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Abstract Electrical current flow within 
populations of neurons is a fundamental constituent 
of brain function. The resulting fluctuating 
magnetic fields may be sampled noninvasively with 
an array of magnetic field detectors positioned 
outside a patient’s head.  This is 
magnetoencephalography (MEG). Each source may 
be characterized by 5-6 parameters, the xyz 
location and the xyz direction.  The magnetic field 
measurements are nonlinear in the location 
parameters; hence the source location is 
identifiable only via search of the brain volume.  
When there is one or a very few sources, this may be 
practical; solutions for the general problem are 
weak. 

Referee consensus is a new method which 
enables identification of one source at a time 
regardless of the number and location of others. 
This “independence” enables solution of the general 
problem and insures suitability to grid computing.  
The computation scales linearly with the number of 
nonlinear parameters. 

MEG recordings were obtained from volunteers 
while they performed a cognitive task The 
recordings were processed on the Open Science 
Grid (≈150 CPU hours/sec of data).  On average 
500-1500 sources were active throughout.  
Statistical analyses demonstrated < 2 mm resolving 
power1 and very strong findings (p < 0.02400) when 
testing for task specific information in the extracted 
virtual recordings from each individual. 3D maps of 
differential activation, neuroelectric tomography, 
provide a very high resolution functional imaging 
modality which compares favorably with functional 
magnetic resonance imaging (fMRI). 

Referee consensus is applicable widely to 
measurement systems including microwave 
telescope imaging, seismic tomography, and 
financial market linkage identification. 
Applicability requires: (1) The measurements are 
linear in at least one parameter of each “source.” 
(2) Each source is detectable at multiple sensors. (3) 
A sequence of measurements in time is available. 

                                                        
 1 Linear dimensions are represented in this standard form.  Volume 
dimensions are represented throughout in terms of the length of a side, e.g. 
8mm3 instead of ½ cc, ½ cm3 or 512 mm3. 
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1. Introduction 
Electrical current flow within populations of neurons is 

a fundamental constituent of brain function. The resulting 
fluctuating magnetic fields may be sampled noninvasively 
with an array of magnetic field detectors positioned outside 
a patient’s head.  This is magnetoencephalography (MEG).   

The signal at each MEG sensor is a weighted sum of the 
magnetic fields produced by sources within the brain, i.e. 
the relationship between the measurements and the 
amplitudes of the current sources is linear.  But the number 
and locations of the sources are generally unknown and the 
relationship between the measurements and the source 
location coordinates is nonlinear [1]. These issues pose 
fundamental unsolved problems with handling and 
interpreting MEG signals.    

In restricted special cases the data is manipulated so that 
plausibly the activity of only a single source is a significant 
contributor to the MEG.  In these cases, the widely 
accepted Equivalent Current Dipole (ECD) localization is 
applicable.  A single point source current dipole is 
assumed, requiring estimation of 5-6 parameters (3 location 
coordinates and 2-3 current amplitude components).   The 
parameter estimation is typically accomplished using an 
iterative gradient search method for all 5-6 parameters.  
The accuracy of this method is vulnerable to either 
extraneous sources or noise in the data. This forces the 
analyst to average the data synchronized to an event and 
thereby reduce the quantity of information which may be 
extracted by a factor of 100 or more.   

For the general multiple source problem, many 
investigators have opted to use methods with which 
thousands of point sources are estimated in a single 
operation, e.g. MNE [2], LORETA [3-4], VESTAL [5-6].  
This approach provides a solution to the localization 
problem by including source locations with sufficient 
density to insure that no source is more than a few mm from 
one of them.  But these methods produce thousands of 
parameters from hundreds of data points; they are under fit, 
i.e. poorly posed.  Because of this both localization 
accuracy and the ability to resolve sources which are near 
each other is weak.  Furthermore these methods are also 
vulnerable to noise in the data, again forcing up front 
averaging with consequent loss of information. 
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Referee consensus is used in a manner which is 
comparable to single source localization.  But it has much 
less vulnerability to the presence of either extraneous 
sources or noise.  And it is dimensionally well-posed.  
These properties enable (1) application to single trial data 
and (2) resolution of sources < 2 mm apart.   

A formal treatment of the method is presented followed 
by results of its application to the MEG problem.  The 
discussion details why the method works, the generalized 
version of the method for handling lagged relationships, and 
applications to other problems. 

2. Methods 
A. Experimental Methodology.  Under University of 
Pittsburgh IRB approval (PRO09040294), 26 participants 
included 16 with history of concussion were enrolled in this 
study.  Written informed consent was obtained after which 
all volunteers sat for MEG recordings while performing the 
task.  Either MRI (23) or CT (3) was used for anatomic 
localization.  

MEG recordings were acquired in the UPMC Brain 
Mapping Center with a 306-channel sensor array 
(Neuromag VectorView, Elekta Inc., Stockholm, Sweden) in 
a magnetically shielded room (Imedco, Hagendorf, 
Switzerland).  Data sampling rate was 1000 Hz with front 
end high and low pass filter settings: 0.1-330 Hz.  Line 
noise was removed from the raw MEG at 60, 120, 180, 240, 
300 Hz using multiple regression [7].  

