(α2
s) Real and Virtual Terms

The structure of the various types of O(α2
s) diagrams for the calculation of S̃(x1, x2) are

shown in Table 1. In dimensional regularization the bare two-loop virtual graphs and

one-loop virtual graphs with a counterterm are scaleless and need not be considered. The

remaining terms can all be divided into single hemisphere contributions that depend on a

function of x1 plus the same function of x2, and opposite hemisphere contributions that

depend simultaneously on x1,2 and contribute non-global terms. The bare and counterterm

graphs can all be split into the form

S̃(x1, x2) =
[
S̃same(x1) + S̃same(x2)

]
+ S̃opp(x1, x2) (3.20)

as follows. Consider the two-loop counterterm Z̃2(x1, x2, µ), from Eq. (3.3)

Z̃2(x1, x2, µ) = Z̃2(x1, µ) + Z̃2(x2, µ) + Z̃1(x1, µ)Z̃1(x2, µ) , (3.21)

which is the appropriate form for Eq. (3.20), and shows that only Z̃1 contributes to S̃opp.

Graphs that have only a single parton crossing the cut involve M[1]
k (x1, x2) from Eq. (3.8)

and are part of the single hemisphere terms. This includes the mixed virtual-real graphs

denoted by V1R1 in Table 1. For the double cut real emission graphs the measurement

function M[2]
k1,k2

(x1, x2) in Eq. (3.9) splits the result into a sum of single hemisphere and

opposite hemisphere terms,

R2(x1, x2) =
[
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2 (x1) +Rsame
2 (x2)

]
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2 (x1, x2) , (3.22)
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one-loop virtual graphs with a counterterm are scaleless and need not be considered. The

remaining terms can all be divided into single hemisphere contributions that depend on a

function of x1 plus the same function of x2, and opposite hemisphere contributions that

depend simultaneously on x1,2 and contribute non-global terms. The bare and counterterm

graphs can all be split into the form

S̃(x1, x2) =
[
S̃same(x1) + S̃same(x2)

]
+ S̃opp(x1, x2) (3.20)

as follows. Consider the two-loop counterterm Z̃2(x1, x2, µ), from Eq. (3.3)

Z̃2(x1, x2, µ) = Z̃2(x1, µ) + Z̃2(x2, µ) + Z̃1(x1, µ)Z̃1(x2, µ) , (3.21)

which is the appropriate form for Eq. (3.20), and shows that only Z̃1 contributes to S̃opp.

Graphs that have only a single parton crossing the cut involve M[1]
k (x1, x2) from Eq. (3.8)

and are part of the single hemisphere terms. This includes the mixed virtual-real graphs

denoted by V1R1 in Table 1. For the double cut real emission graphs the measurement

function M[2]
k1,k2

(x1, x2) in Eq. (3.9) splits the result into a sum of single hemisphere and

opposite hemisphere terms,

R2(x1, x2) =
[
Rsame

2 (x1) +Rsame
2 (x2)

]
+Ropp

2 (x1, x2) , (3.22)
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s) diagrams for the calculation of S̃(x1, x2) are

shown in Table 1. In dimensional regularization the bare two-loop virtual graphs and

one-loop virtual graphs with a counterterm are scaleless and need not be considered. The

remaining terms can all be divided into single hemisphere contributions that depend on a

function of x1 plus the same function of x2, and opposite hemisphere contributions that

depend simultaneously on x1,2 and contribute non-global terms. The bare and counterterm

graphs can all be split into the form

S̃(x1, x2) =
[
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]
+ S̃opp(x1, x2) (3.20)

as follows. Consider the two-loop counterterm Z̃2(x1, x2, µ), from Eq. (3.3)

Z̃2(x1, x2, µ) = Z̃2(x1, µ) + Z̃2(x2, µ) + Z̃1(x1, µ)Z̃1(x2, µ) , (3.21)

which is the appropriate form for Eq. (3.20), and shows that only Z̃1 contributes to S̃opp.

