PIP-II 650MHz cavity optimization

Timergali Khabiboulline

Microphonics Workshop, FNAL October 8-9

2 mA pulsed beam with duty factor from 0% to CW operation

Microphonics SRF cavities

Bandwidth and required power optimized for CW (2 mA)

Section	Freq	Maximal	Minimal	Max Required
	MHz	detune	Half	Power
		(peak Hz)	Bandwidth (Hz)	(kW)
HWR	162.5	20	34	4.8
SSR1	325	20	45	5.3
SSR2	325	20	27	17.0
LB650	650	20	29	33.0
HB650	650	20	31	48.5

Microphonics Control Strategies:

- Adding RF power to compensate for the expected peak frequency detuning.
- Minimizing Helium bath pressure peak to peak variations.
- **Reducing df/dP**, the sensitivity of the cavity resonant frequency to in the helium bath pressure.
- Reducing Lorenz Force Detuning
- Minimizing acoustics from external sources.

• Active compensation using a fast tuner driven by feedback from measurements of the cavity resonant frequency.

General Issues:

- Low beam loading → narrow cavity bandwidth → microphonics
- Lorentz Force Detuning (LFD) is an issue in a pulsed mode, and should be analyzed for each cavity type
- Future CW operation → cryo-losses → high Q₀ is desired. Technology of the cavity processing based on Ndoping is developing

1st design of HB650 cavity was designed for maximum stiffness of the bare cavity

Bare and dressed cavity optimization

df/dP optimizations of new design for end lever tuner

Stiffness of β=0.92 cavity kN/mm vs.
Radius of the Regular stiffening ring
Stiffness of β=0.9 cavity

PIP-II 650MHz cavity optimization. T. Khabiboulline

Lorenz force detuning

Upper Ring R2=125mm Stiffness ~10 kN/mm Lower Ring R1=85 mm LFD ~ 0.352 Hz/(MV/m)^2

Upper Ring R2=125mm Stiffness ~10 kN/mm Lower Ring R1=80 mm LFD ~ 0.365 Hz/(MV/m)^2

Upper Ring R2=125mm Stiffness ~10 kN/mm Lower Ring R1=90 mm LFD ~ 0.38 Hz/(MV/m)^2_

Upper Ring R2=125mm Stiffness ~10 kN/mm Lower Ring R1=85 mm LFD ~ 0.316 Hz/(MV/m)^2

HB650 MHz bare cavity LFD.

LFD for HB650 MHz dressed cavity

Mechanical resonances HB650 MHz dressed cavity

Microphonics Workshop, FNAL October 8-9 2015

PIP-II 650MHz cavity optimization. T. Khabiboulline

HB650 MHz cavity stiffness

	Stiffness kN/mm, vs. R2, mm	R2,mm	Stiffness kN/mm
16 14		110	4.75
12		115	6.2
8		120	7.3
6		125	8.75
2		130	10.3
110	120 130 140	140	14.7

Cavity Stiffness vs stiffening ring diameter

R=100 mm, $\Delta L \sim 334 \ \mu m$ Stiffness ~ 3.0 kN/mm

Microphonics Workshop, FNAL October 8-9 2015

Cavity operational and test requirements

Parameter	Value	
Max Leak Rate (room temp)	$< 10^{-10}$ atm-cc/sec	
Operating gradient	16.5 MeV/m	
Maximum Gain per cavity	11.6 MeV	
\mathbf{Q}_{0}	>1.5x 10 ⁹	
Maximum power dissipation per cavity at 2 K	24 W	
Sensitivity to He pressure fluctuations	< 20 Hz/Torr	
Field Flatness	Within $\pm 10\%$	
Multipacting	none within ±10% of operating gradient	
Operating temperature	1.8-2.1 K	
Operating Pressure	16-41 mbar differential	
MAWP	2 bar (RT), 4 bar (2K)	
Max RF power input per cavity	33 kW (CW, 2 mA)	

LFD in LB650 cavity for PIP II

The Scope of EM-Mechanical design work

- Minimize a sensitivity to microphonics due to He pressure fluctuations (df/dP) and mechanical vibrations
- Minimize a Lorentz Force Detuning (LFD) coefficient
- To keep the stiffness and tuning sensitivity at suitable level to allow for tuning.
- Keep provision for slow and fast tuner integration.
- Dressed cavity has to be qualified in 5 different load conditions by stress analysis
- 1. Warm Pressurization
- 2. Cold operation at maximum pressure
- 3. Cool down and tuner extension
- 4. Cold operation at maximum pressure and LHe weight
- 5. Upset condition Insulating and beam vacuum failure