With continuous MEG recording, each volunteer 
performed a visual choice task (Figure 1) controlled by 
EPrime 2.0 (Psychology Software Tools; Pittsburgh, PA).  
Each trial consisted of one of 8 sentences followed by 3 
consecutive test figures to which a rapid response was given. 
Each sentence consisted of 5 words: “The blue/green 
circle/square is above/below.”  

All presentations were placed on a white background.  8 
blocks of 40 trials were presented.  It was assumed that 
within each block of 40 trials (~4 min) the head was fixed.  
The task with all recorded events is schematized in Figure 1.  
The transition from each stimulus to the next was self-paced, 
i.e. triggered by a button press (Brain Logics Fiber Optic 
Button Response System, Psychology Software Tools, 
Pittsburgh, PA).  With each button press, the preceding 
stimulus, word or test figure, disappeared for 2 screen 
refresh cycles (~33 msec) before presentation of the next 
stimulus.  Following the button press indicating the 

match/mismatch choice for the 3rd test figure, the screen 
was blank (white) for 1.0 sec with the fixation point 
appearing halfway through this interval. 
B. Referee Consensus Optimization. The referee 
consensus cost function is a measure of local curvature in 
the space of a nonlinear search. The search space is a vector 
field over the volume of the brain. The vectors in this work 
are 80 point functions, the 80 msec time courses of 
neuroelectric currents. 

The dimensionality of the domain of the space is 3, the 
x, y, and z coordinates of a single current dipole, A. Each 
3D point for which the local curvature is positive is 
identified as a source [G]. The locality of the referee 
consensus cost function [4.A] enables identification of a 
single source at a time in the presence of numerous 
unknown simultaneously active sources. This independence 
ideally suits the referee consensus search to computational 
grid implementation. 

 
 

R!A’-R!A [C]  → 
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Fig. 2. The sequence for testing one 3D point of the search space, A, for 
the presence of a neuroelectric source. Referee consensus steps (blue) and 
numeric operations (mauve) are shown. References are shown to sections 
detailing each entry.  

The search proceeds one 3D location, A, at a time. The 
cost function, referee consensus, is constructed from 
multiple measures of deviation from an absolute standard, 
zero. Each of these referee views [D] is the output of the 
difference filter for a referee, R!A’-R!A, where the filter is 
applied to an 80 msec MEG recording to produce the 80 
msec time course of a current dipole, R!A’-R!A3. This 
difference filtering operation produces a partial differential. 
Since R!A has a zero [1.A] at the search space test location, 
A, the numerator of the partial differential is an estimate of 
the amplitude of the current source. The denominator is the 

                                                        
2 This represents the products of the 6 p-values to achieve p < 10-12. 
3 A filter is represented in italics, e.g. R!A. The 80 msec time course of a 
current dipole resulting from the application of R!A to an 80 msec MEG 
data segment is represented in bold, e.g. R!A. 

 
Fig. 1.  A sample trial is shown.  The bar at the bottom is 4 sec long.
The black arrows indicate stimuli.  The magenta arrows indicate
responses to the preceding stimulus. The 2nd-5th word stimuli were
triggered by a button press with the index finger.  If the test figure
matched the sentence, the response was a button press with the index
finger.  If not, the response was a button press with the middle finger. 
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1 mm line segment, A’-A4 . In this work, there are 3 
nonlinear variables, the xyz coordinates of A. 6 views 
(partial differentials) are computed for each referee using 6 
different A’s, displaced from A ±1 mm along the x, y, and z 
axes: +xA’, -xA’, +yA’, -yA’, +zA’, -zA’. 

The referee view is transformed to an opinion by a 1 bit 
digitization operation [E]. The opinions for each of the 6 
differentials are summed separately to produce 6 
consensus±xyz opinions [F]. Each of these is a measure of 
“goodness of fit” since each quantifies how well the referee 
views are distinguishable due to a neuroelectric current at A. 
The presence of a source at A is accepted only if all 6 
consensus opinions are significantly greater than ½ the 
number of opinions5, i.e. the curvature is positive. If one or 
more of the consensus opinions is significantly less than ½, 
then A is a saddle point and there is a presumed source 
nearby. The direction to move for the next A, the “gradient” 
for the search, is determined by the significant consensus 
opinions of both types. 
C. Formalism for a Referee Consensus System. A 
referee consensus system is a multiple sensor measurement 
system in which each sensor functions in a linear range. 
This enables representing the system as a set of linear 
equations, one for each sensor. The additive terms in the 
equations are functions of each of the sources; the number 
of these terms is generally unknown. Each function has one 
or more nonlinear parameter and at least 1 linear parameter6.  
“Best” values for the “location,” the nonlinear parameters7, 
are identified by trial and error, i.e. a search.  At each step 
of the search the values of the nonlinear parameters are 
fixed, enabling solution for the remaining linear parameters 
using the linear formulation detailed below. 

