

... for a brighter future

UChicago Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Magnetic Field Analysis for Helical Undulators using OPERA

S.H. Kim, Advanced Photon Source

June 26, 2007

The Second Special Workshop on Magnet Simulations for Particle Accelerators

Introduction: On-Axis Field B₀

(Helical) Solenoid W.R. Smythe (1939)

$$B_{tr} = \frac{\mu_0 I}{\lambda} \{ kr_0 K_0(kr_0) + K_1(kr_0) \}$$

 $(k = 2\pi/\lambda)$

 K_n , I_n modified Bessel functions

(Current I in filamentary wire on radius r_0)

Helical Undulator B.M. Kincaid (1977)

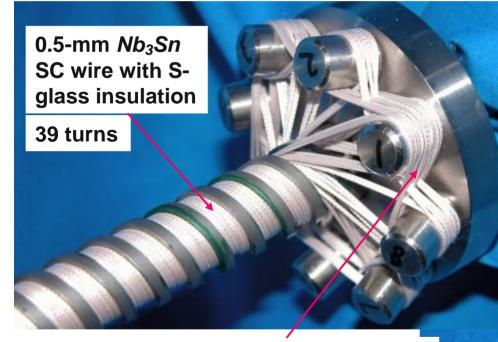
 $B_0 = 2B_{tr}$

Helical Undulator with coil dimensions (a, b)

$$\mathbf{B} = B_{0} \left\{ \hat{r} \left[I_{0}(kr) + I_{2}(kr) \right] \sin(kz - \phi) + \hat{\phi}^{2} (-kr)^{-1} I_{1}(kr) \cos(kz - \phi) + \hat{z}^{2} I_{1}(kr) \cos(kz - \phi) \right\}$$
$$B_{0} = \frac{2\mu_{0} j\lambda}{\pi} \sin(k\frac{a}{2}) \int_{r_{0}}^{r_{0}+b} \left\{ krK_{0}(kr) + K_{1}(kr) \right\} \frac{dr}{\lambda}$$
$$\mathbf{B}(kz - \phi) = B_{0} \left\{ \hat{r} \cos(kz - \phi) + \hat{\phi} \sin(kz - \phi) \right\}$$

Compare with model undulator calculations

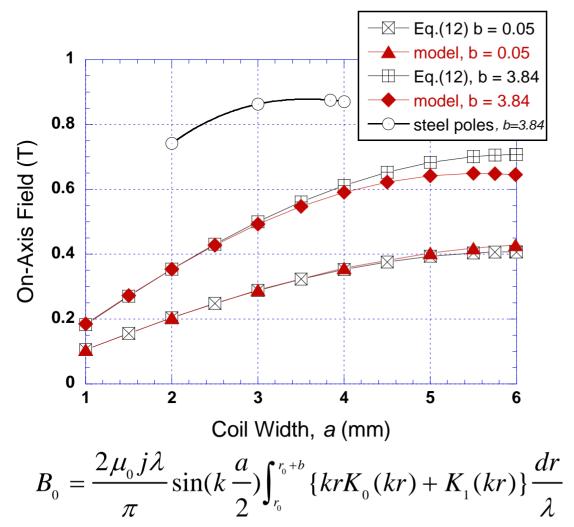
Helical Nb₃Sn SCU Fabrication, $\lambda = 14$ mm



Undulator ends: designed for continuous winding of the double helix without any conductor joints and to minimize the stray field

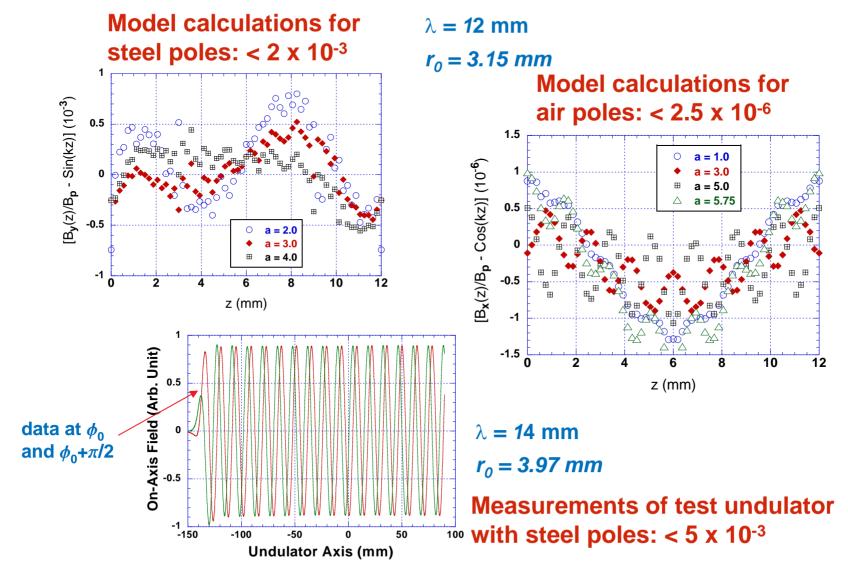
Slightly tinted color after heat treatment

On-axis field B₀: Analytical and Model Calculations



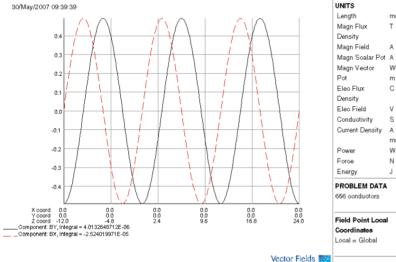
 $\lambda = 12 \text{ mm}$ $r_0 = 3.15 \text{ mm}$

