

Energy Deposition in Optimized Target/Horns with a Glance at Absorber

Nikolai Mokhov

DUNE Beam
Interface/Optimization/Simulation
Meeting
Fermilab
October 8, 2015

Outline

- MARS Model: Baseline (Nominal), Optimized and Test (B=0)
- Energy Deposition, Fluxes and DPA
- Impact on Hadron Absorber

Building and optimizing MARS model of all the components in the LBNF primary and neutrino beamlines from Main Injector to Near Detector:

NM, Y. Eidelman, I. Rakhno, D. Reitzner, S. Striganov, I. Tropin

LBNF Target Station in Baseline MARS15 Model

NuMI-like target (2λ) and horns

Optimized Target and Horns

Laura Fields, DUNE DocDb #56, Sept. 1, 2015

Target: Graphite (1.8gcc), solid block for now, abs(x)=4.75mm, abs(y)=10mm, L=237cm (5 λ), z_0 = -50cm. Horn1: z_0 = -59.4cm

Baseline and Optimized (1)

Proton beam coordinate system

Baseline and Optimized (2)

Proton beam coordinate system

Baseline and Optimized (3)

Proton beam coordinate system

Scenarios & Beam Parameters in MARS15 Simulations

 $\varepsilon_{95} = 20\pi \text{ mm-mrad}, N_p = 1.5 \times 10^{14} \text{ ppp}$

Beam starts at z = -7.3 m from MCO, tilt = 0.101074

Scenario	E _p (GeV)	P (MW) Q (MJ)	σ ₀ (mm) at MC0	β_0 (m) at MC0	Cycle (s)	× 10 ¹⁴
Normal	120	2.40 MW	1.7	110.8837	1.2	1.25 p/s
No-target accident*	120	2.88 MJ	2.4	221.03	1.2	1.5 ppp
Off-axis accident**	120	2.88 MJ	2.4	221.03	1.2	1.5 ppp
Normal	60	2.06 MW	1.7	55.44	0.7	2.14 p/s

^{*)} On-axis

^{**)} Beam points to absorber cooling water pipes

Power Density Profiles in Target Station

Power Deposition in Optimized Target: Density and Total in Graphite Only

 P_0 = 45.02 kW Compare to 22.4 kW baseline

Test: Impact of Horn1 field and Material -> B=0 and Al -> Air

 P_{OT} = 44.10 kW, just 2% less than P_O

Zooming out...

Power Density

π^{\pm} + K[±] Fluxes

μ[±] Fluxes

Proton Fluxes

e[±] Fluxes

Power Density Contributors in Target

Power Density Lateral Profile at Shower Maximum

RadDam and Target Lifetime: DPA and Neutron Flux (1)

RadDam and Target Lifetime: DPA and Neutron Flux (2)

Peak: 2.7 DPA and 1.3e21 n/cm2 per 1.5e7 s/yr

Compare to a 0.2 to 0.7 limit (BLIP & NuMI): enlarge beam on target

Absorber: Optimized MARS15 Model

Longer target: up to 20-fold reduction of pedestal Longer wings decrease peak: 100 times for 48-cm wings

Energy Deposition (mW/cm3) y-z Profile: 1x1x5.33 cm bin

Baseline NuMI style

$-2.20x10^3$ -2.24x10³ – -2.28x10³ -2.31x10³ $-2.34x10^{3}$ $2.25x10^4$ Power density (mW/cm^3) y:z = 1:5.333e+00

Optimized with 42cm wings

Peak energy deposition density is about 12 times lower for optimized target

with 42-cm long wings DUNE Beam Interface, Fermilab, Oct. 8, 2015

Power on absorber for 2.4 MW beam

x*y	Baseline	Baseline +12cm wings	Optimized	Optimized +48cm wings
cm ²	kW	kW	kW	kW
6*6	107	46	16	6.6
12*12	196	86	25	16
32*32	350	159	71	62
300*300	760	726	392	382

Baseline total heat dissipation in absorber: 741.7 kW

Muon/Hadron Fluxes (cm⁻² s⁻¹) with Steel Kern