Graphs that have only a single parton crossing the cut involve M[1]
k (x1, x2) from Eq. (3.8)

and are part of the single hemisphere terms. This includes the mixed virtual-real graphs

denoted by V1R1 in Table 1. For the double cut real emission graphs the measurement

function M[2]
k1,k2

(x1, x2) in Eq. (3.9) splits the result into a sum of single hemisphere and

opposite hemisphere terms,

R2(x1, x2) =
[
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]
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2 (x1, x2) , (3.22)
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The structure of the various types of O(α2
s) diagrams for the calculation of S̃(x1, x2) are

shown in Table 1. In dimensional regularization the bare two-loop virtual graphs and

one-loop virtual graphs with a counterterm are scaleless and need not be considered. The

remaining terms can all be divided into single hemisphere contributions that depend on a

function of x1 plus the same function of x2, and opposite hemisphere contributions that

depend simultaneously on x1,2 and contribute non-global terms. The bare and counterterm

graphs can all be split into the form
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[
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]
+ S̃opp(x1, x2) (3.20)
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Z̃2(x1, x2, µ) = Z̃2(x1, µ) + Z̃2(x2, µ) + Z̃1(x1, µ)Z̃1(x2, µ) , (3.21)

which is the appropriate form for Eq. (3.20), and shows that only Z̃1 contributes to S̃opp.

Graphs that have only a single parton crossing the cut involve M[1]
k (x1, x2) from Eq. (3.8)

and are part of the single hemisphere terms. This includes the mixed virtual-real graphs

denoted by V1R1 in Table 1. For the double cut real emission graphs the measurement

function M[2]
k1,k2

(x1, x2) in Eq. (3.9) splits the result into a sum of single hemisphere and
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The structure of the various types of O(α2
s) diagrams for the calculation of S̃(x1, x2) are

shown in Table 1. In dimensional regularization the bare two-loop virtual graphs and

one-loop virtual graphs with a counterterm are scaleless and need not be considered. The

remaining terms can all be divided into single hemisphere contributions that depend on a

function of x1 plus the same function of x2, and opposite hemisphere contributions that

depend simultaneously on x1,2 and contribute non-global terms. The bare and counterterm

graphs can all be split into the form

S̃(x1, x2) =
[
S̃same(x1) + S̃same(x2)

]
+ S̃opp(x1, x2) (3.20)

as follows. Consider the two-loop counterterm Z̃2(x1, x2, µ), from Eq. (3.3)

Z̃2(x1, x2, µ) = Z̃2(x1, µ) + Z̃2(x2, µ) + Z̃1(x1, µ)Z̃1(x2, µ) , (3.21)

which is the appropriate form for Eq. (3.20), and shows that only Z̃1 contributes to S̃opp.

Graphs that have only a single parton crossing the cut involve M[1]
k (x1, x2) from Eq. (3.8)

and are part of the single hemisphere terms. This includes the mixed virtual-real graphs

denoted by V1R1 in Table 1. For the double cut real emission graphs the measurement

function M[2]
k1,k2

(x1, x2) in Eq. (3.9) splits the result into a sum of single hemisphere and

opposite hemisphere terms,
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[
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]
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2 (x1, x2) , (3.22)
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The structure of the various types of O(α2
s) diagrams for the calculation of S̃(x1, x2) are

shown in Table 1. In dimensional regularization the bare two-loop virtual graphs and

one-loop virtual graphs with a counterterm are scaleless and need not be considered. The

remaining terms can all be divided into single hemisphere contributions that depend on a

function of x1 plus the same function of x2, and opposite hemisphere contributions that

depend simultaneously on x1,2 and contribute non-global terms. The bare and counterterm

graphs can all be split into the form

S̃(x1, x2) =
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]
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as follows. Consider the two-loop counterterm Z̃2(x1, x2, µ), from Eq. (3.3)

Z̃2(x1, x2, µ) = Z̃2(x1, µ) + Z̃2(x2, µ) + Z̃1(x1, µ)Z̃1(x2, µ) , (3.21)

which is the appropriate form for Eq. (3.20), and shows that only Z̃1 contributes to S̃opp.

