
VC3 - R&D for
Virtual Clusters

Paul Brenner, Rob Gardner, Mike
Hildreth, John Hover, Kevin Lannon,

David Miller, Doug Thain

K. Lannon

My Perspective

Member of CMS collaboration
~3000 collaborating scientists
Well-developed computing infrastructure making
extensive use of OSG
Physicists, not computer scientist

Faculty at Notre Dame
ND Center for Research computing hosts 25k cores of
computing mostly owned by individual PIs
Cycles made available opportunistically via local condor
pool, but not on OSG

2

K. Lannon

What is VC3?
Cluster = optimal computing
abstraction
Self-service model inspired by
commercial clouds

Users allocate raw computing resources
from providers
Users responsible for configuring
resources and/or adapting workloads

Pros: Maximum flexibility to deploy
applications and collaborate with users
Cons: Greater burden on end users ⇒
Need better tools!

3

Project Narrative

Introduction

Traditional high performance and high throughput computing infrastructures largely assume local, centralized
arbitration of resources. Multiple competing users submit jobs to a queue, and the central scheduler decides
who gets to run next, running every task in a fixed operating environment chosen by the system administrator to
deliver pledged allocations to users while ensuring overall efficiency of the resource. End users must either
adapt their work to operate in such an environment, or acquire their own resources to manage privately. While
this model has been adequate for serving individuals for some time, it has never been satisfactory for
collaborating groups that require resources that cross organizational boundaries. It also does not address issues
related to computing on a diverse set of opportunistic resources where there is no central administrator and no
uniformity of services can be guaranteed.

Inspired by commercial cloud computing, an alternative self­service model of computing is taking shape. In the
self­service model, end users allocate raw computing resources from service providers – virtual machines,
containers, disk space, network configuration, etc. – and then deploy their applications in whatever way they
like. This model has several benefits: end users have
maximum flexibility in deploying applications,
unrelated users may collaborate freely, and scheduling
policies may be specialized to local conditions.
However, it also places greater burdens upon end users:
they can no longer rely on software locally installed by
experts, they must confront the inherent problems of
dynamic, heterogeneous distributed systems, and they
must pay the costs of moving data across the wide area.
It is all too easy to deploy a large distributed
application, only to discover that it overloads some
shared resource, harming multiple stakeholders. In
addition, users should not be burdened with the
complexity of the underlying resources, but be able to make intelligent high level decisions about resource
selection and use without getting bogged down into system details.

In this project, we will develop both the principles and practice of ​self­service resource allocation on ​shared
research computing clusters and national research computing facilities. The key concept of the project is the
idea of ​virtual clusters for community computation (VC3) in which end users can effectively “allocate” from
existing infrastructure services by requesting whatever they need, for example, 200 nodes of 24 cores and 64GB
RAM each, with 100TB local scratch and 10Gb connectivity to external data sources (or, an equivalent
selection based on service units “SU” of a given static resource). Once allocated, the owner is free to load data,
execute jobs, and share the allocation with collaborators. Of course, the resource allocation by itself is not
enough: the ​resource must be provisioned (we discuss this term below), and the ​workload must be
self­configuring so that it can bring necessary dependencies, discover the dynamic configuration, and adapt to
the changing conditions of the virtual cluster. Note there are even additional challenges one must confront
above a traditional cloud­based self­service model owing to the heterogeneous nature of possible available
resources and local policies.

The challenge lies in ​integrating the resource, provisioning and workload layers ​. Virtual clusters are only
useful for complex workflows if the workflows can be adapted or adapt themselves to arbitrary configurations.
Conversely, workflows can only be self­configuring to the extent that they are able to discover the necessary
information from the cluster in which they are deployed. To accomplish this integration with reasonable effort,
we will leverage a variety of existing open source tools and production quality services. The end product will be
a flexible, optimizable software ecosystem with a generic set of capabilities, presented to users as a virtual

cluster service, i.e. a model to which they are already accustomed. We presume the cluster as an optimal
computing abstraction as it naturally covers a large swath of modern scientific computation and training base of
expertise (e.g. institutional research computing centers). We use as principal drivers computation in
high­energy physics, and in particular data­intensive analysis workflows required for analysis of multi­petabyte
scale datasets flowing from the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN in
Geneva, Switzerland. Note for this community we target not the centralized, grid­based production services
operated from CERN, but smaller groups at universities and DOE laboratories that may acquire (temporal)
allocations owing to institutional opporutnities or local multi­science collaborations.

