

Vertical and Horizontal High Q Testing – Lessons Learned for LCLS-II

Dan Gonnella Cornell University October 29, 2015

- 3 Labs participated in R&D on High Q: Cornell, Fermilab, and JLab
- This R&D consisted of:
 - Design of N-Doping recipe for Single and 9-Cell cavities
 - Testing of cavities vertically
 - Testing of fully dressed cavities horizontally
- This work was meant to demonstrate feasibility and repeatability of N-doping for LCLS-II

Cornell Results: Single-Cells

 5 single-cells given same doping: 800°C, ~60 mTorr N₂, 20 minutes + 30 minute anneal, followed by different EP (6-30 μm)

Cornell Results: Single-Cells

Cornell Results: 9 Cells

20N30 doping: 20 min N-doping + 30 min anneal at 800C 6N6 doping: 6 min N-doping + 6 min anneal at 800C

Sciences and Education (CLASSE)

Cornell Laboratory for Accelerator-based Effect of N-Doping on Quench Field

- Same quench location before and after doping
- 30% drop in guench field after doping
- Doping model predicts 30% drop in lower critical field after doping (~130 mT => ~90 mT)!
- Should expect: 32 MV/m XFEL quench field average => 22 MV/m LCLS-II doped cavity average

Cornell Laboratory for Accelerator-based Effect of N-Doping on Quench Field

<u>Conclusion</u>: Reduced lower critical field H_{c1} in N-doped cavities => earlier vortex penetration at defects => lower average quench field.

Field Emission

- Two of Cornell's 9-cell cavities were limited by FE after doping
- One was fixed with just an additional HPR, the other with additional VEP (which did not change Q₀ performance)

Conclusion: Re-HPR and additional chemistry can be used if cavities are limited by field emission

- Lesson 1: Nitrogen-Doping is sufficient to reach High Q – performance can be achieved reliably at the three labs
- Lesson 2: We can expect an increase of 1 to 3 nΩ of residual resistance from VT to HT
- Lesson 3: Large ΔT_{trans} and small ΔT_{long} are necessary to reach High Q in N-doped cavities
- Lesson 4: Pressure in the furnace does significantly not affect nitrogen uptake in cavities
- Lesson 5: Great care needs to be taken with auxiliary parts such as HOM couplers, input couplers, etc.

- Q₀ vs E_{acc} is measured at multiple temperatures:
 - Cornell measures each cavity from 1.6 to 2.1 K in
 0.1 K increments
 - FNAL measures each cavity at 1.5 and 2.0 K
 - This allows one to decompose surface resistance in to residual and BCS portions
- Cornell typically measured each cavity in a variety of cool downs with different cool down rates and external magnetic fields

- Cavities are assembled with high Q input couplers – this gives an easy and accurate measurement of the Q₀
 - Cornell uses variable couplers, FNAL and JLab use fixed couplers
- Vertical test dewars have ~1 mG ambient magnetic field at all three labs
- Cavities are typically cooled by dumping in liquid, resulting in very fast cool downs with large temperature gradients

Instrumentation and VT Summary

ltem	Details
Temperature Sensors	At least 3 Cernox sensors on cavity cells
Fluxgate Magnetometers	At least two, one transverse, one longitudinal
Ambient magnetic field	<1 mG
Radiation Monitors	1 outside the dewar under the shielding block (at Cornell)
Q ₀ vs E measured at	1.6, 1.7, 1.8, 1.9, 2.0, 2.1 K (Cornell)
Other items measured	Q ₀ vs T, f vs T (Cornell)
Additional details	Multiple cool downs with different cooling rates and external magnetic fields (Cornell)

In Production

Item	Details
Temperature Sensors	At least 3 Cernox sensors on cavity cells Need at least 1
Fluxgate Magnetometers	At least two, one transverse, one longitudinal
Ambient magnetic field	<1 mG 5 mG?
Radiation Monitors	1 outside the dewar under the shielding block (at Cornell) Do we need more?
Q ₀ vs E measured at	1.6, 1.7, 1.8, 1.9, 2.0 , 2.1 K (Cornell)
Other items measured	Q _o vs T, f vs T (Cornell)
Additional details	Multiple cool downs with different cooling rates and external magnetic fields (Cornell)

Cornell HTC Results

One-cavity test cryomodule

- Short version of a main linac cryomodule
- Same module construction (magnetic shields, cryogenic system...)
- Dedicated to high Q₀ studies

Cornell HTC Results

Test	Cavity	Prepared By	RF Coupler	Helium Vessel	Other
HTC9-1	ACC012	FNAL	High Q	ILC	
HTC9-2	AES011	FNAL	High Q	ILC	
HTC9-3	AES018	Cornell	High Q	LCLS-II	
HTC9-4	AES018	Cornell	LCLS-II	LCLS-II	
HTC9-5	AES030	JLab	LCLS-II	LCLS-II	Tuner, HOM Couplers