Higher Harmonics: two models and a test undulator



41-Period Air Poles

 $\lambda = 12 \text{ mm}$ a = 3.0 mm



mm

A m⁻¹

Wb

m⁻¹

C m⁻²

V m⁻¹

S m⁻¹

mm⁻²

W

Ν

J

т

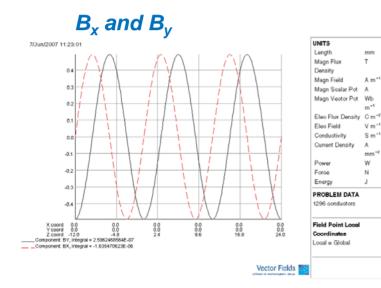
$$\mathbf{B}(kz-\phi) = B_0 \left\{ \hat{r}\cos(kz-\phi) + \hat{\phi}\sin(kz-\phi) \right\}$$
$$\mathbf{B}(x, y) = B_0 \left\{ \hat{x}\cos(kz) + \hat{y}\sin(kz) \right\}$$



81-Period Air Poles

 $\lambda = 12 \text{ mm}$ $r_0 = 3.15 mm$

a = 3.0 mm



mm

A m^{*}

Wh

m = 1

V m⁻¹

S m = 1

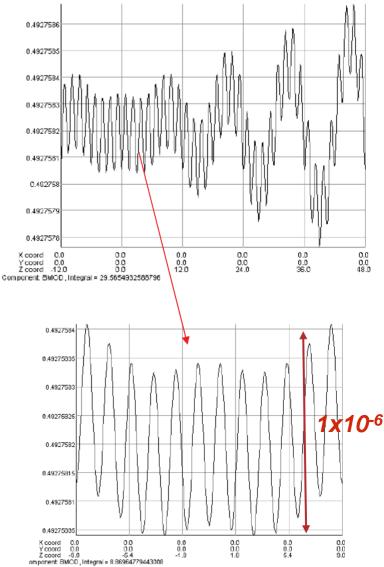
А mm-2

W

Ν

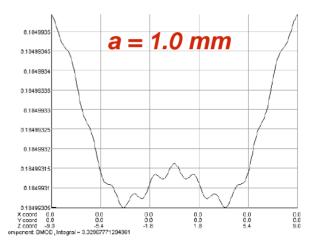
.1

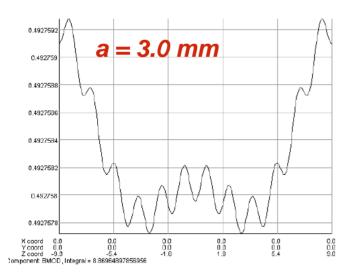
т

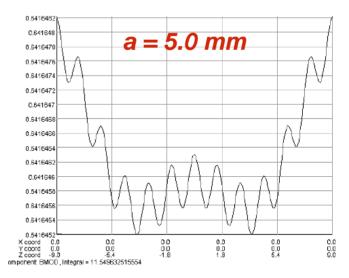


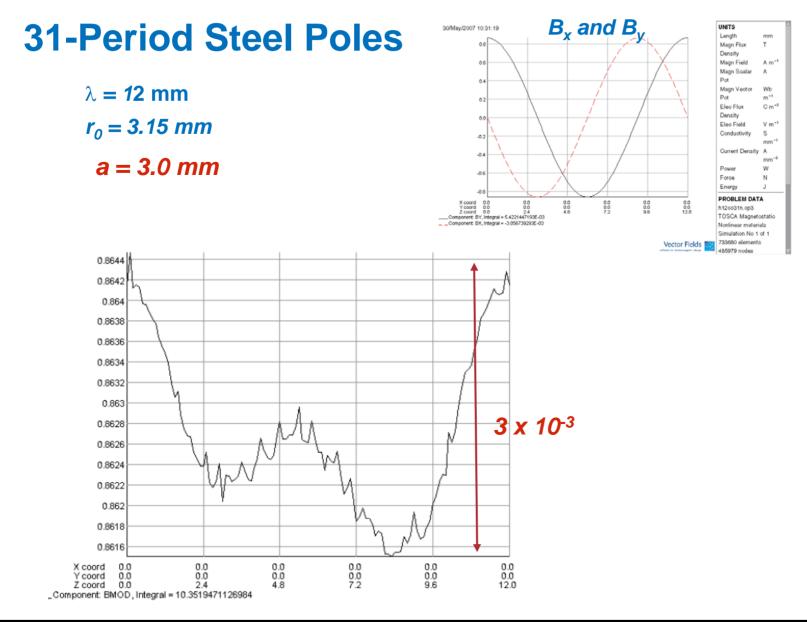
41-Period Air Poles

 $\lambda = 12 \text{ mm}$ $r_0 = 3.15 \text{ mm}$









Conclusion

- On-axis field B_0 :
 - For coil/pole ratio < 2, discrepancy < 4%
- Higher harmonics:
 - It appears that the calculated higher harmonics for both linear and nonlinear poles are due to calculation errors and end fields for linear poles.
 - It also appears that the calculated higher harmonics do not depend on the coil/pole ratios indicating that the analytical result may be correct.

