

Purity & Radio-purity WG

Chamkaur Ghag (UCL)
Juergen Reichenbacher (SDSM&T)
Luke Corwin (SDSM&T)

Scope

- Purity
- Radiological Purity
 - Argon
 - Detector Materials
- Cleanliness
- Simulations

Purity

- Determine required chemical purity of the argon
 - electronegative species that affect charge transport, impact light propagation, or adversely affect detector operations such as high voltage application
- Requirements must be assessed in con junction with the relevant physics, simulations and installation Working Groups
- This group provides interface, co-ordinates, and conducts measurements of purity and material outgassing where necessary
- This group provides input to develop appropriate techniques for achieving, maintaining, and assuring requirements are met on timescales compatible with the project schedule

Radiological Purity of Ar and Detector Materials

- Determine the requirements on tolerable levels of radiological contamination in the detector target and construction materials
- Potential to cause backgrounds in the experiment:

```
<sup>238</sup>U, <sup>235</sup>U, <sup>232</sup>Th, <sup>60</sup>Co, <sup>40</sup>K, <sup>39</sup>Ar, <sup>222</sup>Rn
```

- This group will assess feasibility of a ³⁰Ar-depleted target
- Liaise with relevant WGss to define materials for radio-assay, aid procurement of samples, and allocate and schedule the assays at facilities available to the project.
- The group reports assay results, and works with the Simulations and Physics Groups to determine impact on science
- Determine suitability of use for materials

Cleanliness

- Set requirements on tolerable levels of dust and other foreign materials in the detector that may induce backgrounds
 - ...radioactive decay, electrical discharges, mechanical obstructions
- Assessment of impact from radon decay and radon plate-out, radio-activity within dust particulates, particulate mass and size distributions
- Translate requirements to ambient cleanliness levels covering dust fall-out and carry-in rates, cleanroom class requirements and protocols, air handling infrastructure
- Extends to assembly, installation, and integration of all detector components and the detector itself on-site
- Group will work with the Installation and Integration WG to develop cleanliness protocols, and techniques for quality control and assurance of cleanliness levels throughout the project

Simulations

Ongoing efforts (to our knowledge):

- Graduate student Jason Stock and Juergen (SDSM&T): 35t detector response (both reconstructed charge and light) for Co-60, 5 MeV alpha's from radon and its daughters, 0.5 MeV electrons (-> Ar-39)
- Graduate student Gleb Sinev (**Duke**): Ar-39 PD Simulation and Reconstruction
- Neil Spooner's group (Sheffield) interested

Still to do:

- Write and commit external LArSoft generators for isotopes of interest
- Full FD simulations
- Compare 35t real data with simulation of e.g. Ar-39
- Get more people involved!

Radio-assay Resources

Boulby Underground Laboratory

- Canberra BEGe 5030, SAGe (well-type) GSW275, Ortec (p-type) GEMXX-95, BEGe 2825
- Heavy LZ use, but some capacity may be made available
- Managed by Ghag through DMUK

ICP-MS at UCL

- Agilent 7900 ICP-MS with HF capability, H2 reaction cell, KED
- Microwave digestion and ashing ovens
- Class 1000 cleanroom
- Dedicated to LZ assays

SURF/BHUC

- Wide capability with high sensitivity instruments
- Heavy LZ use, but diverse range of resources

Radio-assay Resources

- * LNGS
 - * HPGe
 - ICP-MS (with laser ablation)
 - Availability of resources ??
- Radon Emanation
 - Requirements need to be determined; low throughput
- Neutron Activation Analysis (NAA)
 - MITR
 - UC-Davis
- Glow-Discharge Mass Spectrometry
 - Commercial availability

Purity Resources

- MTS at Fermilab/PAB (Stephen Pordes, Brian Rebel, Ewa Skup) for material compatibility tests with liquid argon
- Purification system expert Terry Tope (and his team) at Fermilab
- 35t purity monitoring expert Alan Hahn at Fermilab (+ potentially Juergen/SDSM&T who helped in phase 1)

Ar-39 measurement in test dewar by Victor Gehman at LBL

- (and anyone who we might not be aware of yet)
- -> get more people involved!

Cleanliness Resources

- Defining onsite and offsite cleanliness protocols for assembly, shipping & installation as well as required temporary cleanliness facilities:
- * UCL, SDSM&T, LBL and UC Davis expertise on cleanliness (dark matter + reactor neutrinos + solar neutrinos + neutrinoless double beta decay experiments) + anyone who we might not be aware of yet
- Particulate counters in clean areas to monitor airborne dust and inspection of control swipe samples
- Monitor radon level in critical areas (SDSM&T/Luke)
- Optical dust count on witness plates (automated microscopic dust assay at SDSM&T/Bai+Juergen)
- gamma-spectroscopic assay of large dust samples (LBL/SURF)
- * ICPMS isotopic analysis of dust (started at SDSM&T) & other radio-assay methods available at other institutions
- Get more people involved!

Logistics

- Regular Meetings Slot: proposal for Wednesday 10 am MT (5 pm UK)
- Immediate tasks to finalise charge, determine resources
- Create WBS structure:
 - Purity
 - Radio-purity
 - LAr
 - Materials
 - Cleanliness
 - Simulations
- Mailing List: <u>DUNE-FD-PURITY@LISTSERV.FNAL.GOV</u>