Graphs that have only a single parton crossing the cut involve M[1]
k (x1, x2) from Eq. (3.8)

and are part of the single hemisphere terms. This includes the mixed virtual-real graphs

denoted by V1R1 in Table 1. For the double cut real emission graphs the measurement

function M[2]
k1,k2

(x1, x2) in Eq. (3.9) splits the result into a sum of single hemisphere and

opposite hemisphere terms,

R2(x1, x2) =
[
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]
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The structure of the various types of O(α2
s) diagrams for the calculation of S̃(x1, x2) are

shown in Table 1. In dimensional regularization the bare two-loop virtual graphs and

one-loop virtual graphs with a counterterm are scaleless and need not be considered. The

remaining terms can all be divided into single hemisphere contributions that depend on a

function of x1 plus the same function of x2, and opposite hemisphere contributions that

depend simultaneously on x1,2 and contribute non-global terms. The bare and counterterm

graphs can all be split into the form
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Z̃2(x1, x2, µ) = Z̃2(x1, µ) + Z̃2(x2, µ) + Z̃1(x1, µ)Z̃1(x2, µ) , (3.21)

which is the appropriate form for Eq. (3.20), and shows that only Z̃1 contributes to S̃opp.

Graphs that have only a single parton crossing the cut involve M[1]
k (x1, x2) from Eq. (3.8)

and are part of the single hemisphere terms. This includes the mixed virtual-real graphs

denoted by V1R1 in Table 1. For the double cut real emission graphs the measurement

function M[2]
k1,k2

(x1, x2) in Eq. (3.9) splits the result into a sum of single hemisphere and

opposite hemisphere terms,
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s) Real and Virtual Terms

The structure of the various types of O(α2
s) diagrams for the calculation of S̃(x1, x2) are

shown in Table 1. In dimensional regularization the bare two-loop virtual graphs and

one-loop virtual graphs with a counterterm are scaleless and need not be considered. The

remaining terms can all be divided into single hemisphere contributions that depend on a

function of x1 plus the same function of x2, and opposite hemisphere contributions that

depend simultaneously on x1,2 and contribute non-global terms. The bare and counterterm

graphs can all be split into the form
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Z̃2(x1, x2, µ) = Z̃2(x1, µ) + Z̃2(x2, µ) + Z̃1(x1, µ)Z̃1(x2, µ) , (3.21)

which is the appropriate form for Eq. (3.20), and shows that only Z̃1 contributes to S̃opp.

Graphs that have only a single parton crossing the cut involve M[1]
k (x1, x2) from Eq. (3.8)

and are part of the single hemisphere terms. This includes the mixed virtual-real graphs

denoted by V1R1 in Table 1. For the double cut real emission graphs the measurement

function M[2]
k1,k2

(x1, x2) in Eq. (3.9) splits the result into a sum of single hemisphere and
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The structure of the various types of O(α2
s) diagrams for the calculation of S̃(x1, x2) are

shown in Table 1. In dimensional regularization the bare two-loop virtual graphs and

one-loop virtual graphs with a counterterm are scaleless and need not be considered. The

remaining terms can all be divided into single hemisphere contributions that depend on a

function of x1 plus the same function of x2, and opposite hemisphere contributions that

depend simultaneously on x1,2 and contribute non-global terms. The bare and counterterm

graphs can all be split into the form
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[
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Z̃2(x1, x2, µ) = Z̃2(x1, µ) + Z̃2(x2, µ) + Z̃1(x1, µ)Z̃1(x2, µ) , (3.21)

which is the appropriate form for Eq. (3.20), and shows that only Z̃1 contributes to S̃opp.

Graphs that have only a single parton crossing the cut involve M[1]
k (x1, x2) from Eq. (3.8)

and are part of the single hemisphere terms. This includes the mixed virtual-real graphs

denoted by V1R1 in Table 1. For the double cut real emission graphs the measurement

function M[2]
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Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty

0.00 0.05 0.10 0.15 0.20 0.25 0.30

-5

0

5

�1

�(
d�
� /
da�

1)
[%

]

Q=50 GeVx=0.05
��s=1% ��s=3% N3LL �PDF

PDF at 90% conf.
�s variation includes �PDF

44 

Backup	

SensiCvity	to	αs	and	PDFs	



63

Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty
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Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty
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Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty
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Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty
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Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty
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Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty
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Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty
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Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty
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Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty
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Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty
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Sensitivity to �s(mZ), �1, and PDFs

