

Improvement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Thomas Planche

Jean-Luc Lancelot

SIGMAPHI

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 1 – Magnet in its context

Part 2 - Starting point – HICAT 90° Magnet Design (magnet made by SIGMAPHI for GSI in 2001)

Part 3 - 2D and 3D Magnetic computations

- A. 3D Model Construction and Validation
- B. Improvement of the initial design
- C. Manufacturing tolerances effects

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 1 – Magnet in its context

CNAO hadrontherapy facility (Pavia - Italy)

¹²C⁶⁺ up to 400 MeV/u

SIGMAPHI

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 1 – Magnet in its context

CNAO hadrontherapy facility (Pavia - Italy)

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 1 – Magnet in its context

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 2 – Starting point – HICAT 90° Gantry Dipole Magnet

Designed at GSI by A. Kalimov, B. Langenbeck, C.Muhle *et al*

GSI design : window frame magnet. Use of slots to inprove field quality

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 2 – Starting point – HICAT 90° Gantry Dipole Magnet

Magnet manufactured by SIGMAPHI in 2001

- → 75 tonnes dipole
- → Maximum field of 1.74 T
- → Hight integral field homogeneity required

SIGMAPHI

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 2 – Starting point – HICAT 90° Magnet Design

Specifications on integral field relative homogenity

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 3 - 2D and 3D Magnetic computations

Using GSI-HICAT Design

Opera (TOSCA) 2D and 3D models implementation

Use of command files (.comi):
Model construction is
reproducible and very fast

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 3 - 2D and 3D Magnetic computations

Models validation:

Mesh size decreased down to the optimum (invarience of field distrubution with mesh size reduction)

Excellent agreement between 2D and 3D computation in the magnet center

Confrontation with GSI measurements

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 3 - 2D and 3D Magnetic computations

Integral homogeneity calculated with Opera 3D on GSI-HICAT design B₀ = 1.74T at different vertical positions (Z=-100.. 100 mm). Linear part subtracted

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 3 - Improvement of the initial design

GSI-HICAT design – Already very well optimized design!

(1) Automatized 2D calculation algorism to improve the2D designNo significant improvement reached → Initial design kept

(2) No improvement reached on Rogowski profile

but...

SIGMAPHI

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 3 - Improvement of the initial design

GSI-HICAT design – Already very well optimized design!

(3) Edge angle dependance with curent slightly improved (20% less) playing on « collar » size

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 3 - Improvement of the initial design GSI-HICAT design – Already very well optimized design!

Field integral homogeneity Improved design Nominal current

(4) Integral field homogeneity increased playing on field clamps shape and size

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 3 - Improvement of the initial design

Integral homogeneity calculated with Opera 3D on GSI-HICAT design B₀ = 1.74T at different vertical positions (Z=-100.. 100 mm). Linear part subtracted

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 3 - Manufacturing tolerances effects

Improvement of fabrication process might be guide by a good understanding of fabrication tolerences effects

Several typical deffects tested through 2D and 3D calculations

Gap parallelism, vertical and horizontal coils alignment, coil extremities (distance, angle)

X

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 3 - Manufacturing tolerances effects

Parallelism defect

Relative field homogeneity @ magnet centre 0.1 mm Para, defect / nominal current

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 3 - Manufacturing tolerances effects

Coil miss-alignment – significant effect of symetry break!

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Part 3 - Manufacturing tolerances effects

Coil miss-alignment – significant effect of symetry break!

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Conclusion

- GSI design slightly improved
- Effects are small, fabrication tolerences are strict enough to reach the specification
- A special attention has to be payed to coils up and down symetry

Imrpovement of design and manufacturing of a 90° dipole for hadrontherapy gantry

Thank you for your attention

References:

[1] G. Moritz, et al. « Geometric and Magnetic Measurements of the Gantry Dipole for HICAT Medical Accelerator », 2B-p03