A referee consensus system is formulated as a set of 

linear regression equations: 
TTT H EDB


 . The 

elements of B


 are the measurements (known).  The 

elements of D


are the linear source variables (to be 
estimated via ordinary least squares regression).  The 

elements of E


are the errors in the estimates.  Each 

element of H , the jkh
, are nonlinear functions of the 

                                                        
4 The domain of the search was artificially constrained to a 1 mm cubic 
grid. 
5 In this work 90 referee locations are used. For each of these there are 2 
referees oriented at right angles to each other which are constrained to be 
correlated in this work; hence the statistics are conservatively handled 
using ½ counts, 90 rather than 180. 57 of 90 (p ≈0.007) was used as the 
threshold for significance. This results in a threshold for significance for 
positive curvature, i.e. for accepting the presence of a source, of 0.0076 < 
10-12.  
6 For the magnetic field due to a current dipole in a uniformly conducting 
sphere [1] each source is characterized by 5 parameters.  3 of these are 
nonlinear, i.e. the xyz coordinates of the location of the source.  The 2 
linear parameters are the 2 components of the amplitude of the current in 
the tangent plane.  This physical model precludes detection of the radial 
component of an intracranial current source. 
7 One or more linear parameter may be identified by search along with the 
nonlinear ones.  This could be required if there are too few sensors to 
enable inclusion of the all the linear parameters as linear source variables 
in the regression formulation. 

parameters that characterize the 
thj sensor and the 

thk source.   The equations are solvable only when these 

nonlinear parameters are fixed so that the jkh
are numbers.  

For the referee consensus method, the existence and the 
values of the parameters of one source at a time are 
determined.  All other sources included in the system 
estimate are either at fixed dummy “referee” locations or at 
known source locations which are included to reduce the 
errors8. 

The formulation of a referee consensus system must 

include at least 2 sources: (1) the target (
thk ) source, the 

one for which the nonlinear parameters are to be found by 
search and (2) at least one referee location. Each referee 
must be “correlated” to the target location, i.e. the dot 

products of the columns of H corresponding to the referees 
with the columns for the target location must be non-zero 
[1.B].  

The ordinary least squares solution for 

TTT H EDB


  is 
  TT-1TT HHH BD









, i.e. 

the
thk element of D


 is a  weighted sum of the 

measurements,
TB


, where the weights are the entries in 

the
thk row of   T-1T HHH .  Each of these rows is then a 

linear filter.  Effectiveness of the referee consensus method 

relies critically on the fact that the
thk filter has zero gain for 

contributions to the measurements from all of the entries in 

D


 except kd
.  Section 1.A contains a proof.   

D. Referee View. An estimate of the time course for a 
putative source at A from the viewpoint of referee R is 
computed as follows. (1) The system is solved for sources at 
the target location, A, and a referee, R.  The filter9 for R, 
R!A, is applied to an 80 msec MEG time segment in this 
work to produce the time series, R!A.  There is no 
contribution to this sequence from a source at A since R!A 
has zero gain for a source there [1.A].  Hence we refer to 
this filter as: “R not A.” (2) The system is solved for the 
same referee, R, but a different target location 1 mm from A, 
A’.  Again the filter for R is applied to the sequence of 
measurements but this time there is a contribution from A 
since it was not included in the model. This time series is 
R!A’.  
  R!A’-R!A is an estimate of the time course of a source at 

A, 80,,1],[ ttdk . Viewed as the output of the 
difference filter, R!A’-R!A, R!A’-R!A is a partial differential 

whose numerator is proportional to 80,,1],[ ttdk and 
whose denominator is the 1 mm line segment, A’-A. There 

                                                        
8 This error reduction approach is not used in this work. 
9 For the MEG problem, it is natural to handle these variables 2 at a time, 
i.e. the two orthogonal components of a current dipole.  For simplicity but 
without loss of generality, we describe formation of the referee template for 
a single variable at a time. 
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are 6 of these views for each referee, one for each of the 6 
line segments where A’ = A ±1 mm along the x, y, and z 
axes. 
E. Referee Opinion. If there is in fact a source at A, it 
should contribute to R!A’ but not to R!A.  The referee 
opinion as to the presence of a source at A is computed by 
the following 1-bit transform: If ((R!A’-R!A)●R!A’)2 > 
((R!A’-R!A)●R!A)2, the opinion = 1, i.e. there is a source 
present at A from the view of this referee. Otherwise the 
opinion is 0. There are 6 opinions, one for each of 6 views. 
F. Referee Consensus±xyz Opinion. There are 6 referee 
consensus opinions, one for each of the 6 A’s. Each is 
computed by counting the referee opinions for the 
corresponding A’.  The probability of getting a particular 
count is interpretable as one would interpret the flip of a fair 
coin.  The expected value for K flips is K/2, e.g. the 
chance of getting 57 or more heads (1’s) out of 90 referee 
opinions ≈ 0.007.  This is the threshold p-value used in this 
work for each of the 6 consensus opinions for acceptance of 
the existence of a source at A, i.e. each of the 6 measures of 
goodness of fit is significant. 
G. Referee Consensus View: The Template. The 
individual referee views are combined into a consensus 
view. Averaging was not used because the sign of each view 
was unconstrained. Rather the outer products of the views 
with themselves were used to generate a sum of squares and 

cross products matrix: m
m

m DD
 1080,1

. The first 

eigenvector of this matrix was used as the consensus view. 
 