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Cornell HTC Results

Cavity	Lhe Tank	HTC Test	VT Result	HT Result	ΔR _{vt->HT} [nΩ]
TB9ACC012	ILC	HTC9-1	(3.5±0.4)x10 ¹⁰	(3.2±0.3)x10 ¹⁰	1 ± 2
TB9AES011	ILC	HTC9-2	(3.4±0.3)x10 ¹⁰	(2.7±0.3)x10 ¹⁰	2 ± 2
TB9AES018	LCLS-II	HTC9-3	(2.2±0.3)x10 ¹⁰	(2.2±0.2)x10 ¹⁰	0 ± 2

<u>Conclusion</u>: No significant change in performance when cavity is installed in cryomodule.

Cavity ID#	2K Q0 at 16 MV/m - vertical test, bare cavity [1E10]	2K Q0 at 16 MV/m - vertical test, dressed cavity [1E10]	2K Q0 at 16 MV/m - horizontal test [1E10]	Maximum accelerating field, latest test [MV/m]	ΔR - vertical bare to vertical dressed [n Ω]	ΔR - vertical dressed to horizontal dressed [n Ω]
ACC015	3.5			24.0		
AES016	3.0			20.2		
AES019	3.2	3.1		18.8	0.3	
AES021	3.4	2.8	3.1	23.0	1.7	-0.9
AES022	3.1			26.2		
AES024	3.2	3.2		22.0	0.0	
AES026	2.8	2.8		21.4	0.0	
AES027	3.6	2.7	2.8	22.8	2.5	-0.4
AES028	3.5	3.0		23.0	1.3	
AES029	3.6	3.6		23.7	0.0	
AES030	2.9	2.5		18.2	1.5	
AES031	3.5		2.4 at 8 MV/m	19.4		
AES032	4.2	2.8		23.0 (admin limit)	3.2	
AES033	3.9	3.6		21.3	0.6	
AES034	3.9	3.5		22.5	0.8	
AES035	3.6	2.9	3.0	17.5	1.8	-0.3
AES036	4.1	3.7		19.0 (admin limit)	0.7	
Average	3.5	3.1	3.0	21.6	1.1	-0.5

Conclusion: We see a 1 to 3 n Ω increase in residual resistance from bare VT to dressed HT

Should we increase the spec to 3.4x10¹⁰ in VT to meet 2.7x10¹⁰ in CM?

Decomposition of R_s

- In HTC9-3, both BCS resistance and residual resistance changed from VT to HT
- Should we be taking 1.6 and 2 K curves during production to identify which component of R_s potential issues are coming from?

- Q₀ vs E_{acc} is measured cryogenically due to low Q_{ext}, which is very time consuming
- Cool downs are typically done by dumping in helium gas, which results in fast cool downs but with smaller temperature gradients than can be achieved in vertical test
- Multiple cool downs completed to optimize flux expulsion and reach high Q₀

Instrumentation and HT Summary

Item	Details
Temperature Sensors	Cernox sensors distributed on the cavity cells, beam tubes, coupler, and HOM cans
Fluxgate Magnetometers	At least two, one transverse, one longitudinal
Ambient magnetic field	<3 mG
Radiation Monitors	On either side of the cryomodule
Q ₀ vs E measured at	1.6, 2.0 K
Other items measured	Q ₀ vs T, f vs T (Cornell)
Additional details	Multiple cool downs with different cooling rates and external magnetic fields (Cornell)

- Many Cernox sensors are impractical from a cost perspective – how many should we have?
- Fluxgates are also expensive but we need at least one to measure magnetic fields
- 1.6 K and 2.0 K curves should be measured in order to better understand poor performance
 - Some cavities will not meet spec, understanding why is very important to solving that problem in future cavities
- Temperature sensors on the HOM cans are highly recommended – will be discussed in detail later

- Lesson 1: Nitrogen-Doping is sufficient to reach
 High Q performance can be achieved reliably at
 the three labs
- Lesson 2: We can expect an increase of 1 to 3 $n\Omega$ of residual resistance from VT to HT
- Lesson 3: Large ΔT_{trans} and small ΔT_{long} are necessary to reach High Q in N-doped cavities
- Lesson 4: Pressure in the furnace does not significantly affect nitrogen uptake in cavities
- Lesson 5: Great care needs to be taken with auxiliary parts such as HOM couplers, input couplers, etc.

