Toward N³LL resummation of a DIS Event Shape

Daekyoung Kang (LANL)

In collaboration with lain Stewart (MIT), Chris Lee (LANL), Ou Labun(Arizona)

1303.6952: factorization & NNLL resummation 1407.6707: analytic 1-loop nonsingular 1504.04006: 2-loop soft functions Work in progress for N³LL

Jan 11, 2016

Santa Fe Jets and Heavy Flavor Workshop

Event shape: Thrust

$$\tau_{ee} = 1 - \frac{1}{Q} \max_{\vec{n}} \sum_{i} |\vec{p_i} \cdot \vec{n}|$$
• Up to $O(\alpha_s^3) + N^3 LL$
Becher and Schwartz
Abbate, Fickinger, Ho
Mateu, Stewart
 $\alpha_s(m_Z) = 0.1135 \pm 0.0011$

$$\tau_{\text{DIS}} = 1 - \frac{1}{E_J} \sum_{i \in \mathcal{H}_J} |\vec{p}_i \cdot \vec{n}|$$

- one hemisphere
- Up to $O(\alpha_s^2)$ +NLL Antonelli, Dasgupta, Salam

 $\alpha_s(m_Z) = 0.1198 \pm 0.0013(\text{exp.})$ +0.0056 -0.0043(th.)

• Higher precision in DIS? NNLL or higher ?

Some Recent $\alpha_s(m_Z)$ Results

Outline

- *1-jettiness* in **3** ways in DIS
- Factorization theorems
- Preliminary N³LL results
- Sensitivity to α_s , PDFs

Event shape: 1-jettiness

- N-jettiness
 - Generalization of thrust
 - N-jet limit: $au_N o 0$

$$\tau_N = \frac{2}{Q^2} \sum_i \min\{q_B \cdot p_i, q_1 \cdot p_i, \dots, q_N \cdot p_i\}$$
Stewart, Tackmann, Waalewijn

1-jettiness: 1 jet + 1 ISR

$$\tau_1 = \frac{2}{Q^2} \sum_{i \in X} \min\{q_B \cdot p_i, q_J \cdot p_i\}$$
om.

- q_B , q_J are axes to project particle mom.
- Considering 3 ways to define q_j
- min. groups particles into 2 regions

Why 1-jettiness?

DIS thrusts (measured): Non-Global Log beyond NLL Dasgupta, Salam Recent progress to resum NGL Neill, Larkoski, Moult 1-jettiness: No NGL, NⁿLL (n>1) accessible

derive factorization thm. by using SCET

accuracy systematically improved with higher order ME's

1-jettiness in 3 ways

Factorization theorems

$$\begin{aligned} \frac{1}{\sigma_0} \frac{d\sigma}{dx \, dQ^2 \, d\tau_1^a} &= H_q(\mu) \int dt_B \, dt_J \, dk_s \, \delta \left(\tau_1^a - \frac{t_B}{Q^2} - \frac{t_J}{Q^2} - \frac{k_s}{Q}\right) \\ &\times B_q \left(t_B, x, \mu\right) \quad J_q \left(t_J, \mu\right) \quad S \left(k_s, \mu\right) + \left(q \leftrightarrow \bar{q}\right) \\ \frac{1}{\sigma_0} \frac{d\sigma}{dx \, dQ^2 \, d\tau_1^b} &= H_q(\mu) \int dt_B \, dt_J \, dk_s \, \delta \left(\tau_1^a - \frac{t_B}{Q^2} - \frac{t_J}{Q^2} - \frac{k_s}{Q}\right) \\ &\times \int d^2 \vec{p}_\perp \, B_q \left(t_B, x, \vec{p}_\perp^2, \mu\right) \quad J_q \left(t_J - \vec{p}_\perp^2, \mu\right) \quad S \left(k_s, \mu\right) + \left(q \leftrightarrow \bar{q}\right) \\ &\xrightarrow{1}{\sigma_0} \frac{d\sigma}{dx \, dQ^2 \, d\tau_1^c} &= H_q(\mu) \int dt_B \, dt_J \, dk_s \, \delta \left(\tau_1^a - \frac{t_B}{Q^2} - \frac{t_J}{xQ^2} - \frac{k_s}{\sqrt{xQ}}\right) \\ &\times \int d^2 \vec{p}_\perp \, B_q \left(t_B, x, \vec{p}_\perp^2, \mu\right) \quad J_q \left(t_J - (\vec{q}_\perp + \vec{p}_\perp)^2, \mu\right) \quad S \left(k_s, \mu\right) + \left(q \leftrightarrow \bar{q}\right) \end{aligned}$$

Beam, Jet, Soft functions

NNLL predictions

DK, Lee, Stewart 2013

One order higher than

DIS thrust resummation (NLL)

Higher precision?

$$d\tilde{\sigma} = \exp\left[L\sum_{k=1}^{\infty} (\alpha_s L)^k + \sum_{k=1}^{\infty} (\alpha_s L)^k + \alpha_s \sum_{k=0}^{\infty} (\alpha_s L)^k + \cdots\right] + \mathrm{NS}(\alpha_s)$$

singular part: LL, NLL, NNLL, N³LL,...