In this regard we address and intend to build a set of services focused on community computational
empowerment aligned with ​two key principles​: 1) concentration of the needed expertise for service deployment
and operations, and 2) minimizing the footprint (in terms of software, specialized resources or operational
knowledge and effort) at the resource providing endpoints, thus maximizing the reach for a given science
community. The team realizes that building VC3 tools to meet those principles is no small task largely due to

the inherent heterogeneity of the numerous
components and dynamic temporal nature of
the resource demands and availability. For
example, as we depict in Figure 1, dynamic
VC3 availability for scientists means that your
VC3 will have component variability by choice
(science driven application dependencies) or by
external availability (resource allocations with
lifetimes and variable queue lengths, evictions
and system outages). To concentrate required
expertise for the research teams and minimize
footprint we will develop and design VC3 such
that heterogeneity and temporal variance are
first class design priorities where they are
easily malleable for service administrators and
suitably abstracted from domain scientists.

The set of issues involved here are necessarily
broad, and while we are under no illusion that
in this proposal we can tackle them all to

provide an end­to­end solution with full generality, we do believe there is a vein of investigation, development
and engineering that we can bring to the smart virtual cluster concept that, while driven by large high­energy
physics (HEP) communities, provides a basis for much broader application.

To that end, ​we will deliver​:
● A reference virtual cluster platform service which describes the layered architectural components and

the relationships and connections between them;

● Two or more production service instances, providing a core provisioning feature set, to be used to
coordinate a heterogenous mix of institutional research computing clusters, HPC centers, public
commercial cloud, and grid clusters;

● A selection of workflow tools and services that are capable of functioning effectively in the
dynamically­configured environment of a virtual cluster. The effectiveness of these tools will be
demonstrated at scale with CMS and ATLAS applications.

In the sections below, we describe the potential scientific impact of this project, followed by a discussion of the
current state of the relevant elements of computing and workflow infrastructure. The specific work packages we
are proposing, a management plan, and project milestones are also presented.

Virtual Clusters for Community Computation

K. Lannon

Who Needs This?

Driven by HEP science use case (ATLAS + CMS)
But can be generalized to many other use cases

Focus on smaller groups: individual PIs or small collaborations
of experimentalists and/or theorists

Large-scale, experiment-wide production already well served by
existing tools

Concrete examples:
PI with a campus-based resource not shared on the OSG
PI wins an allocation at an HPC LCF/AWS grant/allocation on
campus cluster, and wants to collaborate with a small group
Organizers of a workshop want to provide a temporary computing
environment combining resources from several universities

4

K. Lannon

How Do We Get There?
Guiding principles:

Concentration of expertise for service deployment and
operations
Minimizing footprint at resource endpoints ⇒ maximizing
reach for science community

Necessary components (Existing example)
Virtual cluster service (CI Connect)
Provisioning Factories (AutoPyFactory)
Self-Configuring Workloads (Lobster based on CCTools)
Data Access and Caching (xrootd/AAA/FAX)

Build up on existing technology to make progress as
quickly as possible.

5

K. Lannon

Building Blocks: CI-Connect
OSG as a service
Used in OSG, ATLAS
and CMS Connect (see
K. Hurtado’s talk from
earlier today)
Key features

Login host: identity
management via
InCommon/Globus
Group remote
resources into a
common HTCondor
queue
Stash: network
accessible storage

6

Platform [​33, ​34] and HTCondor [​35, ​36]​, among other technologies [​37, ​38]​, these services bring distributed
national­scale resources virtually to a user’s home environment. Additionally, these services provide virtual
bridges between institutions with resource
exchange agreements with minimal systems
administration effort. Providing these
capabilities using PaaS and SaaS reduces
demand for on­site expertise and operational
maintenance, while taking advantage of rapid
developments in the community that are
incorporated in the services.

In addition to OSG Connect, which provides a
“login” service to the national­scale, distributed
high throughput computing infrastructure of the
OSG, and ATLAS Connect, a Duke CI Connect
service has been deployed [​39] providing a
bridge between the Duke University Condor
Grid and the University of Chicago grid (UC3),
as well as a distribution service to the OSG.
Based on the success of these early deployments
we have developed enough experience to
consider further generalizations for new
communities (in particular, for CMS), and to confront the challenge of scaling horizontally to new communities
and to more diverse resources.

Provisioning Factories

All the systems for large­scale distributed computing that involve heterogenous resource provisioning have a
component typically referred to as a ​factory​. This component interacts with the workload system (e.g.
glideinWMS, PanDA, or simply a central HTCondor pool) and triggers the submission of an overlay executable
(e.g., an ATLAS pilot, a glideinWMS glidein, an OSG Connect glidein, or Work Queue worker ​[​42]​) to one or
more configured resources. Most importantly, the factory decides:

1. Which ​of several resource targets should be submitted to at what point,
2. How many​ overlay stubs should be submitted at once, and
3. the exact configuration of the overlay component.

In some systems these decisions are relatively simple and inflexible, which is the case with our current Connect
virtual clusters; for a given virtual cluster instance, we manually plan out which resources will be available and
deploy the necessary software and services to bring them into a common environment. It is not automated. In
other systems these decisions are complicated, but decision logic is deeply embedded in the internal
functionality of the workload management system, and therefore difficult to configure flexibly. Within the
ATLAS PanDA framework, AutoPyFactory (APF) is the component that performs this function.