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Magnetic Field Studies

Slow Cool Down System Temperature Sensors Fluxgate Magnetometer Helmholtz Coil

Magnetic Field Studies

- Stronger doping
 results in a higher
 sensitivity to trapped
 flux.
- Nitrogen-doped cavities showed a higher sensitivity than EP and EP+120°C baked cavities.

Cool Down Studies

 $R_{res} vs \Delta T_{vert}$

<u>Conclusion</u>: Helium flow rates of >2 g/s needed for efficient magnetic field expulsion by vertical temperature gradients.

Cool Down Studies

Cavity primarily cools from bottom to top => large $\Delta T_{vertical}$ in fast cool down

- Good for efficient magnetic field expulsion
- But: conductivity σ = σ(T) => Cylindrical symmetry is broken!
 - \Rightarrow Finite $\Delta T_{horizontal}$ will drive thermal-electric currents with preferential flow through the bottom of the cavity
 - \Rightarrow Non-zero magnetic field at the cavity inner surface

 \Rightarrow Ideal cool-down: large $\Delta T_{vertical}$ by fast cool down with small $\Delta T_{horizontal}$

- D. Gonnella et al., J. Appl. Phys. 117 , 023908 (2015)
- R. Eichhorn, arXiv:1411.5285 [physics.acc-ph] (2014)
- J.-M. Vogt et al., Phys. Rev. ST Accel. Beams 18, 042001 (2015)

Cool Down Studies

 R_{res} vs ΔT_{horiz} B_{trans} vs ΔT_{horiz} 15 80-60 10 R_{res} [n] 5 20 0 0 0-10 20 30 0 10 20 30 T horizonta' $\Delta T_{horizontal}$ [K]

Conclusion: Small horizontal temperature gradients <10K critical to keep impact of thermal-electric currents on R_{res} small.

The LCLS-II Helium vessel helps to minimize ΔT_{horiz}

B__ [mG]

40

- Lesson 1: Nitrogen-Doping is sufficient to reach
 High Q performance can be achieved reliably at
 the three labs
- Lesson 2: We can expect an increase of 1 to 3 n Ω of residual resistance from VT to HT
- Lesson 3: Large ΔT_{trans} and small ΔT_{long} are necessary to reach High Q in N-doped cavities
- Lesson 4: Pressure in the furnace does not significantly affect nitrogen uptake in cavities
- Lesson 5: Great care needs to be taken with auxiliary parts such as HOM couplers, input couplers, etc.

Diffusion Simulation

We have developed a diffusion simulation code that predicts nitrogen concentration in niobium based on doping parameters

profile and diffusion model prediction.

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Diffusion Simulation

Nitrogen uptake during doping is not dependent on pressure **Conclusion: Exact** pressure in the furnace does not matter to achieve the same doping level

- Lesson 1: Nitrogen-Doping is sufficient to reach High Q – performance can be achieved reliably at the three labs
- Lesson 2: We can expect an increase of 1 to 3 nΩ of residual resistance from VT to HT
- Lesson 3: Large ΔT_{trans} and small ΔT_{long} are necessary to reach High Q in N-doped cavities
- Lesson 4: Pressure in the furnace does not significantly affect nitrogen uptake in cavities
- Lesson 5: Great care needs to be taken with auxiliary parts such as HOM couplers, input couplers, etc.

Impact of HPC on Q₀

<u>Conclusion</u>: No significant increase in 2K cryogenic load or cavity performance degradation from RF input coupler.

HOM Can Multipacting

Short (due to HOM can fabrication error) and <u>multipacting</u> in one HOM coupler resulted in significant heating and Q-slope

FNAL also observed this behavior but was able to condition it away

- Lesson 1: Nitrogen-Doping is sufficient to reach High Q – performance can be achieved reliably at the three labs
- Lesson 2: We can expect an increase of 1 to 3 nΩ of residual resistance from VT to HT
- Lesson 3: Large ΔT_{trans} and small ΔT_{long} are necessary to reach High Q in N-doped cavities
- Lesson 4: Pressure in the furnace does not significantly affect nitrogen uptake in cavities
- Lesson 5: Great care needs to be taken with auxiliary parts such as HOM couplers, input couplers, etc.

- Lesson 1: Nitrogen-Doping is sufficient to reach High Q – performance can be achieved reliably at the three labs
- Lesson 2: We can expect an increase of 1 to 3 $n\Omega$ of residual resistance from VT to HT
- Lesson 3: Large ΔT_{trans} and small ΔT_{long} are necessary to reach High Q in N-doped cavities
- Lesson 4: Pressure in the furnace does not significantly affect nitrogen uptake in cavities
- Lesson 5: Great care needs to be taken with auxiliary parts such as HOM couplers, input couplers, etc.

In every vertical and horizontal test, we encountered something unexpected – it is reasonable to assume that we will continue to experience this at the beginning of production

