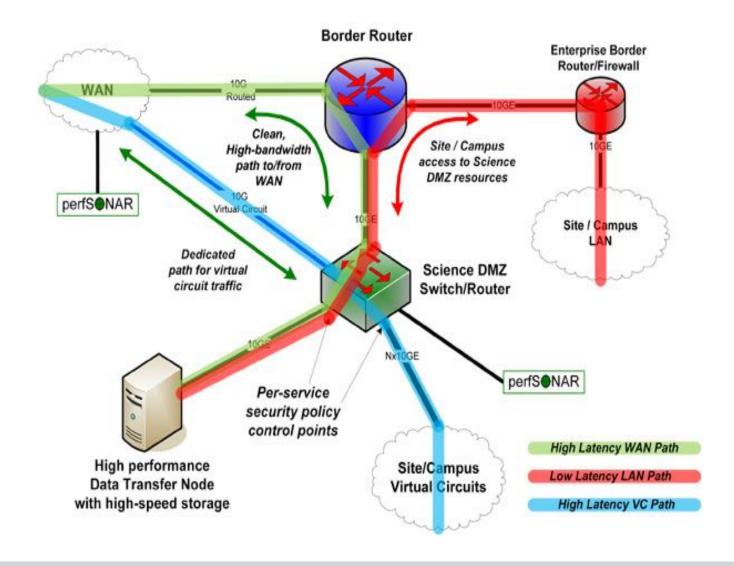
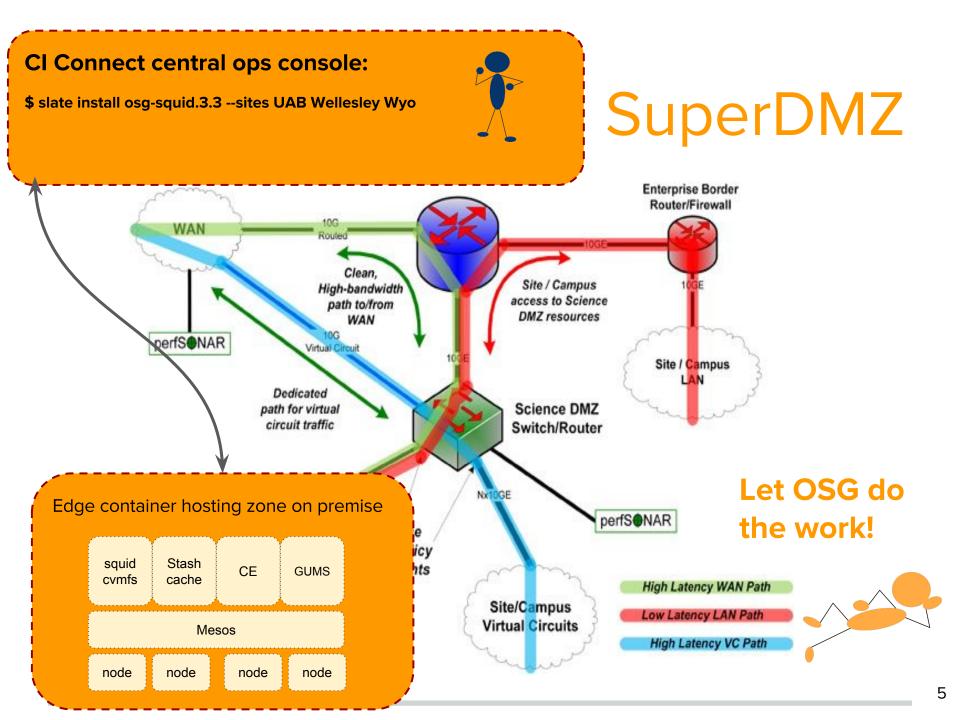
Ubiquitous Edge Platform

Lincoln Bryant Rob Gardner

OSG All Hands Meeting, 15 March 2016


Ubiquitous & Easy "CI Substrate"


- Pioneer a new phase of advanced cyberinfrastructure deployment, allowing sites to flexibly evolve and sustain both on-premise and commercial cloud-based infrastructure
- Hosted services, such as CEs, data caches, squid, etc., could be centrally deployed onto "CI substrates" within a trusted CI zones and remotely operated, upgraded, and optimized for performance
- Extend to shared, opportunistic university clusters and cloud resources