But rather than being made to be closely coupled to PanDA, APF has been designed to be a general­purpose
provisioning factory. It has been designed with a plugin architecture so that resource targets, workload sources,
and the calculation of submission numbers are fully configurable and expandable, dynamically.

Currently APF supports ​demand­driven resource provisioning policy, e.g. “Submit to resource A by default.
Submit to resource B when more than X jobs are ready. Submit to resource C when more than Y jobs are ready.
(Y>X). Scale back in reverse order.” The magnitude of waiting work determines submission decisions between
target resources.

CI Connect generic pattern, implemented in
OSG, ATLAS, and CMS Connect services

https://indico.fnal.gov/contributionDisplay.py?contribId=19&confId=10571
https://docs.google.com/presentation/d/1Dj_Ryiozif0upUyzQJiv1bBeAIZn0AshN-Oeoj7R-4g/edit?pref=2&pli=1#slide=id.p
https://osgconnect.net/
https://connect.usatlas.org/
http://connect.uscms.org/

K. Lannon

Building Blocks: AutoPyFactory

Part of ATLAS workload
management system
(PanDA), but designed to be
general
Plugin design enables
adaptation to different
submission infrastructures
(batch, grid, cloud) and
resource targets
Handles VM lifecycle
management for cloud
resources, prioritization
among different resources
See talk by J. Hover from
earlier today on use with AWS

7

AutoPyFactory and the Cloud: Flexible and
scalable management of virtual resources for

ATLAS
J. Caballero a, J. Hover a, P. Love b

 on behalf of the ATLAS collaboration.
aBrookhaven National Laboratory, bUniversity of Lancaster

AutoPyFactory (APF) is a next-generation pilot submission framework that has been
used as part of the ATLAS workload management system (PanDA) for two years. APF is
reliable, scalable, and offers easy and flexible configuration. Using a plugin-based
architecture, APF polls for information from configured information and batch systems
(including grid sites), decides how many additional pilot jobs are needed, and submits
them.

With the advent of cloud computing, providing resources goes beyond submitting pilots
to grid sites. Now, the resources on which the pilot will run also need to be managed.
Handling both pilot submission and controlling the virtual machine life cycle (creation,
retirement, and termination) from the same framework allows robust and efficient
management of the process. .

References:
1. Maeno T., Overview of ATLAS PanDA Workload Management, J. Phys. Conf. Ser. 331
(2011)
2. Douglas Thain, Todd Tannenbaum, and Miron Livny, "Distributed Computing in
Practice: The Condor Experience" Concurrency and Computation: Practice and
Experience, Vol. 17, No. 2-4, pages 323-356, February-April, 2005.

For more information contact: autopyfactory-l @ lists.bnl.gov

Two-queue coordination: Local batch system and
remote VMs

At left:

One APF queue is configured to watch the Panda WMS for ready work. It
submits pilot jobs to a local Condor batch queue. This queue has no
execute nodes, so the jobs remain idle.

A second APF queue is configured to watch the local Condor batch queue
(playing the role of WMS in this case). When Idle jobs are seen, it submits
Virtual Machine invocation requests to the appropriate Cloud platform
(EC2, Openstack, etc.).

These VMs are configured to connect back to the local Condor Central
Manager and join the local pool of execute nodes.

The local Condor batch system runs the Idle jobs on the now-available
worker nodes.

Below:

By creating multiple APF Queues targetting different cloud platforms, and
configuring the scheduling plugins with appropriate offsets and scaling
factors, we can preferentially fill one before “spilling over” to the other.
These can be arranged in order from less efficient/least costly to more
efficient/most costly, depending on circumstance.

Here we describe the design and implementation of these virtual machine management
capabilities of APF. Expanding on our plugin-based approach, we allow cascades of
virtual resources associated with a job queue. A single workflow can be directed first to a
private, facility-based cloud, then a free academic cloud, then spot-priced EC2
resources, and finally on-demand commercial clouds. Limits, weighting, and priorities
are supported, allowing free or less expensive resources to be used first, with costly
resources only used when necessary. As demand drops, resources are drained and
terminated in reverse order.

Although we have described the use of APF to manage cloud-based resources, this
could be used equally well to manage a facility's virtualized, or even physical, resources.
As long as the desired creation/retirement/termination actions can be placed in scripts,
one could create an APF submit plugin to invoke them.

Below:

The diagram describes how pro-active retirement is managed. The key functionality is
enabled by APF associating a VM job with a particular execute node that has joined the
cluster by way of the VM instance ID. The ID must be explicitly queried from within the
VM and advertised via the execute hosts Condor ClassAd mechanism.

