Energy Deposition in Optimized Target/Horns with a Glance at Absorber Nikolai Mokhov DUNE Beam Interface/Optimization/Simulation Meeting Fermilab October 8, 2015 #### Outline - MARS Model: Baseline (Nominal), Optimized and Test (B=0) - Energy Deposition, Fluxes and DPA - Impact on Hadron Absorber Building and optimizing MARS model of all the components in the LBNF primary and neutrino beamlines from Main Injector to Near Detector: NM, Y. Eidelman, I. Rakhno, D. Reitzner, S. Striganov, I. Tropin ## LBNF Target Station in Baseline MARS15 Model #### NuMI-like target (2λ) and horns ### Optimized Target and Horns Laura Fields, DUNE DocDb #56, Sept. 1, 2015 Target: Graphite (1.8gcc), solid block for now, abs(x)=4.75mm, abs(y)=10mm, L=237cm (5 λ), z_0 = -50cm. Horn1: z_0 = -59.4cm ### Baseline and Optimized (1) Proton beam coordinate system ## Baseline and Optimized (2) Proton beam coordinate system ## Baseline and Optimized (3) Proton beam coordinate system #### Scenarios & Beam Parameters in MARS15 Simulations $\varepsilon_{95} = 20\pi \text{ mm-mrad}, N_p = 1.5 \times 10^{14} \text{ ppp}$ Beam starts at z = -7.3 m from MCO, tilt = 0.101074 | Scenario | E _p (GeV) | P (MW)
Q (MJ) | σ ₀ (mm)
at MC0 | β_0 (m) at MC0 | Cycle (s) | × 10 ¹⁴ | |------------------------|----------------------|------------------|-------------------------------|----------------------|-----------|--------------------| | Normal | 120 | 2.40 MW | 1.7 | 110.8837 | 1.2 | 1.25 p/s | | No-target accident* | 120 | 2.88 MJ | 2.4 | 221.03 | 1.2 | 1.5 ppp | | Off-axis
accident** | 120 | 2.88 MJ | 2.4 | 221.03 | 1.2 | 1.5 ppp | | Normal | 60 | 2.06 MW | 1.7 | 55.44 | 0.7 | 2.14 p/s | ^{*)} On-axis ^{**)} Beam points to absorber cooling water pipes ## Power Density Profiles in Target Station ## Power Deposition in Optimized Target: Density and Total in Graphite Only P_0 = 45.02 kW Compare to 22.4 kW baseline Test: Impact of Horn1 field and Material -> B=0 and Al -> Air P_{OT} = 44.10 kW, just 2% less than P_O ## Zooming out... ### Power Density #### π^{\pm} + K[±] Fluxes ### μ[±] Fluxes #### **Proton Fluxes** #### e[±] Fluxes ## Power Density Contributors in Target ## Power Density Lateral Profile at Shower Maximum ### RadDam and Target Lifetime: DPA and Neutron Flux (1) ## RadDam and Target Lifetime: DPA and Neutron Flux (2) Peak: 2.7 DPA and 1.3e21 n/cm2 per 1.5e7 s/yr Compare to a 0.2 to 0.7 limit (BLIP & NuMI): enlarge beam on target ## Absorber: Optimized MARS15 Model ## Longer target: up to 20-fold reduction of pedestal Longer wings decrease peak: 100 times for 48-cm wings #### Energy Deposition (mW/cm3) y-z Profile: 1x1x5.33 cm bin #### Baseline NuMI style ## $-2.20x10^3$ -2.24x10³ – -2.28x10³ -2.31x10³ $-2.34x10^{3}$ $2.25x10^4$ Power density (mW/cm^3) y:z = 1:5.333e+00 #### Optimized with 42cm wings Peak energy deposition density is about 12 times lower for optimized target with 42-cm long wings DUNE Beam Interface, Fermilab, Oct. 8, 2015 #### Power on absorber for 2.4 MW beam | x*y | Baseline | Baseline
+12cm wings | Optimized | Optimized +48cm wings | |-----------------|----------|-------------------------|-----------|-----------------------| | cm ² | kW | kW | kW | kW | | 6*6 | 107 | 46 | 16 | 6.6 | | 12*12 | 196 | 86 | 25 | 16 | | 32*32 | 350 | 159 | 71 | 62 | | 300*300 | 760 | 726 | 392 | 382 | Baseline total heat dissipation in absorber: 741.7 kW #### Muon/Hadron Fluxes (cm⁻² s⁻¹) with Steel Kern