E E 2.5E NLL Difference $\sigma^{c}(\tau^{b}) - \sigma^{c}(\tau^{a})$ [%] -2.5 NNLL for Q=80 GeV, x=0.2-5 -7.5-10.NNLL for Q=40 GeV, x=0.02-12.5 -15 <u>-</u>0. 0.05 0.1 0.2 0.35 0.15 0.25 0.3 τ^{b}

nonsingular part:

 $O(\alpha_{s}), O(\alpha_{s}^{2}),...$

9

(singular versus nonsingular)

(singular versus nonsingular)

(singular versus nonsingular)

(singular versus nonsingular)

(singular versus nonsingular)

(singular versus nonsingular)

(singular versus nonsingular)

(singular versus nonsingular)

(singular versus nonsingular)

reset

(singular versus nonsingular)

larger x

(singular versus nonsingular)

larger x

(singular versus nonsingular)

larger x

(singular versus nonsingular)

smaller Q

(singular versus nonsingular)

smaller Q

(singular versus nonsingular)

reset

(singular versus nonsingular)

larger Q

(singular versus nonsingular)

larger Q

Log vs Non-Logs: Summary

Toward N³LL

Soft function at 2 loop Catani and Grazzini 2000

- Wilson lines are different.
- $\mathbf{e^{+}e^{-}}: \langle 0|\bar{T} \begin{bmatrix} \tilde{Y}_{\bar{n}}^{\dagger} \tilde{Y}_{n} \end{bmatrix} \delta(\cdots) T \begin{bmatrix} \tilde{Y}_{n}^{\dagger} \tilde{Y}_{\bar{n}} \end{bmatrix} |0\rangle$ $\mathbf{ep:} \langle 0|\bar{T} \begin{bmatrix} Y_{\bar{n}}^{\dagger} \tilde{Y}_{n} \end{bmatrix} \delta(\cdots) T \begin{bmatrix} \tilde{Y}_{n}^{\dagger} Y_{\bar{n}} \end{bmatrix} |0\rangle$ $\mathbf{pp:} \langle 0|\bar{T} \begin{bmatrix} Y_{\bar{n}}^{\dagger} Y_{n} \end{bmatrix} \delta(\cdots) T \begin{bmatrix} Y_{n}^{\dagger} Y_{\bar{n}} \end{bmatrix} |0\rangle$
 - Well known at O(α_s) :
 virtual is scaleless and zero.
 no loop in the real.
 - at O(α_s²):
 virtual are scaleless and zero.
 2 gluon cut has no loop.
 1 gluon cut needs to be checked.
 Nontrivial only for triple gluon vertex
 Same for e⁺e⁻, ep, pp!

incoming and outgoing lines give different sign in the Eikonal propagator

$$\overline{n \cdot k \pm i\epsilon}$$

1

The sign could matter in the loop integral.

Perturbative Convergence: Summary

 \pm percent uncertainty

Х

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

PDF at 90% conf.

 α_s variation includes $\delta {\rm PDF}$

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

larger x

PDF at 90% conf.

 α_s variation includes $\delta {\rm PDF}$

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

larger x

PDF at 90% conf.

 α_s variation includes $\delta {\rm PDF}$

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

PDF at 90% conf.

 α_s variation includes $\delta {\rm PDF}$

reset

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty PDF at 90% conf. smaller x

 α_s variation includes δPDF

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty smaller x PDF at 90%

PDF at 90% conf. α_s variation includes δ PDF

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

PDF at 90% conf.

 α_s variation includes $\delta {\rm PDF}$

reset

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty smaller Q

PDF at 90% conf.

 α_s variation includes δPDF

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty smaller Q

PDF at 90% conf.

 α_s variation includes δPDF

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

PDF at 90% conf.

 α_s variation includes $\delta {\rm PDF}$

reset

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

larger Q

PDF at 90% conf.

 α_s variation includes δPDF

 $\alpha_s(m_Z)$ versus Perturbative & PDF Uncertainty

larger Q

PDF at 90% conf.