AutoPyFactory: Pilot submission framework
designed to be reliable, scalable, and flexible

https://indico.fnal.gov/contributionDisplay.py?contribId=25&confId=10571
https://twiki.grid.iu.edu/bin/view/Documentation/Release3/AutoPyFactory

K. Lannon

Building Blocks: CCTools
The Cooperative Computing Lab (CCL) provides open
source tools for leveraging distributed computing systems
with emphasis on operating with only user-level permissions

8

www
server

CMS
Task

Parrot

squid
proxysquid
proxysquid
proxy

CVMFS	Driver
meta
data

data

data

data

meta
data

data

data

CAS	Cache

CMS
Software
967	GB

31M	files

Content
Addressable

Storage

Bu
ild
	C
AS

HTTP	GET HTTP	GET

http://cernvm.cern.ch/portal/filesystem

Lobster	Master	
Application

Local	Files	and	
Programs

Worker	Process

Cache
Dir

A

C B

Work	Queue
Master	Library

4-core	machine

Task.1
Sandbox

A

B
T

2-core	task

Task.2
Sandbox

C

A
T

2-core	task

Send	files

Submit	Task1(A,B)
Submit	Task2(A,C)

A B C

Submit Wait

Send	tasks

Parrot+CVMFS provides access to software
over the network (see talk by B. Tovar later
today)

Work Queue provides task management with
local caching on worker resources

http://ccl.cse.nd.edu/
https://indico.fnal.gov/contributionDisplay.py?contribId=24&confId=10571

K. Lannon

Building Blocks: Lobster
Goal: Run CMS analysis jobs on
non-dedicated, opportunistic
resources (at ND), including
dealing well with eviction
Designed to be deployed using only
user-privileged processes + some
essential services (squid, CVMFS)
Manages workloads, but leaves
resource management to others (i.e.
user submitting workers to local
queue directly)
Monitoring is key: monitor as
many aspects of task execution as
possible and report to user
Has been used to run successfully
on up to 26k CPU cores of
opportunistic resources.

9

puting facilities. T1 sites perform archiving, distribution,
and reprocessing of data as new calibration data becomes
available. 160 Tier-2 (T2) sites located at universities and
labs provide the facilities for scientists to interact with the
data and run specific analyses to generate physics results. A
few hundred Tier-3 (T3) sites consist of local clusters that
individual researchers use for analysis jobs that require quick
turnaround and a gateway to the wider WLCG.

Computing across the LHC can be roughly divided into
two categories: production and analysis.

Production computing involves the prompt reconstruc-
tion, distribution of the files to T1 sites, reprocessing, and
generation of simulated datasets that provide a common
starting point for all other scientific analysis. Production
computing capacity is the rate limiting factor for the CMS
detector [1], which can record events at 1 kHz, but is limited
to approximately half of that because there are insu�cient
WLCG resources to store and process the full amount. The
need for more production capacity has driven a significant
amount of work in opportunistic computing [7, 13, 19].

Analysis computing, in contrast, is undertaken by small
groups of researchers that process a subset of the production
data in order to study a local interest. A typical analysis
consumes approximately

0.1 to 1 PB of data, selected via a metadata service, and
subsequently processed and reduced through several stages
until the final result is generated. Analysis computing needs
go through significant spikes and lulls, driven by the activity
of individual researchers.

Historically, analysis computing has been performed at
T2 and T3 centers at a lower priority than the (more pre-
dictable) production computing. But, a problem looms on
the horizon: both production and analysis computing needs
will grow significantly since the intensity and energy of the
LHC will increase by a factor of two in 2015; needs for anal-
ysis computing are expected to increase by a factor of three
to four due to the increase in event complexity and much
larger data sets. Budgetary limits prevent growing the T2
and T3 resources by the same factor, so researchers must
find operational �ciencies and harness new resources.

Opportunistic clusters may be able to absorb some of the
needs of analysis computing. We define opportunistic clus-
ters to be computing sites that are not specifically dedicated
to the WLCG and may include campus clusters, HPC cen-
ters, and commercial clouds. These systems present new
challenges because they may not have the necessary soft-
ware and data management infrastructure pre-installed, and
may not give preference to CMS computing in scheduling.
CMS has already demonstrated the feasibility of leveraging
opportunistic resources in the context of production com-
puting [13] and also as a way to handle overflow in demand
placed on T2 sites.

In this work, we consider how to harness opportunistic
clusters in order to augment T3 resources for analysis com-
puting. To accomplish this, several challenges must be met:

First, the job scheduling and execution system must per-
mit each independent user control over what resources are
harnessed and how jobs are scheduled. The current CMS
workflow management tools (WMAgent [8] for production
and CRAB [17, 6] for T2 analysis) use the GlideInWMS [15]
framework for job management. PanDa [14], the work-
flow management tool at ATLAS, uses a similar approach.
While this solution is e�cient, it provides a single central-

Figure 1: Lobster Architecture

ized scheduling point for the entire collaboration, making it
impossible to harness and schedule a resource for the sole
use of a single user. To address this, we employ the Work
Queue [3] execution framework, which can be easily deployed
on a per-user basis.