�s(mZ) versus Perturbative & PDF Uncertainty
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Summary	

!   Factoriza/on	thms	for	1-jeRness		

!   N3LL		predic/ons	for	

!   Progress	toward	N3LL+O(αs)	predic/ons	for		

!   Accuracy	δαs= 2% or better at x=0.2~0.5  

better than δαs	= 4% theory uncertainty in H1 analysis 

comparable to MSTW PDF uncertainty 

!   Need O(αs
2)	nonsingular 

Resummation of DIS 2 jet cross section at NNLL

Daekyoung Kang,1 Christopher Lee,2 and Iain W. Stewart1

1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
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σ ∼ H × f ⊗ I ⊗ J ⊗ S (1)

σ ∼ H × B︸︷︷︸
f⊗I

⊗J ⊗ S (2)

σ ∼ H × B ⊗ J ⊗ S (3)

B = f ⊗ I (4)

I. FACTORIZATION THEOREM FOR CROSS SECTION

dσ̂

dx dQ2 dτ1
=

(
dσ0

dx dQ2

)−1 dσ

dx dQ2 dτ1

=

∫
d2p⊥

∫
dtJdtBdk

J
s dkBs δ

(
τ1 −

tJ
sJ

+
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Nonsingular	part	at	O(αs)	

The 1-jettiness cross section can be expressed in terms of lepton and hadronic tensor :

d‡

dx dQ
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) , (3.1)tauCS

where the lepton tensor is the product of current
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6
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where k and k

Õ are incoming and outgoing eletron momenta. The hadronic tensor is the
current-current correlator for proton state.
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In this paper, we only consider vector current J

µ = q̄“

µ

q while we worked with both vector
and axial-vector current in [2]. Because the hadronic tensor depends only two momenta P

and q, Eq. (3.3) can be decomposed into products of tensor composed of g

µ‹

, P

µ, q

µ and
structure function depending on · , x, and Q

2. The cross section Eq. (3.1) is rewritten in
terms of the structure functions
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The sturture functions F
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are projections of hadronic tensor as
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Note that standard struction functions depend on x and Q

2 and Eq. (3.5) is their di�erenti-
ations respect to · .

4 Structure functions: Nonsingular part

sec:Fi
In this section we present analytic expressions for non-singular part of the struction functions
defined in Eq. (3.5).

In small ·

1

limit, the cross section in Eq. (3.1) is dominated by singular terms involving
logk
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and the singular part has been calculated and the large logs have been resummed
in [2]. For the ·

1

away from zero, singular and nonsigular are comparable and both parts
in full range of ·

1

should be included for comparison to experimental result. Therefore, the
cross section, equivalently, the structure functions can be written as sum of singular and
nonsingular parts as:
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Singular part of the hadronic tensor and cross section upto NNLL accuray have been computed
in [2] and correspondingly, structre functions F

sing

L

= 0 and F

sing

1

is a half of the cross section.
The nonsingular part of structrue functions are obtained from calculation of projected

hadronic tensors as in Eq. (3.5). The nonsingular part of the tensors are obatined by isolating
singular terms in · æ 0 limit and by subtracting the terms from the tensors. Details of
calculation are summarized in App. C and App. D. The final expressions for F

ns
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and F
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given by
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where �
0

(·, x) defined Eq. (C.12) sets physical regions of ·
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between 0 and 1 for x < 1/2
and between 0 and (1 ≠ x)/x for x > 1/2. The function A
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The functions N

0,1

are nonsingular parts of the functions S

q

0,1

(·, x) in Eq. (C.21)
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Note that the terms with 1/·

1

and log ·

1

/·

1

are multiplied by a term propotional to ·

1

in small
·

1

limit and N

0,1

is not singular. For the same reason, 1/· term in Eq. (4.7) is nonsigular.
The functions R

g,q and �q,g are given by
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where P

qg

is g æ qq̄ splitting function P

qg

(x) = ◊(1 ≠ x)[(1 ≠ x)2 + x

2].
When z component of total momentum is not balanced, i.e., x ”= 1/2 there are events

where all final particles go to either hemisphere and the value of · becomes its maximum
either 1 or (1 ≠ x)/x according to defintion in Eq. (2.4). The ” functions in Eqs. (4.5), (4.4),
(4.6), and (4.7) corresponds to such event and those functions become step functions when
integrated and appear as discontinuites at maximum of · .

