
Processing tracks: 

• stitching updates 

• data products for tracks 

R.Sulej 

1 



Wire plane parallel tracks (this was already mentioned) 

XZ: top view, easy (direct wire-drift) 

YZ: side view, difficult 

No stitching to show track parts 

reconstructed in each TPC. 
3D ref.points & stitching applied. 

• Reconstruction of tracks exactly parallel to wire plane is the most difficult. 

• Optimization can include 3D reference points: 

• e.g. track endpoints and entry/exit points are easy to find (note: geometry divided into 
not too huge TPC volumes makes the reconstruction easier); 

• optimization is only guided: (dref-trk - r)
2 used as a distance to reference point measure 

• There was a drop in reco efficiency for long muons parallel to wire planes, caused by failing 
stitching  now should be improved. 

• Better isolated track reco  more accurate input to vertexing  more complex event 

topologies resolved. 2 



APA crossing tracks with unknown T0 

3 

Reco result with random T0. Trajectories aligned, T0 found. 

• As Karl suggested, look for similar endpoint distance to wire planes and co-linearity. 

• Trajectory points shifted accordingly, tracks directions aligned, T0 associated with recob::Tracks 

– full track-vertex net shifted, so any deltas etc go together with muon 

– not merged as a single recob::Track to avoid strange effects in dE/dx calculation, easier 

access to study behaviour on APA in real data, or just apply fid.vol. cuts easier 

– probably PFParticle is a good place where two parts are logically connected 

– how to calculate time value for T0 from bare ticks count? 

– is it OK to associate T0 at this point of reco? is it useful, e.g. for multi-muon events to 

compare with T0s made from opt.flashes? 

• Method can be confused if bad reco at endpoints, easy to push it more, depends on what we 

need for analysis. 

(don’t worry about strange 

looking MC truth…) 



Ongoing & TODO (general reco) 

• Fight with EM cascades. 

• some flexibility in selection of EM-like tracks achieved: let’s see what configuration works 

best for various purposes; 

• reduce time spent on reconstructing tracks in cascades 

– need to improve way fast rejecting wrong candidates 

– do not create vertices in EM-like regions 

 

• select dense EM parts on 2D level 

 

• Technical change: put & optimize vertex inside the track, not only at endpoints – needed e.g. 

to avoid breaking muons by delta rays. 

• …but what if the long track was a pion and the short track was e.g. proton: simple step-feature 

detector for dQ/dx sequence 

• The same feature detector to find interaction & decay vertexes on along the track trajectory. 

(designed, partially implemented) 

4 



Data products for tracks in LArSoft 

5 

Current recob::Track 

• contains vector of trajectory points and direction cosines 

– tracks are used with association to recob::SpacePoints, a bit repeated information 

• contains vector of dQ/dx vectors (one for each view, equal lengths) 

– tracks have different lengths (no. of hits) in each view 

– there are other modules producing dE/dx 

 

• Assn to hits is used, but order of hits in assn is not ensured (however it works now – is it 

maybe luck?) 

 

These issues were discussed few times with LArSoft team. 

Recommendation: 

• use metadata to store index with hit assigned to track 

• use simple data product to keep extra info that is created for hits during track reconstruction 

 

So the simple start is recob::TrackHitMeta class, so tracking modules can: 

 

produces< art::Assns<recob::Track, recob::Hit, recob::TrackHitMeta > >(); 

 

Still not perfect, but can be start point to organise a convenient (and common) structure. 

Please, comment on it, suggest, … this is never a popular topic, but some effort would be needed 
to adopt code to use it and better to know that people agree on going in this direction. 



6 

Data products for tracks in LArSoft 

← in recob namespace, not reco as initially 
suggested (seemed more natural, but can be 
changed if not appropriate like this) 

 

 

← can store more than dx, e.g. various steps of 
charge calibration (e lifetime, recombination, 
…), or even 3D position instead of SpacePoint 

 

← makes sorting hits easy 

 

would be good to have hits and metadata in a 
single vector instead of two parallel, but as you 
prefer 

 

 

 

Of course art will throw if you ask for the wrong 
assn type, so for the transition one may need to 
save both: the new <Track,Hit,TrkHitMeta> and 
the current <Track,Hit,void> … 

you can use like this: 

feature branches: 
feature/rsulej_lardata_TrkAssnIdx, 
feature/rsulej_larreco_TrkAssnIdx 