 
H. Referee Consensus Cost Function. A was accepted as 
the location of a source only if the threshold p-value of 
0.007 was reached for all 6 A’s, i.e. the curvature of the 
vector space at A is positive. Hence the probability of 
accepting a source by chance was p < 0.0076 < 10-12. If one 
or more consensus±xyz opinion was significantly less than ½, 
less than 33 out of 90, A is a saddle point suggesting that 

there is a nearby source not at A.  The gradient for the 
continued search was computed using the significant 
consensus±xyz opinions of both types. 
I. Parameter constraints. A limited exploration enabled 
selection of key parameters of the calculation which are 
only partially constrained otherwise.  Figure 3 shows 
typical distributions of values that were obtained for the 
referee consensus depending on parameter selection.  
These parameters are listed with the constraints selected 
from the results summarized in the figure 3: (1) length of a 
data segment (80 msec), (2) band pass filtering applied to 
the MEG (none), and (3) removal of line noise from the 
MEG (yes).  The substantive shifts to the right in the figure 
represent improved goodness of fit, i.e. greater referee 
consensus. 
J. Referee Consensus Data Processing. For each trial, 6 
560 msec data segments were selected for extraction of 
virtual recordings using referee consensus processing.  The 
search for active MEG sources was conducted for 80 msec 
time segments, one at a time, each overlapping the previous 
segment by 40 msec.  The brain volume absent a sphere 
with 15 mm radius at the center of the head10 was divided 
into ≈ 3000 ½ cm3 cubes.  Each instance of the search 
routine, mvrXS, searched the data from 40 target figures for 
one of these ½ cm3 volumes.    

Each such job required about 1 hr of computing time.  
Processing the data for each volunteer required: 3000 voxels 
(8mm3 ≈ ½ cm3) x 8 (trials blocks) x 3 (target figures) ≈ 
72,000 jobs.  The data flow and control software are 
shown in Figure 4.   

Files on the Master and on the front-end are used both 
as flags and as tokens by the scripts running at both ends.  
Both the names and contents of these files are used to 
communicate control information.  That information is 
accessed by polling using standards file operations, e.g. mv, 
filetest, cat, ls.  mv is used to adjudicate race conditions 
when there are multiple instances of scripts using a token. 

The scripts spend most of their time idled via the system 
function, sleep.  The Linux sleep may be passed an 

                                                        
10 Due to geometric and other physical constraints, magnetic fields 
produced near the center of the head are undetectable.  Efforts to measure 
them result in numeric instability in the computational algorithms. 

Fig. 3.  The distribution of values of the average referee consensus
metric,   906/_0  xyzopinionconsensus , is ≈ symmetric and

improves with both template length (40:red  80:black), reduced low
pass filtering (150 Hz: mauve  330 Hz: red), and with removal of line
noise from the MEG (blue). The vertical bar at 57 out of 90 for each of 6 
tests has a nominal p < 10-12 (see text).   A shift to the right, i.e. increase
in referee consensus, reflects improved goodness of fit.  

Fig. 4. OSG data flow (light blue arrows) and job control. Magenta 
arrows represent polling loops; question marks indicate the objects 
which are polled.  Black arrows represent script functionality, e.g. 
file operation and process spawning. 
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arbitrary precision floating point number which may be 
used to encode current script status information.  That 
information may then be accessed by a monitor script which 
polls the system process list with ps. 

The calculations were hosted by the Open Science Grid 
(OSG).  Typical ongoing grid usage for this work over 100 
days is shown in Figure 5: ≈5.4 million hours of clock time.  
This amounts to ≈4% of the total grid usage for that period. 

mvrXS was written in Fortran 77 and compiled with 
gfortran.  The dot product routines were optimized.  The 
eigenvector decompositions and matrix inversions using 
Cholesky factorization were handled at 64 bit precision 
using LaPack [8].  

 
All job control, results aggregation and transport, and 

housekeeping functions were handled by tcsh scripts.  
These were developed incrementally over several months 
with the following objectives: 
1. Maintain sufficient pending jobs in the queue to utilize 
all available idle cycles (Figure 6). 
2. Eliminate loss-of-results errors. 
3. Minimize (a) network traffic, (b) front end scratch disk 
usage, (c) front end scratch disk access operations. 
4. Minimize human oversight.  This has been reduced 
from several per day to once per several days. 
5. Tolerate faults: (a) network slowdowns, (b) front end 
scratch disk slowdowns, (c) front end reboot. 

 
Each instance of the executable required ≈ 300 Mbytes 

of core memory at run time.  In addition each instance 
required network transport of ≈10 Mbytes of file data 

including the mvrXS static image, the MEG data segments, 
data specific tables, and results files.  For each group of 
3000 jobs, the MEG data segments were the same and 
accounted for ≈2/3 of the data transport demand. Since our 
jobs typically ran on only 5-20 facilities at a time, we were 
able to reduce this by ≈40% using the “SQUID” http 
transportation layer provided by many OSG resources 
which includes local file caching.   

The calculation of the referee consensus requires the 4 
steps listed below.  In order to measure the gradient of the 
referee consensus, these were carried out 6 times, once for 
each point adjacent to the target location 1 mm along the x, 
y, and z axes.  Note that for the MEG problem, there are 2 
linear variables for each source location. 
1. Compute 180 referee templates, 2 for each of 90 referee 

locations. 
2. Compute the first eigenvector of the 180 templates.  
This is the referee consensus template. 
3. Compute 180 referee metrics, 2 for each of the 90 
referee locations. 
4. Sum the referee metrics to obtain the referee consensus. 