We also consider cumulant (integrated) structure functions defined as
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The cumulants can also be decomposed in the same way as in Eqs. (4.2) and (4.3) and
cumulant version of A

i

and B

i

are given in Eq. (D.3). In the results, the discontinuities by
integration of the ” functions in A

i

and B

i

are not expressed because we write the terms
contributing to physical region of ·

1

and the discontinuities start at the boundary of the
region. But the discontinuity can be easily identified from the di�erence from total struction
function or, can be calcualted from the ” function terms in A

i

and B

i

.
DK: stop editing here So far, we discussed results valid in perturbative regime. Non-
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singular	term	
cancels	

enhanced	at	small	x	

Nonsingular	part	of	F1	
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Nonpertuba/ve	Effect	
!   Es/ma/ng	nonperturba/ve	part	of	sok	func/on	
!   For	

OPE	gives	power	correc/on	with																											suppression	

!   																						:	nonpertuba/ve	matrix	element	

!   For	
significant	nonpertuba/ve	effect	
convolving	shape	func/on		
consistent	with	power	correc/on	
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and t2. However, the slope of µc
run in Eq. (206) should be

different for the three cases n = 0, 1/2, 1. Therefore, we
cannot use Eq. (202) to define µc

run because all parame-
ters in µrun are fixed by matching boundary conditions
and the slope is fixed. Instead, by replacing the quadratic
polynomial in Eq. (202) by a cubic polynomial one can
introduce a free parameter and this parameter can be
chosen such that µc

run(x , τ1 , µ , n) ∼ xnτ1µ between t1
and t2. We define µc

run as
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xn− 1
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b(n) = xn−1/2µ0 − a(n)t1 ,

c(n) = 3(µ− xn−1/2µ0)− a(n)(2t3 + 4t2 − 3t1) ,

d(n) = 2(µ− xn−1/2µ0)− 2a(n)(t3 + t2 − t1) . (207)

Here the parameters b(n), c(n), d(n) are determined by
continuity of µrun and its derivative at t1, t2, t3. The
slope a(n) is a free parameter which is chosen to satisfy
a(n) ∼ xnµ to achieve canonical scaling of jet, beam, and
soft scales:

a(n) = xn µ− x−1/2µ0

t3 + t2 − t1
. (208)

Note that in x → 1 limit, Eq. (207) reduces to Eq. (202)
and profiles for τc1 in Eq. (206) reduce to the profiles in
Eq. (201) for τa1 and τb1 .
We choose the same default parameters and scale vari-

ations as for τa,b1 in Eqs. (203) and (204) except for t2:

t2 = 0.1 . (209)

Because of the different definition of the profiles for τc1
this value of t2 must be smaller than the value for the τa,b1
profiles. This occurs because µrun in Eq. (207) changes
faster than that the µrun in Eq. (202) between t2 and t3.
As can be seen from Fig. 5 the final profiles for µS have
similar shapes.
Fig. 5 shows τc1 profile functions for µc

H , µc
B,J(τ1),

µc
S(τ1) defined in Eq. (206) with x = 0.1, y = 0.9, and

Q = 90 GeV. The solid lines are the central values of
the scales with default values in Eq. (209) for t2 and in
Eq. (203) for all other parameters. The double-headed
arrow represents variation 1 and the uncertainty bands
are variations 2 and 3 in Eq. (204). The dashed, dotted,
and dotted-dashed are the canonical scales in Eq. (190).