Distributed Virtualized Data Centers

- Reduce IT footprint and ops burden
 - Centralize deployment & ops; reduce local admin cost
- Explore virtualized data center frameworks
 - E.g. container management over bare metal or VMs
- "Blue sky" goal
 - Establish a "trusted pattern" for a "CI substrate" on sites
 - Create distributed virtualized data center(s) overlaying the fabric substrate

Canonical SciDMZ

Deploying research software at the edge

Open Science Grid

Hardware

- Produce reference specification for supportability reasons
 - No more than 2-3 vendor options.
- Hybrid cloud providers like Joyent have done a really good job in this space. Something similar to:
 - https://docs.joyent.com/private-cloud/hardware/specs

Hardware

Joyent hardware specifications

Modified: 12 Nov 2015 19:59 UTC

Active systems

Priestriver-A

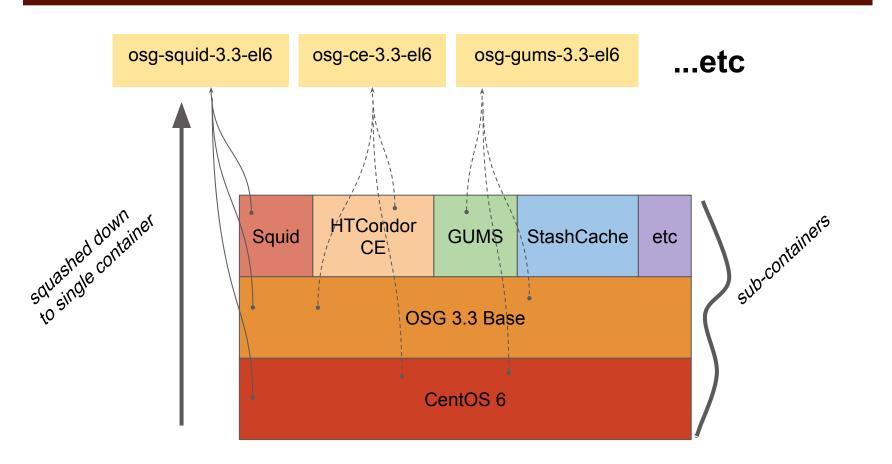
Description: Joyent-Dell-R730-9001, 2U, 48t, 256GB, GP, Triton

Note that part numbers with Dell, Inc. as the manufacturer refer to the orderable part sales SKU (as seen on Dell quotes). This SKU can refer to multiple components sourced from multiple manufacturers. Joyent does not currently have an orderable Dell single SKU for this system.

Qty	Part Number	Manufacturer	Mfg. Part Number	Description
1	210-ADCS	Dell, Inc.	N/A	OEM PowerEdge R730
1	591-BBCH	Dell, Inc.	N/A	PowerEdge R730/R730xd Motherboard
1	332-1286	Dell, Inc.	N/A	US Order
1	340-AKRW	Dell, Inc.	N/A	OEM PowerEdge R730 Shipping
1	330-BBC0	Dell, Inc.	N/A	R730/xd PCle Riser 2, Center
1	330-BBCQ	Dell, Inc.	N/A	R730 PCle Riser 3, Left
1	330-BBCR	Dell, Inc.	N/A	R730/xd PCle Riser 1, Right
1	540-BBHY	Dell, Inc.	N/A	Intel X520 DP 10Gb DA/SFP+ Server Adapter, Low Profile
1	540-BBBB	Dell, Inc.	N/A	Intel X520 DP 10Gb DA/SFP+, + I350 DP 1Gb Ethernet, Network Daughter Card
1	385-BBH0	Dell, Inc.	N/A	iDRAC8 Enterprise, integrated Dell Remote Access Controller, Enterprise
1	350-BBEP	Dell, Inc.	N/A	Chassis with up to 16, 2.5" Hard Drives
1	325-BBIU	Dell, Inc.	N/A	Brand/Bezel, OEM PowerEdge R730
1	750-AABF	Dell, Inc.	N/A	Power Saving Dell Active Power Controller

Operating system

- Many choices to evaluate in this area
- Traditional distributions:
 - Flavors of RHEL, Debian, Ubuntu, etc
- Upcoming projects building around containers:
 - CoreOS, Boot2Docker, RancherOS, Project Atomic
- Exotic alternatives:
 - SmartOS (Solaris-based, emulating Linux kernel ABI)