 
 

If there is, in fact, an MEG source present at a location, 
the two members of the corresponding pair are likely 
correlated with each other.  We can estimate the chance of 
getting 114 or more out of 180 in the worst case, i.e. when 
they are perfectly correlated, by reducing the referee 
consensus by ½:  I.e. the chance of getting 57 or more 
heads out of 90 flips of a fair coin is 0.007; the chance of 

Fig. 6.  Jobs are spawned in groups of ≈3000 when the total number 
in the queue falls below a set point, 8500.  This gives rise to the 
typical thermostat-like saw tooth appearance of this 24 hour grid 
status graph. 

Fig. 5.  100 days of typical ongoing OSG usage for this project is 
shown. The total is ≈5.4 million cpu hours, amounting to ≈4% of the 
total OSG usage. 

Fig. 7. Typical averaged evoked responses from 3mm3 voxels, 
300-500 80 msec waveforms.  Time scale is 500 msec.  Amplitude 
scale is indicated in amp-9meters. Blue: Test figure and sentence were 
a match. Red: Test figure and sentence did not match. Aqua: Test 
figure was above the fixation point.  Magenta: Test figure was 
below the fixation point. Vertical arrow: Vertical arrow: Coincident 
waveforms demonstrate processing delay. Horizontal arrow: Nearby 
(6 mm) waveforms show low correlation, i.e. high resolving power.
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doing so 6 times in a row is 0.0076 ≈ 10-12.  In addition the 
fairness of the “coin flips” is potentially compromised by 
correlations of the referees’ transfer functions.  Analysis of 
this potential bias is beyond the scope of this paper. 

To identify the starting point for the search of each ½ 
cm3 volume, referee consensus was applied once to 34 
points scattered evenly through the cubic volume.   A 
maximum of 6 steps guided by the gradient calculation was 
then allowed before terminating the search.  Other 
efficiencies included applying laboriously generated tables 
piecemeal across time segments rather than storing their 
results or repeating them.  Together these reduced the 
computational load by a factor of 40 compared to an 
exhaustive grid search. 

3. Results 
A. Virtual recordings.  For each 80 msec time segment 
for each single trial, 500-1500 active sources were found. 
For each identified source, the xyz coordinates, the value of 
the referee consensus, the 80 point time series referee 
template, and the two components of the amplitude were 
stored for further analysis.  Each of these 80 msec 
waveforms is viewable as a fragment of a single trial 
evoked response by the tissue at that location.  Typical 
averages are shown in Figure 7. 

The resolving power demonstrated in the figure was 
quantified as follows. The correlation was computed 
between all pairs of source that occurred simultaneously.  
The correlation was then plotted as a function of the 
distance between the members of the pair.  Typical results 
from 3 subjects are shown in Figure 8.  The figure 
demonstrates that the method resolves sources < 2 mm 
apart. 

 
B. Task specific information. The presence of task 
specific information must be demonstrated in the single trial 
virtual recordings to validate the method. This was done 
separately for the virtual recordings from each volunteer.  

 
The search volume was divided into cubic voxels. The 

number of identified sources in each voxel was counted (1) 

for test figure presentations which matched the sentence and 
(2) for test figures which did not match.  The two counts 
within each voxel were then tested for equality using the χ2 
statistic. The ratio of the two counts over the entire volume 
was used as the expectation ratio11.  These counts were 
made for a sequence of voxels sizes: 2mm3, 3, 4, 6, 8, 12, 
and 24.  

 

 
The threshold for significance was set at χ2 ≥ 28.4, p ≤ 

10-7, to enable statistical inferences from the results from a 

                                                        
11 This is more conservative than the use of the true expected ratio, i.e. the 
number of match/mismatch test figures. 

Fig. 8. The correlation between all pairs of coincident source templates is
shown as a function of distance between the sources from 1 mm to 10 cm.
The absolute value of the correlation was used in each case.  The
variance in the measure across all pairs was ≈ 0.02.  These results
demonstrate resolving power of < 2 mm. The results shown (3 subjects)
were typical.  The search was confined to a 1 mm grid covering the
brain so 1 mm is the limit of the detectable resolving power.   

Fig. 9. Task specific information is preserved in single trial virtual 
recordings. The number of neuroelectric sources was counted within 
each voxel (1) for test figures matching the sentence and (2) for test 
figures which did not match.  The number of voxels for which the 
counts were “different” is plotted on the y-axis (χ2 > 28.4, p < 10-7). 
The voxel size is plotted on the x-axis.  

Fig. 10. Task specific information is preserved in single trial virtual 
recordings: overlap replication. The number of neuroelectric sources 
was counted within each voxel and tested for differences as in Figure 
8.  Results for the 3 individuals with the strongest findings are 
shown in red, blue, and orange.  Results using all sources are most 
significant.  The counts were repeated after splitting the sources at 
random.  The pairs of traces are indistinguishable for each 
individual.  The counts were repeated again after splitting the 
sources according to the shape of the test figure, square or circle.  
The traces for the each individual are now different and the results 
are more significant than when the division is at random. 
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single voxel. In the worst case considered, i.e. for 2mm3 
voxels, ≈200,000 are required to cover the brain.  In that 
case the chance that a single voxel out of 200,000 will reach 
the selected significance threshold is 0.02.  Note in Figure 
9 that the minimum number of voxels reaching the 
threshold is ≈400.  The chance for that worst case is p < 
0.02400, i.e. astronomical. It can therefore be inferred with 
very high confidence that task specific information is 
preserved in the single trial virtual recordings from each 
volunteer. 