D. Nonperturbative Soft Function

The hemisphere soft function defined in Eq. (134) de-
scribes soft radiation between jets at the nonperturbative

scale ΛQCD as well as at perturbative scales above ΛQCD.
The results given in Eqs. (160) and (D14) are valid in the
perturbative region. In the MS scheme the soft function
valid at both scales is given by a convolution between a
purely perturbative function Spert

hemi and a nonperturba-
tive model function F [108]:

Shemi(k, µ) =

∫
dk′ Spert

hemi(k − k′, µ)F (k′) . (210)

The function F (k) contains information about physics at
the nonperturbative scale and has support for k ∼ ΛQCD,
falling off exponentially outside this region. Inserting
Eq. (210) into the factorization formula in Eq. (140) one
obtains the convolved form for the cross section:

dσ(τ1)

dτ1
=

∫
dk

dσpert

dτ1

(
τ1 −

k

QR

)
F (k) , (211)

where dσpert/dτ1 is the cross section calculated by using
only the perturbative soft function and QR is given by
Eq. (54). Eq. (211) correctly describes both the peak
region QRτ1 ∼ ΛQCD where the entire function F (k) is
required, as well as the tail region QRτ1 ≫ ΛQCD where
only its first moment is required since we can expand in
ΛQCD/(QRτ1).
For the peak region, various ways to parametrize mod-

els for F (k) have been proposed [76, 108, 109]. We will
adopt one proposed in [76] that expands F systematically
in an infinite set of basis functions:

F (k) =
1

λ

[
N∑

n=0

cnfn

(
k

λ

)]2
, (212)

where in principle we can choose any complete basis of
functions fn. We adopt the same basis that has already
been used in [14, 76], and exhibits fast convergence of the
expansion. The normalization condition

∫
dk F (k) = 1

gives the constraint
∑

i c
2
i = 1. The characteristic scale

λ of size O(ΛQCD) is an additional parameter if the sum
is truncated at finite N , as we will do in practice.
In the tail region where QRτ1 ≫ ΛQCD, Eq. (211) is

consistent with the power correction from an operator
product expansion,

dσ(τ1)

dτ1
=

{
dσpert(τ1)

dτ1
−

2Ωa,b,c
1

QR

d2σpert(τ1)

dτ21

}
(213)

×
[
1 +O

(
αsΛQCD

Qτ1

)
+O

(
Λ2
QCD

Q2τ21

)

+ · · ·
]
.

To lowest order in ΛQCD/(Qτ1) this result agrees with a
simple shift τ1 → τ1−2Ω1/QR. Here the coefficient of the
power correction 2Ωa,b,c

1 is a nonperturbative matrix ele-
ment and it corresponds to the first moment of the non-
perturbative function

∫
dk k F (k) which could in princi-

ple differ for each of τa,b,c1 . The first set of power correc-
tions indicated on the second line of Eq. (213) comes from
perturbative corrections to the leading power correction

Lige/,	Tackmann,	Stewart	
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Choice	of	scales	
!   For	

!   For	
significant	nonperturba/ve	effect	
sok	scale	freezing	at		

!   For		
no	hierarchy	in	scales	
no	large	logs			

⇤QCD ⌧ ⌧ ⌧ 1

µH = Q µB,J =
p
⌧Q

µS = ⌧Q

⌧ ⇠ ⇤QCD/Q

µS ⇠ ⇤QCD

µB,J ⇠
p

⇤QCDQ

⌧ ⇠ 1

µH ⇠ µB,J ⇠ µS ⇠ Q
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mHta
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mJ,B = Q t

ms = Q t

Q = 80 GeV

0.2 0.4 0.6 0.8 1.0
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60

80
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tc

mHtcL

mH = Q

mJ

mB

mS

mJ = Q t - 1 + y

mB = Q x Ht - 1 + yL

mS = Q x Ht-1+yL



!   Fourier	transforma/on	

	
!   	Resumming	large	logs		

!   No	large	logs		in	each	func/on	
at	its	natural	scale		

!   RG	evoluVon	
from							to	common	scale	

Resumma/on	and	RGE	
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Beam Function Running

I Scales and running:

H

J

Sf

B

µ

f

�̂

µ�

µs

µb

µ

µh

µj

µh ⇠ scale of hard interaction
µj ⇠ inv. mass of final state jet
µb ⇠ inv. mass of initial state jet
µs ⇠ energy of soft radiation
µ⇤ ⇠ low scale (⇤QCD)