Second, each job must consume some fraction of the enor-
mous CMS data. By definition, opportunistic resources do
not provide direct, local access to CMS data, so jobs must
access the data by streaming it over the WAN from WLCG
repositories. This challenge has already been successfully
met by the CMS“Any Data, Anytime, Anywhere”(AAA) [12]
data federation using the XrootD software [10] framework.
In a similar way, each job depends on a complex custom
software stack which is also not installed on an opportunis-
tic resource. For this, we rely on the Parrot virtual file
system to provide transparent access to the CERN Virtual
Machine File System (CVMFS) [4] .

Third, each component of the system must be designed
under the assumption that running jobs will, sooner or later,
be preempted by other jobs or the resource owner as avail-
ability or scheduling policies change. The costs of these pre-
emptions are magnified by the amount of state (software
and data) on the preempted node, so the system must be
designed to pull the minimum amount of state and share it
among jobs to the maximum extent possible.

Last but not least, the user of an opportunistic resource
can only expect to have ordinary user permissions. The
owner of the resource is unlikely to install software, modify
kernels, or elevate privileges for a transient user on a large
number of machines. Every component of the system must
be able to operate e↵ectively with a minimum of privilege.

3. ARCHITECTURE OF LOBSTER
Lobster is a job management system designed to run mil-

lions of data intensive analysis codes on tens of thousands
of cores over long times scales. These resources are assumed
to be non-dedicated in that they are not necessarily pre-
pared with the required application software nor the input
data. Further, the availability of the resources may vary
– machines may be added and removed from the system
at runtime due to scheduling policies, system outages, and

Large-scale Opportunistic Batch Submission
Toolkit for Exploiting Resources (Lobster)
builds on CCTools, OSG, xrootd, etc., to enable
CMS analysis jobs to run on non-dedicated
resources at scale.

http://matz-e.github.io/lobster/

K. Lannon

Example Monitoring Plots

10

K. Lannon

OSG Oasis Essential!

Lobster relies on Oasis CVMFS repository to
provide access to OSG software stack
OSG software IS NOT installed locally on worker
nodes
Specifically using

osg-software/osg-wn-client/
mis/certificates

Without this resource, could not access the large (up
to 25k CPU core) opportunistic resources at ND
Thank you OSG for providing this service!

11

K. Lannon

Assembling Pieces
Clearly many ways the above pieces could be
combined

CI Connect + AutoPyFactory = Virtual clusters that
access a broader range of different resources
CI Connect + Lobster = Running at scale on virtual
cluster made of non-dedicated, opportunistic resources

12

K. Lannon

Assembling Pieces
Clearly many ways the above pieces could be
combined

CI Connect + AutoPyFactory = Virtual clusters that
access a broader range of different resources
CI Connect + Lobster = Running at scale on virtual
cluster made of non-dedicated, opportunistic resources

13

Platform [​33, ​34] and HTCondor [​35, ​36]​, among other technologies [​37, ​38]​, these services bring distributed
national­scale resources virtually to a user’s home environment. Additionally, these services provide virtual
bridges between institutions with resource
exchange agreements with minimal systems
administration effort. Providing these
capabilities using PaaS and SaaS reduces
demand for on­site expertise and operational
maintenance, while taking advantage of rapid
developments in the community that are
incorporated in the services.

In addition to OSG Connect, which provides a
“login” service to the national­scale, distributed
high throughput computing infrastructure of the
OSG, and ATLAS Connect, a Duke CI Connect
service has been deployed [​39] providing a
bridge between the Duke University Condor
Grid and the University of Chicago grid (UC3),
as well as a distribution service to the OSG.
Based on the success of these early deployments
we have developed enough experience to
consider further generalizations for new
communities (in particular, for CMS), and to confront the challenge of scaling horizontally to new communities
and to more diverse resources.

Provisioning Factories

All the systems for large­scale distributed computing that involve heterogenous resource provisioning have a
component typically referred to as a ​factory​. This component interacts with the workload system (e.g.
glideinWMS, PanDA, or simply a central HTCondor pool) and triggers the submission of an overlay executable
(e.g., an ATLAS pilot, a glideinWMS glidein, an OSG Connect glidein, or Work Queue worker ​[​42]​) to one or
more configured resources. Most importantly, the factory decides:

1. Which ​of several resource targets should be submitted to at what point,
2. How many​ overlay stubs should be submitted at once, and
3. the exact configuration of the overlay component.

In some systems these decisions are relatively simple and inflexible, which is the case with our current Connect
virtual clusters; for a given virtual cluster instance, we manually plan out which resources will be available and
deploy the necessary software and services to bring them into a common environment. It is not automated. In
other systems these decisions are complicated, but decision logic is deeply embedded in the internal
functionality of the workload management system, and therefore difficult to configure flexibly. Within the
ATLAS PanDA framework, AutoPyFactory (APF) is the component that performs this function.