A test was then run of the validity of the statistical 
method and its result. The identified neuroelectric sources 
were divided at random into 2 equal groups and the counts 
and calculations were repeatedly separately on each of the 
groups (Figure 10). For each subject the traces in each pair 
(1) show high significance12 and (2) are indistinguishable 
from each other13, validating the method and result. 

A second test was run in which the identified 
neuroelectric sources were divided according to the shape of 
the test figure14, circle or square (Figure 10). For each 
subject the traces in each pair (1) show more significance 
than for the random division and (2) they are readily 
distinguishable from each other. The finding of significance 
strongly supports the conclusion that task specific 
information is present in the virtual recordings. The facts 
that the significance is increased and that the traces are 
different for circle vs square test figures implies these 
voxels are “associative,” i.e. they are differentially activated 
by the combination of match vs mismatch and circle vs 
square. 

It is noteworthy that these findings provide strong 
evidence that (1) the resolving power15 found here is ≤ 
2mm3 and (2) the size of neuroelectric functional unit is ≤ 
6mm3. This latter is inferred from the shape of the traces in 
Figures 9 and 10. Very few voxels ≥ 8mm3 reach 
significance whereas many ≤ 6mm3 do. See the discussion 
section for more on this. 
C. 3D maps of differential activation. Voxels for which 
the source counts demonstrate significance on the test for 
task specific information may be superimposed on a high 
quality structural MR scan, e.g. Figure 11. This produces a 
neuroelectric tomogram, NET, a 3D map of task specific 
differential activation.  See the discussion section for 
comparison with functional MR Imaging, fMRI. 

4. Discussion 
The referee consensus method is computationally expensive.  

                                                        
12 As expected due to reduced counts and resultant reduced statistical 
power, the number of voxels for which the counts reach the statistical 
threshold is reduced. 
13 Given the extraordinary statistical strength of the findings, it is expected 
that the results should be very similar. 
14 Comparable results were obtained when the sources were divided 
according to the color of the test figure, green or blue, the position of the 
test figure, above or below the fixation point, or the whether the previous 
test figure was a match or a mismatch. 
15 Resolving power means the distance scale over which neuroelectric 
sources with different activity may be identified as different.  This is in 
contradistinction to localization accuracy. 

But that expenditure produces intracranial current 
measurements from single trial data that retain task specific 
information (Figs 9, 10, 11) and that distinguishes sources < 
2 mm apart (Figure 8). 

 
A. Why does referee consensus work? Each referee’s 
binary opinion is derived from the output of the difference 
between 2 filters with zeroes in the neighborhood of the 
source test location. Each of the 2 filters also has zeroes at 
all of the other referee locations whose “opinions” will be 
polled. The fact that almost all the zeroes are the same in 
both filters constrains their transfer functions to be similar 
throughout the search space. The primary differences are in 

 

Fig. 11. NeuroElectric Tomography. Dots are 3mm3 voxels 
which are differentially activated as in Figs 9,10. Blue: Test 
figure matches the sentence. Red: Test figure does not match 
the sentence. Dots are shown only when χ2 ≥ 28.4, p ≤ 107. 
Upper panel is an MR slice 3mm superior to that shown in 
lower panel. Arrows indicate adjacent voxels with opposite 
differential activation. Images have standard medical 
orientation: anterior/poster =up/down; left/right = right/left.
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the neighborhood of A, the source test location [9]. The 
differencing operation therefore strongly attenuates the 
contribution of all sources outside the neighborhood of the 
source test location; each difference filter behaves as a 
signal space separator. This enables identification of one 
source at a time in the presence of an unknown but large 
number of active sources. 

This same point may be seen by noting that H , the lead 
field matrix [2.C], differs with the inclusion of A vs A’ only 
in the 2 columns for the target location.  Since locations A 
and A’ are close to each other, these columns differ only 
slightly.  In the work here, 90 referee locations with 2 

columns each were included in H .  Hence H and the 

resultant filters, the rows of   T-1T HHH , were only slightly 
perturbed with the major difference in gains being in the 
neighborhood of A.  This isolates the estimation of the 
referee template from the influence of other sources since 
the gains elsewhere are nearly equal for R!A and R!A’.  
Hence the difference operation attenuates the contribution 
of other sources as well as the contributions of instrument 
noise. 

It is to be expected that the signal space separation 
properties of a difference filter will be imperfect in the 
sense that a source at a correlated location could produce a 
false identification. Correlation in the context of other MEG 
methods [2-6, 10-12] means that the magnetic fields from 
sources at the two locations are spatially correlated, i.e. they 
have a similar shape. But for a referee opinion, the magnetic 
field shape must be preserved over 80 msec. It is a measure 
of spatiotemporal goodness of fit. To defeat referee 
consensus, the interference must come from a 
spatiotemporally correlated source. This is likely far rarer 
than spatial correlation alone except in the neighborhood of 
A. There the spatial correlations are high and the temporal 
correlations may be also since neural populations near each 
other may display similar activity. This latter expectation is 
moderated by the surprisingly weak correlations found 
between nearby sources as shown in Figure 8. Furthermore 
the transfer functions of the difference filters used in the 
method [9] are particularly well suited to distinguishing 
nearby sources with high spatiotemporal correlation.  