I Unlike f , the RGE for B includes Sudakov double logs

B(s, z; µ) =
Z

ds0 UB(s, s0; µ, µb) B(s0, z; µb)

Invariant mass restrictions on the real radiation yield terms
�B(s, s0; µ) / ln(µ/s), which sum the Sudakov double logs

Wouter Waalewijn (MIT) Factorization at the LHC & Beams SCET ’09 18 / 19

L = log(iy)

ln
d�̃

dy
= L

1X

k=1

(↵sL)
k +

1X

k=1

(↵sL)
k + ↵s

1X

k=0

(↵sL)
k + · · ·

y : conjugate variable of ⌧1

LL	 NLL	 NNLL	

d�̃

dy
=

Z
d⌧1 e

�iy⌧1 d�

d⌧1
= H(µ) eBq(y, x, µ) eJq(y, µ) eS(y, µ)

µµi

µi
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missing	par/cles	in	forward	region	

!   Proton	remnants	and	par/cles	moving	very	forward	region	

out	of	detector	coverage:																													,	

!   H1	:																																and																																	for	main	cal.	(PLUG	cal.)		

!   ZEUS:																									and 	 	for	FCAL	

!   Boost	to	CM	frame:		

!   H1:																																			,	

!   ZEUS:																											,	

!   Maximum	missing	measurement:		

!   		

about	64(11)	GeV		for	H1	and	32	GeV	for	ZEUS	

Suppression	factor!	

0 < ✓ < ✓cut ⌘ > ⌘cut
⌘cut = 3.4(5.1)✓cut = 4 �(0.7 �)

⌘ = � ln(tan ✓/2)

⌘CM = ⌘ ��⌘

QB =
p

y/xQ, xQ

mmax

T = Elab

p sin ✓
cut

⌧miss =
2qB · pmiss

Q2
=

mT

QB
e�⌘

�⌘ = ln
Elab

p

ECM
p

= ln
920

157
= 1.8

⌘CM
cut = 1.6(3.3) e�⌘CM

cut = 0.2(0.04)

✓cut = 2.2 � ⌘cut = 4.0

⌘CM
cut = 2.2 e�⌘CM

cut = 0.1
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Future	

!   PT	dependent	observable	for	TMDPDF	

!   Toward	mul/-jet	events	in	DIS	

!   Jet	substructure:	heavy	meson,	quarkonium	in	a	jet	

Resummation of DIS 2 jet cross section at NNLL
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σ ∼ H × f ⊗ I ⊗ J ⊗ S (1)

σ ∼ H × B︸︷︷︸
f⊗I

⊗J ⊗ S (2)

σ ∼ H × B ⊗ J ⊗ S (3)

B = f ⊗ I (4)

I. FACTORIZATION THEOREM FOR CROSS SECTION

dσ̂

dx dQ2 dτ1
=

(
dσ0

dx dQ2

)−1 dσ

dx dQ2 dτ1

=

∫
d2p⊥

∫
dtJdtBdk

J
s dkBs δ

(
τ1 −

tJ
sJ

+
tB
sB

−
kJs
QJ

−
kBs
QB

)

× Jq(tJ − (q⊥ + p⊥)
2, µ)S(kJs , k

B
s , RJ , RB , µ)

×
[
Hq(qJ , qB , Q

2, µ)Bq(tB, x,p
2
⊥, µ) +Hq̄(qJ , qB, Q

2, µ)Bq̄(tB, x,p
2
⊥, µ)

]
,

The normalization factors of tJ,B in τ1 are given in Table I

sJ sB QJ QB RJ RB

generic τ1
qB·q
qJ·qB

Q2 qJ·q
qJ·qB

Q2 Q2/ωJ Q2/ωB

√

2qJ·qB
Q2 QJ

√

2qJ·qB
Q2 QB

τm,B
1 Q2 Q2 QRJ QRB

√
xy

y+x(1−y)

√

y
x

τCM
1 Q2 xQ2 √

xQ
√
xQ 1 1

TABLE I:

It is useful to calculate the cumulant cross section by integrating Eq. (5) over τ

dσ̃(τ)

dx dQ2
=

∫ τ

0
dτ ′

dσ̂

dx dQ2dτ ′
. (5)
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