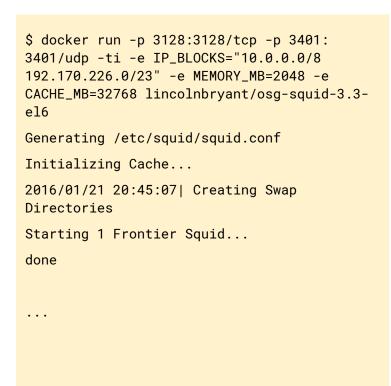

Software

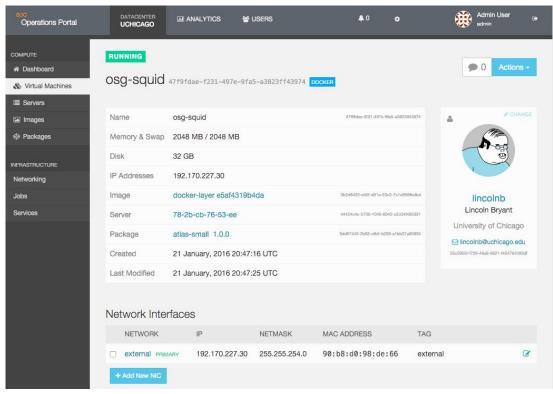
- Microservices-y architecture
 - Follow the Docker model of 1 application per container
- Service discovery and configuration tools
 - Consul, etcd, and others.
- Scheduling / cluster management
 - Kubernetes, Docker Swarm, Fleet, Mesos
 - (HTCondor?)

Software

- Dockerized applications created, vetted, maintained by central operations team.
 - Pushed by operators down to subscribed sites
 - Or, depending on use case, pulled by local site admins without interaction with central.
- Built-in monitoring/analytics
 - Every service should get its own set of applicable collectors
 - Leverage our existing monitoring scripts and expertise.

Containerizing Services




Example: Frontier Squid - Dockerfile

```
FROM lincolnbryant/osg-base-3.3-el6
MAINTAINER Lincoln Bryant colnb@uchicago.edu>
# See https://twiki.grid.iu.edu/bin/view/Documentation/Release3/InstallFrontierSquid
RUN yum install -y frontier-squid initscripts
VOLUME ["/var/cache/squid"]
COPY customize.sh /etc/squid/customize.sh
RUN chown squid: /etc/squid/customize.sh && chmod +x /etc/squid/customize.sh
EXPOSE 3128 3401
CMD /sbin/runuser -s /bin/bash squid /usr/sbin/fn-local-squid.sh start && tail -f
/var/log/squid/*.log
```

Example: Frontier Squid - Launching

 The container can be launched on another machine, or via Docker's remote API to a cloud resource

Benefits for OSG

- Could potentially deploy CEs, SEs, caching proxies, etc all within "the box".
 - Best known versions and configurations get automatically pushed to downstream
 - Updates should be atomic, so rollbacks are easy.
- Containerization effort putting more eyes on existing OSG Documentation and builds
 - Example: Patches submitted for GUMS to build on EL7
 - https://github.com/opensciencegrid/gums/pull/27

Thoughts on automation

- Is it possible for me to stand up, then destroy an entire OSG site in an automated way?
 - Site needs to be registered with OIM, certificates issued, etc.
- Many points where human interaction is currently needed.
- Need to separate approvals (necessarily requiring human interaction) from configuration/setup

Security concerns

- Who has root on the machine?
- Can trusted users allocate resources and start containers remotely?
- Is Docker secure enough to be used? Many claims of a busted security model.
 - User namespaces and unprivileged containers seem to be semi-working in new kernels? (Affects OS choice!)
- Ultimately: What is the correct privilege separation between owner and operator?

Other considerations

- What does the networking configuration look like?
 - Do standard installers (Anaconda) cover the majority of network configurations for initial bootstrapping?
 - Private control channel / VPN?
 - Require public IP(s)?
- Can we use this platform as a testbed for things like SDN?
- What does it look like when we have multiple nodes per site?

Summary

- Platform for "edge" services on Science DMZs with well-defined reference hardware.
- Container-based applications, maintained by a central team
- Built-in service discovery, configuration, and monitoring
- Flexible, adaptable to the needs of other projects.

Thank you! Questions?