Figure 3 in the Methods section demonstrates marked 
increase in referee consensus, i.e. goodness of fit, when low 
pass filtering is relaxed from 150 Hz to 330 Hz. Improved 
performance with greater high frequency content (1) 
highlights the importance of the spatiotemporal fit, (2) 
implies that there is detectable neuroelectric content in the 
frequencies above 150 Hz, and (3) highlights the difference 
between referee consensus and other methods for which this 
effect is opposite. 

Referee consensus is the sum of 1 bit quantities. This 
digitization provides robustness to the method, minimizing 
the effects of outliers.  

The use of a sum over a large number of referees, i.e. 
180 difference filters for each of 6 partial differentials, also 
minimizes the impact of biased “viewpoints.” Such bias is 
potentially present for groups of referees which may 
produce correlated “opinions” due to their inter-referee 

spatial correlations. And if present this could degrade the 
statistical power of the method16. 

Each referee view requires application of a unique 
difference filter to the 80 msec MEG fragment. This 
produces an estimate of the activity of the neuroelectric 
current. There are 180 x 6 = 1080 of these estimates which 
are combined in a manner analogous to averaging with 
comparable signal/noise enhancement properties to produce 
the consensus view [2.G], a joint estimate of the 
neuroelectric waveform17.  

B. Referee consensus summary. Virtually all 
nonlinear optimization methods use a measurement error 
metric as the cost function. The standard to which the 
solution is fit is therefore imperfect since it is the 
measurements. And the minimum which is sought for the 
cost function is a global one. Referee consensus uses a 
perfect standard, zero.  

Referee consensus defines a cost function, a measure 
of local curvature, over a search space whose domain’s 
dimensionality is reduced to that required for a single 
source. This locality is a critical property since the number 
and location of sources which contribute to the 
measurements is, in general, unknown. 

Referee consensus utilizes linear filters as do all 
“source space” methods in current use for the MEG 
problem.  And it uses a search as does equivalent current 
dipole source localization [1]. But in other ways it is quite 
different: (1) Rather than using a single filter with unit gain 
for a target location, 1000+ differenced pairs of filters [2.D] 
are used for dummy (referee) locations, each with zero gain 
[2.C,1.A] at or very near the target location. (2) To decide if 
there is a source at a target location, a probabilistic measure 
of goodness of fit is constructed [2.E,2.F] from the output of 
1000+ filter pairs for that target rather than using a 
measurement error metric [1] or a post-hoc test on the 
outputs of the filters for all of the targets [4,6,10].  (3) The 
time course of the activity at the target location results from 
a joint estimation procedure [2.G] applied to the output of 
all 1000+ filter pairs rather than from the output of a single 
filter. 
C. Size dependence of differential activation, the 
neuroelectric functional unit.  To validate the method it 
was necessary to demonstrate the presence of task specific 
information in the single trial virtual recordings. This was 
accomplished previously [9] using a two stage process to 
minimize the multiple comparison problem.  The first 
stage [10] enabled identification of a restricted volume 
within which identified virtual recordings were used for 
further analysis. This was needed to narrow the statistical 
testing to virtual recordings from a brain region that was 
likely involved in the task.  Otherwise an unrealizable 
global search would have been required. Multiple ANOVA 
was then applied to spectral estimators from the virtual 
recordings to test for significant task specific differences. 

The simpler approach taken here was to count the 

                                                        
16 Study of this problem is beyond the scope of the present work but will 
be undertaken and reported in the future. 
17 This operation is expected to produce signal/noise enhancement 
proportional to 1080½ ≈ 30. 
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number of identified sources in each voxel for different task 
conditions and then compare the counts. The large number 
of identified sources and the apparent high fidelity of the 
source estimates provided sufficient statistical power for a 
global search using voxels ranging from 24mm3 (≈100 
voxels) to 2mm3 (≈200,000 voxels). 

The results (Figures 9,10) parameterized on voxel size 
provide an estimate of the distance scale over which 
neurons cooperate to perform a task related function, i.e. the 
size of a neuroelectric functional unit. The number of voxels 
for which the counts show a significant difference shows a 
sharp increase at 6mm3 or smaller compared with 8mm3 or 
larger. This suggests 6mm3 as the upper limit for the size of 
a functional unit. The curves flatten out or turns down near 
3mm3 but retains astronomical significance 18  for each 
individual at 2mm3. 
D. Neuroelectric Tomography (NET) compared with 
functional MR Imaging (fMRI). Functional MR Imaging is 
the predominant functional brain imaging modality. The 
table shows the favorable technical comparison between 
fMRI and NET. But NET has yet to demonstrate its value in 
clinical usage. It is a new technology awaiting application 
as was fMRI 20 years ago. NET with its very high spatial 
and temporal resolving power is directly responsive to the 
findings of the 2013 NSF workshop on grand challenges in 
mapping the human brain [13]. 