But rather than being made to be closely coupled to PanDA, APF has been designed to be a general­purpose
provisioning factory. It has been designed with a plugin architecture so that resource targets, workload sources,
and the calculation of submission numbers are fully configurable and expandable, dynamically.

Currently APF supports ​demand­driven resource provisioning policy, e.g. “Submit to resource A by default.
Submit to resource B when more than X jobs are ready. Submit to resource C when more than Y jobs are ready.
(Y>X). Scale back in reverse order.” The magnitude of waiting work determines submission decisions between
target resources.

puting facilities. T1 sites perform archiving, distribution,
and reprocessing of data as new calibration data becomes
available. 160 Tier-2 (T2) sites located at universities and
labs provide the facilities for scientists to interact with the
data and run specific analyses to generate physics results. A
few hundred Tier-3 (T3) sites consist of local clusters that
individual researchers use for analysis jobs that require quick
turnaround and a gateway to the wider WLCG.

Computing across the LHC can be roughly divided into
two categories: production and analysis.

Production computing involves the prompt reconstruc-
tion, distribution of the files to T1 sites, reprocessing, and
generation of simulated datasets that provide a common
starting point for all other scientific analysis. Production
computing capacity is the rate limiting factor for the CMS
detector [1], which can record events at 1 kHz, but is limited
to approximately half of that because there are insu�cient
WLCG resources to store and process the full amount. The
need for more production capacity has driven a significant
amount of work in opportunistic computing [7, 13, 19].

Analysis computing, in contrast, is undertaken by small
groups of researchers that process a subset of the production
data in order to study a local interest. A typical analysis
consumes approximately

0.1 to 1 PB of data, selected via a metadata service, and
subsequently processed and reduced through several stages
until the final result is generated. Analysis computing needs
go through significant spikes and lulls, driven by the activity
of individual researchers.

Historically, analysis computing has been performed at
T2 and T3 centers at a lower priority than the (more pre-
dictable) production computing. But, a problem looms on
the horizon: both production and analysis computing needs
will grow significantly since the intensity and energy of the
LHC will increase by a factor of two in 2015; needs for anal-
ysis computing are expected to increase by a factor of three
to four due to the increase in event complexity and much
larger data sets. Budgetary limits prevent growing the T2
and T3 resources by the same factor, so researchers must
find operational �ciencies and harness new resources.

Opportunistic clusters may be able to absorb some of the
needs of analysis computing. We define opportunistic clus-
ters to be computing sites that are not specifically dedicated
to the WLCG and may include campus clusters, HPC cen-
ters, and commercial clouds. These systems present new
challenges because they may not have the necessary soft-
ware and data management infrastructure pre-installed, and
may not give preference to CMS computing in scheduling.
CMS has already demonstrated the feasibility of leveraging
opportunistic resources in the context of production com-
puting [13] and also as a way to handle overflow in demand
placed on T2 sites.

In this work, we consider how to harness opportunistic
clusters in order to augment T3 resources for analysis com-
puting. To accomplish this, several challenges must be met:

First, the job scheduling and execution system must per-
mit each independent user control over what resources are
harnessed and how jobs are scheduled. The current CMS
workflow management tools (WMAgent [8] for production
and CRAB [17, 6] for T2 analysis) use the GlideInWMS [15]
framework for job management. PanDa [14], the work-
flow management tool at ATLAS, uses a similar approach.
While this solution is e�cient, it provides a single central-

Figure 1: Lobster Architecture

ized scheduling point for the entire collaboration, making it
impossible to harness and schedule a resource for the sole
use of a single user. To address this, we employ the Work
Queue [3] execution framework, which can be easily deployed
on a per-user basis.

Second, each job must consume some fraction of the enor-
mous CMS data. By definition, opportunistic resources do
not provide direct, local access to CMS data, so jobs must
access the data by streaming it over the WAN from WLCG
repositories. This challenge has already been successfully
met by the CMS“Any Data, Anytime, Anywhere”(AAA) [12]
data federation using the XrootD software [10] framework.
In a similar way, each job depends on a complex custom
software stack which is also not installed on an opportunis-
tic resource. For this, we rely on the Parrot virtual file
system to provide transparent access to the CERN Virtual
Machine File System (CVMFS) [4] .

Third, each component of the system must be designed
under the assumption that running jobs will, sooner or later,
be preempted by other jobs or the resource owner as avail-
ability or scheduling policies change. The costs of these pre-
emptions are magnified by the amount of state (software
and data) on the preempted node, so the system must be
designed to pull the minimum amount of state and share it
among jobs to the maximum extent possible.

Last but not least, the user of an opportunistic resource
can only expect to have ordinary user permissions. The
owner of the resource is unlikely to install software, modify
kernels, or elevate privileges for a transient user on a large
number of machines. Every component of the system must
be able to operate e↵ectively with a minimum of privilege.

