Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Collimation

Valery Kapin

Workshop on Booster Performance and Enhancements 23-24 November 2015

Activities & acknowlegments to people involved

- 1) Booster Collimator Hardware & Control (motion tests): Charles Briegel, Salah Chaurize, Mike Coburn, Vladimir Sidorov, Matt Slabaugh, Todd Sullivan, Rick Tesarek
- 2) Support for Beam Dynamics Simulations: Valeri Lebedev, Nikolai Mokhov, Igor Rakhno, Sergei Striganov, Igor Tropin
- 3) Support for task managments: Bill Pellico and Cheng-Yang Tan

2-stage collimation system of FNAL booster

Two stage collimation system for booster designed and installed in 2004.

Design ~2001-03 with STRUCT & MARS codes by A.Drozhdin & N.Mokhov: Optimal primary foils at 400 MeV: tungstem 0.003mm (or graphite 0.15mm) Beams-doc-3734.

Instead 0.381 mm copper foil was installed

11/23/2015

Principle scheme of 2-stage collimation system

Collimation system must redistribute losses to dedicated "secondary" collimators Usual "1-stage" collimation produces uncontrolled out-scattered protons => "2-stage" scheme

Fig. 11 Main features of a collimation system

halo particles => large amplitudes => Correct treatment non-linear dynamics => ~MADX

4 V. Kapin | Booster collimation system

11/23/2015 **Fermilab**

Collimator placements in booster

Figure 1. Blue boxes represent the main magnets; collimators are represented by brown boxes.

Restrictions for design: Not optimal phase advances; Small magnet & RFcav apertures; Bending magnets in coll system; Variable beam parameters during accelerator cycle

Collimation system transverse layouts by A.Drozhdin

‡Fermilab

Task started in 2014: optimal thickness of primary coll.

- MADX code has been modified to include proton interactions with thin primary collimators (Prim-Colls), while out-scattering from secondary collimators is neglected
- Dependence of collimation efficiency on thickness of Cu Prim-Colls at injection energy (400MeV) within thickness range {0; 381um} has been simulated. It is quite smooth.
- Collimation efficiency grows up **with the number of turns** (simulated up to 100) under simulation approach that all accelerator parameters are constant *(is it a case of booster ?)*
- **Optimal thickness** of Prim-Colls for Cu is **~50um (or thinner)** to reduce losses of scattered protons in magnet apertures and pipes between primary and secondary collimators.
- ~50 mkm is much less of existing 381 um (0.015") Cu foil for both hor. and vert. primaries
- Original STRUCT's calculations at 400 MeV corresponds to equivalent Cu foils of ~12um

MADX (w/o out-scattering): horizontal collimation for 2004-design

Maximum N_colls_sum at 50um (within 30-60um)

‡Fermilab

Primary thickness for ~2004 "STRUCT" design & Equiv. materials

New aluminium Prim-Colls

2005: Cu primary heat sink with signal cable (+ceramic ins.)

Oct.2015 New simplified primary assembly (just AI plate without any ceramic insulators): R.J. Tesarek et al, Beams-Doc-5983, November 4, 2015.

From abstract: ... a candidate primary collimator design of a uniform aluminum foil with a uniform thickness of 381 um. ... the steady state temperature of the collimator under nominal beam conditions to be at or below 140 C (absorb <4.6W).

11/23/2015

Aver.deposited beam power is reduced 30 times

Sec. collimators motion: reliability (courtesy R.Tesarek)

11/23/2015

Sec. collimators motion: Horizontal Backlash Calibration

11/23/2015

New simulations: upgraded model

- ➢General idea by V.Lebedev & N.Mokhov
- > A new simulation approach including **out-scattering**
 - in Sec-Colls is under development for a correct comparison
 - of two-stage and one-stage collimation in the booster.
- ➤The proton interactions with Sec-Colls are simulated by MARS (Mokhov's group) and used by MADX tracker as black-boxes.
- Calulations for different collimator layouts (2004-design;
 2011 Drozhdin "real" configuration; and find optimal one)
- Plans: simulations for different beam sigma and halo sizes
- Optional: Optimizations for existing single-stage scheme

New simulations: Mars model for booster secondary collimators

The model of sec. collimator was created by I. Tropin & I.Rakhno. Interface with "STRUCT" coordinate system (x,x',y,y',p)

One model for 3 identical sec-colls. Model is centered on ref. orbit. Transverse shifts simulated via shift of input and output particle coordinates

Steps: a) MADX multiturn tracking; b) protons lost on collimators collected at collimator fronts; c) that protons are re-tracked throughout sec-colls with MARS;
d) Out-scattered protons are collected at sec-coll ends are tracked again by MADX

😤 Fermilab

Example of 1 stage horizontal collimation on COL1

Example of 1 stage vertical collimation on COL2

Efficiency(%) of 1 stage collimation vs sigma & halo-width

Horizontal collimation on COL1 (Convergent beam envelope)

	3sigma	4sigma	
10um	69.86	65.13	
100um	75.48	76.40	
1000um	81.93	81.61	

Vertical collimation on COL2 (Divergent beam envelope)

	3sigma	4sigma	
10um	24.14	21.18	
100um	48.71	46.05	
1000um	68.04	67.45	

1-stage collimation dependence on:

Twiss alpha – higher absorption for convergent beam

- higher beam halo width => higher impact parameter
- **Beam sigma** is not critical within 3-4 for booster

Efficiency in range 25-80%; Possible optimization by yaw & pitch angles

🛠 Fermilab

Loss distributions with present 381um Cu foil (10turns)

Loss distributions with present 381um Cu foil (100turns)

Losses on collimators redistributed

with outscattering (381um Cu foil)

11/23/2015

Loss distributions with new 381um AI "50um Cu" foil (10turns)

Loss distributions with new Al "50um Cu" foil (100turns)

Losses on collimators redistributed

with outscattering (new AI 381um foil)

11/23/2015

Efficiency(%) of 2 stage collimation vs sigma & halo-width & turns

Horizontal collimation with new Al "50um Cu" foil at 10/100 turns

	3sigma		4sigma	
halo	% of injected	% of lost	% of injected	% of lost
10um	48 / 63	66 / 65	41 / 55	59 / 57
100um	48 / 64	<mark>66</mark> / 65	42 / 57	59 / 58
1000um	51 / 65	<mark>67</mark> / 65	44 / 58	60 / 58

2-stage collimation dependence on:

Efficiency <coll.loss>/<total losses> ~ const vs N_turns

Efficiency <coll.loss>/<injected> increases with N_turns

😤 Fermilab

11/23/2015

Efficiency decreases for larger beam sigma

>Weak dependency of halo width (?)

Plans for near future

• Matt made drawings for new Al foil and its "fork" holder: fabricated and ready for alignment measurements and installation of both(?) primaries in vacuum (a future >8hrs shutdown) • "Easy" replacement of prim. plate (Al: 0.015"->0.005" -> ? mm-Be) Beam tests could be started afterwards (~Dec. 2015) •Simulations plans (see above) include comparison with 1-stage colls • Due to many concerns (collimation in synchrotron, not storage/collider ring) : review of collimation systems on similar proton synchrotrons (J-PARC, SNS, ISIS, ?) to work out possible alternative solutions, if present booster two-stage collimations is failing.

Considering alternative collimations schemes

(e.g. a'la "septum" suggested by V.Lebedev)

25 V. Kapin | Booster collimation system

Supporting slide

Sec. collimators motion: 6B Horizontal motion