 
fMRI 

NeuroVascular 
NET 

NeuroElectric
fMRI/NET 

biological measure 
tissue 

oxygenation 
electric current complement

measure type scalar vector 

3D spatial 
resolution 

≥ 5mm3 < 2mm3 ratio:  > 15

3D functional unit 
size 

≥ 5mm3 ≤ 6mm3 poor overlap

temporal resolution ≥ 50 msec ≤ 1 msec ratio:  ≥ 50

further primary 
information 

none 
many traces for 

each voxel  

info extraction resolution + more primary info ratio: > 103

Voxel p-value  
≈ statistical power 

5 x 10-2 10-7 ratio:  > 105

E. Other applications for referee consensus. Referee 
consensus is generally applicable to a wide class of 
measurement problems: (1) The core of these problems is 
that the number of sources whose activities are causing the 
measurements is unknown. (2) The measurements are linear 
in at least one parameter of each “source.” (3) Each source is 
detectable in multiple sensors. (4) A sequence of 
measurements in time is available. In addition to the MEG 
problem referee consensus is applicable to microwave 
telescope imaging, ultrasound imaging, seismic tomography, 
active and passive SONAR imaging, neural network 
connectivity identification/analysis, and financial market 

                                                        
18 The threshold for significance for a single voxel was χ2 ≥ 28.4, p ≤ 3 x 
10-7 . In the worst case for multiple comparisons, i.e. 2mm3 voxels, the 
chance that a single voxel out of 200,000 will reach the selected 
significance threshold is 0.06.  The minimum number of voxels reaching 
the threshold is ≈400.  The chance for that worst case is p < 0.06400. 

linkage identification/analysis. 
The formulation of referee consensus presented here is 

for the “instantaneous” method.  The presumption is that 
the measurements at all sensors due to the activity of a 
single source are simultaneous. There are numerous systems 
for which this is not the case, i.e. when the action of a 
sources has different “times of flight” to different sensors. 
For instance seismic tomography is a problem that deals 
with time lags of minutes or more since a shock to the earth 
may be detected and localized using an array of 
accelerometers 1000’s of miles apart [14].  

The general referee consensus model which is used to 
handle lagged relationships between sources and 
measurements is the set of equations which describe the 
causal relationship between the sequence of actions in time 
of many discrete sources and the resultant sequence in time 
of the measurements.  Each source is defined by 2 or more 
variables, 1 of which is called the amplitude19.  The key 
departure from the instantaneous version is that the 
measurement and error vectors are sequences of 
measurements and errors over time and the time course for 
each source amplitude is handled as a weighted sum of basis 
functions. 

The connectivity or functional connectome is such a 
problem since it deals with time lags of 1-100’s of msec. 
For this problem the measurements are the virtual 
recordings extracted from MEG measurements at specific 
locations, i.e. the consensus views [2.G]. These are assumed 
to be due to (1) axial currents in nearby axon bundles due to 
passage of volleys of actions potentials and (2) population 
post synaptic currents in nearby gray matter due to the 
arrival of volleys of action potentials.  We plan to use High 
Definition Fiber Tractography [14] to identify fiber tracts 
and neural populations likely coupled to them.  The virtual 
recordings from sources found near these structures will be 
used as the measurements to determine the coupling 
strength of the neural populations to the fiber tract and the 
propagation times/velocities of the action potential volleys  

All variables, parameters, and matrices in the formalism 
presented here are over the real numbers only.  The key 
properties of these mathematical objects on which the 
formalism relies are (1) the existence of an inverse for any 
non-zero number and any non-singular matrix and (2) 
distributivity of multiplication over addition.  These 
properties hold for the complex numbers, the quaternions, 
and the octonions, hence referee consensus optimization 
will likely work over these number systems.  Thorough 
analysis of this assertion remains20.  
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APPENDICES 

A.  Zeroes of the inverse solution for the instantaneous 
referee consensus system.  Suppose we have measures, 
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due to the contributions of all other source, known and 
unknown.  We use the inverse solution for the contributions 
of this group of sources which includes kd , 
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In other words, the only source for which the inverse 
solution includes a contribution from the measurements due 
to kd is kd .  All others have a contribution from the 

measurements due to kd of 0 .. 

B. Referee selection. There are 2 related conditions which 
must hold regarding referee selection. 

 The causal matrix, H , must have full column rank to 
insure that the inverse solution, 
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ofH corresponding to the test location and T
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The two conditions are somewhat at odds since 
condition 1 requires that the columns ofH are independent 
while condition 2 requires that they not be orthogonal.  The 
need for this non-orthogonality condition can be seen as 

follows.  Suppose the opposite, that 0
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





















J

j

J

j

K

k

d

d

d





























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Ξ

dh

dh

dh

Ξ

dh

dh

dh

Ξ

kkJ,

kkj,

kk1,

kkJ,

kkj,

kk1,

.  The first of 

these terms,

























J

j







kkJ,

kkj,

kk1,

dh

dh

dh

Ξ



1

, is the bleed through at each of 

the K sources from the contribution of the source at the test 
location.  We isolate and expand this term: 

   

























































































kkJ,

kkj,

kk1,

TT

kkJ,

kkj,

kk1,

TT

kkJ,

kkj,

kk1,

dh

dh

dh

HHH

dh

dh

dh

HHH

dh

dh

dh

Ξ











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But for 







































kkJ,

kkj,

kk1,

T

dh

dh

dh

H



ˆ , the th entry is zero since 

the th row of TĤ is T
kh 


, the th column of Ĥ , and 

0
T
k

T h


kh .  In other words, there is no bleed through to 

the th referee from the test location.  Hence this referee 
location is not usable for generating a referee template. 
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