3. ARCHITECTURE OF LOBSTER
Lobster is a job management system designed to run mil-

lions of data intensive analysis codes on tens of thousands
of cores over long times scales. These resources are assumed
to be non-dedicated in that they are not necessarily pre-
pared with the required application software nor the input
data. Further, the availability of the resources may vary
– machines may be added and removed from the system
at runtime due to scheduling policies, system outages, and

CMS Connect/
OSG Connect

K. Lannon

Assembling Pieces
Clearly many ways the above pieces could be
combined

CI Connect + AutoPyFactory = Virtual clusters that
access a broader range of different resources
CI Connect + Lobster = Running at scale on virtual
cluster made of non-dedicated, opportunistic resources

14

Platform [​33, ​34] and HTCondor [​35, ​36]​, among other technologies [​37, ​38]​, these services bring distributed
national­scale resources virtually to a user’s home environment. Additionally, these services provide virtual
bridges between institutions with resource
exchange agreements with minimal systems
administration effort. Providing these
capabilities using PaaS and SaaS reduces
demand for on­site expertise and operational
maintenance, while taking advantage of rapid
developments in the community that are
incorporated in the services.

In addition to OSG Connect, which provides a
“login” service to the national­scale, distributed
high throughput computing infrastructure of the
OSG, and ATLAS Connect, a Duke CI Connect
service has been deployed [​39] providing a
bridge between the Duke University Condor
Grid and the University of Chicago grid (UC3),
as well as a distribution service to the OSG.
Based on the success of these early deployments
we have developed enough experience to
consider further generalizations for new
communities (in particular, for CMS), and to confront the challenge of scaling horizontally to new communities
and to more diverse resources.

Provisioning Factories

All the systems for large­scale distributed computing that involve heterogenous resource provisioning have a
component typically referred to as a ​factory​. This component interacts with the workload system (e.g.
glideinWMS, PanDA, or simply a central HTCondor pool) and triggers the submission of an overlay executable
(e.g., an ATLAS pilot, a glideinWMS glidein, an OSG Connect glidein, or Work Queue worker ​[​42]​) to one or
more configured resources. Most importantly, the factory decides:

1. Which ​of several resource targets should be submitted to at what point,
2. How many​ overlay stubs should be submitted at once, and
3. the exact configuration of the overlay component.

In some systems these decisions are relatively simple and inflexible, which is the case with our current Connect
virtual clusters; for a given virtual cluster instance, we manually plan out which resources will be available and
deploy the necessary software and services to bring them into a common environment. It is not automated. In
other systems these decisions are complicated, but decision logic is deeply embedded in the internal
functionality of the workload management system, and therefore difficult to configure flexibly. Within the
ATLAS PanDA framework, AutoPyFactory (APF) is the component that performs this function.

But rather than being made to be closely coupled to PanDA, APF has been designed to be a general­purpose
provisioning factory. It has been designed with a plugin architecture so that resource targets, workload sources,
and the calculation of submission numbers are fully configurable and expandable, dynamically.

Currently APF supports ​demand­driven resource provisioning policy, e.g. “Submit to resource A by default.
Submit to resource B when more than X jobs are ready. Submit to resource C when more than Y jobs are ready.
(Y>X). Scale back in reverse order.” The magnitude of waiting work determines submission decisions between
target resources.

puting facilities. T1 sites perform archiving, distribution,
and reprocessing of data as new calibration data becomes
available. 160 Tier-2 (T2) sites located at universities and
labs provide the facilities for scientists to interact with the
data and run specific analyses to generate physics results. A
few hundred Tier-3 (T3) sites consist of local clusters that
individual researchers use for analysis jobs that require quick
turnaround and a gateway to the wider WLCG.

Computing across the LHC can be roughly divided into
two categories: production and analysis.

Production computing involves the prompt reconstruc-
tion, distribution of the files to T1 sites, reprocessing, and
generation of simulated datasets that provide a common
starting point for all other scientific analysis. Production
computing capacity is the rate limiting factor for the CMS
detector [1], which can record events at 1 kHz, but is limited
to approximately half of that because there are insu�cient
WLCG resources to store and process the full amount. The
need for more production capacity has driven a significant
amount of work in opportunistic computing [7, 13, 19].

Analysis computing, in contrast, is undertaken by small
groups of researchers that process a subset of the production
data in order to study a local interest. A typical analysis
consumes approximately

0.1 to 1 PB of data, selected via a metadata service, and
subsequently processed and reduced through several stages
until the final result is generated. Analysis computing needs
go through significant spikes and lulls, driven by the activity
of individual researchers.

Historically, analysis computing has been performed at
T2 and T3 centers at a lower priority than the (more pre-
dictable) production computing. But, a problem looms on
the horizon: both production and analysis computing needs
will grow significantly since the intensity and energy of the
LHC will increase by a factor of two in 2015; needs for anal-
ysis computing are expected to increase by a factor of three
to four due to the increase in event complexity and much
larger data sets. Budgetary limits prevent growing the T2
and T3 resources by the same factor, so researchers must
find operational �ciencies and harness new resources.