 α_s variation includes δPDF

Summary

- Factorization thms for 1-jettiness
 - $\sigma \sim H \times B \otimes J \otimes S$
- N³LL predictions for

• Progress toward N³LL+O(α_s) predictions for **[]**

AB

 $B = f \otimes \mathcal{I}$

• Accuracy $\delta \alpha_s = 2\%$ or better at x=0.2~0.5

better than $\delta \alpha_s = 4\%$ theory uncertainty in H1 analysis comparable to MSTW PDF uncertainty

• Need O(α_{s}^{2}) nonsingular

Backup

Nonpertubative Effect

- Estimating nonperturbative part of soft function
- For $\tau \gg \Lambda_{QCD}/Q$ OPE gives power correction with $\mathcal{O}(\Lambda_{QCD}/\tau Q)$ suppression

$$\sigma(\tau) = \sigma_{\rm pert}(\tau) - \frac{2\Omega}{Q} \frac{d\sigma_{\rm pert}(\tau)}{d\tau} \approx \sigma_{\rm pert}(\tau - 2\Omega/Q)$$

- $\Omega \sim \Lambda_{QCD}$: nonpertubative matrix element
- For $\tau \ge \Lambda_{QCD}/Q$ significant nonpertubative effect convolving shape function consistent with power correction

$$\sigma(\tau) = \int dk \sigma_{\text{pert}}(\tau - k/Q) F(k)$$
$$\rightarrow \sigma_{\text{pert}}(\tau) - \left(\int dk \, \frac{k}{Q} F(k)\right) \frac{d\sigma_{\text{pert}}(\tau)}{d\tau}$$

Choice of scales

- For $\Lambda_{QCD} \ll \tau \ll 1$ $\mu_H = Q \quad \mu_{B,J} = \sqrt{\tau}Q$ $\mu_S = \tau Q$
- For $\tau \sim \Lambda_{QCD}/Q$ significant nonperturbative effect soft scale freezing at $\mu_S \sim \Lambda_{QCD}$

$$\mu_{B,J} \sim \sqrt{\Lambda_{QCD}Q}$$

• For $\tau \sim 1$ no hierarchy in scales no large logs

 $\mu_H \sim \mu_{B,J} \sim \mu_S \sim Q$

Resummation and RGE

Fourier transformation

y: conjugate variable of τ_1

$$\frac{d\tilde{\sigma}}{dy} = \int d\tau_1 \, e^{-iy\tau_1} \frac{d\sigma}{d\tau_1} = H(\mu) \, \widetilde{B}_q(y, x, \mu) \, \widetilde{J}_q(y, \mu) \, \widetilde{S}(y, \mu)$$

- Resumming large logs
 - No large logs in each function at its natural scale μ_i
 - RG evolution

from μ_i to common scale μ

70

missing particles in forward region

 $\eta = -\ln(\tan\theta/2)$

 $\Delta \eta = \ln \frac{E_p^{\text{lab}}}{E_p^{\text{CM}}} = \ln \frac{920}{157} = 1.8$

- Proton remnants and particles moving very forward region out of detector coverage: $0 < \theta < \theta_{cut}$, $\eta > \eta_{cut}$
 - H1: $heta_{
 m cut} = 4\,^{\circ}(0.7\,^{\circ})$ and $\eta_{
 m cut} = 3.4(5.1)$ for main cal. (PLUG cal.)
 - ZEUS: $heta_{
 m cut}=2.2\,^\circ$ and $\eta_{
 m cut}=4.0\,$ for FCAL
- Boost to CM frame: $\eta^{
 m CM} = \eta \Delta \eta$
 - H1: $\eta_{\text{cut}}^{\text{CM}} = 1.6(3.3)$, $e^{-\eta_{\text{cut}}^{\text{CM}}} = 0.2(0.04)$ Suppression factor! • ZEUS: $\eta_{\text{cut}}^{\text{CM}} = 2.2$, $e^{-\eta_{\text{cut}}^{\text{CM}}} = 0.1$
- Maximum missing measurement: $\tau_{\rm miss} = \frac{2q_B \cdot p_{\rm miss}}{Q^2} = \frac{m_T}{Q_B}e^{-\eta}$
 - $m_T^{\max} = E_p^{\text{lab}} \sin \theta_{\text{cut}}$ about 64(11) GeV for H1 and 32 GeV for ZEUS $Q_B = \sqrt{y/x}Q, xQ$

Future

- P_T dependent observable for TMDPDF $\sigma \sim H \times B \otimes J \otimes S$ $B = f \otimes I$
- Toward multi-jet events in DIS
- Jet substructure: heavy meson, quarkonium in a jet