Opportunistic clusters may be able to absorb some of the
needs of analysis computing. We define opportunistic clus-
ters to be computing sites that are not specifically dedicated
to the WLCG and may include campus clusters, HPC cen-
ters, and commercial clouds. These systems present new
challenges because they may not have the necessary soft-
ware and data management infrastructure pre-installed, and
may not give preference to CMS computing in scheduling.
CMS has already demonstrated the feasibility of leveraging
opportunistic resources in the context of production com-
puting [13] and also as a way to handle overflow in demand
placed on T2 sites.

In this work, we consider how to harness opportunistic
clusters in order to augment T3 resources for analysis com-
puting. To accomplish this, several challenges must be met:

First, the job scheduling and execution system must per-
mit each independent user control over what resources are
harnessed and how jobs are scheduled. The current CMS
workflow management tools (WMAgent [8] for production
and CRAB [17, 6] for T2 analysis) use the GlideInWMS [15]
framework for job management. PanDa [14], the work-
flow management tool at ATLAS, uses a similar approach.
While this solution is e�cient, it provides a single central-

Figure 1: Lobster Architecture

ized scheduling point for the entire collaboration, making it
impossible to harness and schedule a resource for the sole
use of a single user. To address this, we employ the Work
Queue [3] execution framework, which can be easily deployed
on a per-user basis.

Second, each job must consume some fraction of the enor-
mous CMS data. By definition, opportunistic resources do
not provide direct, local access to CMS data, so jobs must
access the data by streaming it over the WAN from WLCG
repositories. This challenge has already been successfully
met by the CMS“Any Data, Anytime, Anywhere”(AAA) [12]
data federation using the XrootD software [10] framework.
In a similar way, each job depends on a complex custom
software stack which is also not installed on an opportunis-
tic resource. For this, we rely on the Parrot virtual file
system to provide transparent access to the CERN Virtual
Machine File System (CVMFS) [4] .

Third, each component of the system must be designed
under the assumption that running jobs will, sooner or later,
be preempted by other jobs or the resource owner as avail-
ability or scheduling policies change. The costs of these pre-
emptions are magnified by the amount of state (software
and data) on the preempted node, so the system must be
designed to pull the minimum amount of state and share it
among jobs to the maximum extent possible.

Last but not least, the user of an opportunistic resource
can only expect to have ordinary user permissions. The
owner of the resource is unlikely to install software, modify
kernels, or elevate privileges for a transient user on a large
number of machines. Every component of the system must
be able to operate e↵ectively with a minimum of privilege.

3. ARCHITECTURE OF LOBSTER
Lobster is a job management system designed to run mil-

lions of data intensive analysis codes on tens of thousands
of cores over long times scales. These resources are assumed
to be non-dedicated in that they are not necessarily pre-
pared with the required application software nor the input
data. Further, the availability of the resources may vary
– machines may be added and removed from the system
at runtime due to scheduling policies, system outages, and

CMS Connect/
OSG Connect

Worked!

K. Lannon

Lobster+CI-Connect
Run successfully using both OSG and CMS Connect services

15

Example from OSG Connect: Many jobs running successfully!

Dedicated = jobs run on node providing CVMFS directly; Cold Cache = jobs run on node not providing CVMFS, used
Parrot to access; Hot Cache = jobs ran on worker that had already populated CVMFS as part of previous job

Not everything was smooth: Jobs waiting an average of 40-50 min to transfer (small) output.

Tracked down to issue with one cluster failing jobs at high rate, thereby monopolizing the Work Queue master’s
bandwidth. Solutions available in Work Queue, but work best if we can deploy specialized jobs (foreman) at each site
where workers run. Requires integration between CI Connect and Work Queue.

Thanks to K.
Hurtado for plots!

Thanks to K.
Hurtado for plots!

K. Lannon

How Could This Work Better?

In principle all pieces can be used together today as is
However, significant gains to be realized if pieces are
integrated (i.e. taught to communicate, etc.)
Examples

To do intelligent caching of files, workload management tool and
virtual cluster service need to communicate on resource topology
To avoid overwhelming network capacity of various resources,
workload management and virtual cluster need to combine
network monitoring on task and system level
To adapt running parameters to resource conditions (e.g. eviction
rate, etc.), virtual cluster layer can provide historical statistics for
resources to workload management layer

Goal of VC3 to work out how to better integrate these pieces

16

K. Lannon

Summary and Outlook
Virtual clusters provide users with a convenient interface to
distributed resources, but at the cost of higher user burden for
configuring workloads to different resources
Better workload management tools can overcome these
limitations and make it easier for users to deploy complex
applications
Integrating these tools makes possible dynamic deployment of
virtual clusters utilizing a broad class of dedicated and non-
dedicated, opportunistic resources
First steps show the potential of this approach, but lots of work
ahead!

Short term: service and tools development work
Longer term: deploy test cases and engage user community

17

