
IceCube Computing
OSG All Hands Meeting

Mar 14, 2015

Gonzalo Merino and David Schultz
UW-Madison

IceCube Data Flow

Data retention/archival policies

~700 TB/year to NERSC archive
~200 TB/year to DESY archive

Data type Subtype

Growth

(TB/yr) DESY-ZN tape NERSC tape

Years on disk at

WIPAC

Experimental Raw 286 yes 2

SNraw 31 yes 2

Ancillary 5 yes 2

SuperDST 64 yes yes 2

Filtered 36 yes yes 2

Level2 94 yes yes 3

Level3 90 yes 10

Simulation Level2 393 3

Level3 103 yes 10

Photon tables 8 5

Long Term Archive

Large fraction of the data eventually becomes archival data. Needs to be
preserved for the lifetime of the detector, and beyond.

- Managing a multi-PB near-line tape archive not an easy task - Large
infrastructure and manpower costs.

- Decided to outsource the service to larger centers that can benefit from
economies of scale.

- May 2015: Collaboration group at LBNL offered to provide tape storage
service at NERSC (~6 PB in 5 years).

NERSC requires big files (100GB→1TB) ⇒ Need to bundle files. We are
currently developing sw to handle this. Plan is:

- Decouple archive from “live” data (no HSM).

- Bundling: re-use the in-house developed sw for transferring data from
the South Pole.

IceCube Computing Resources

UW-Madison data center (Tier-0)

- ~ 5000 CPU (HT)cores (recently upgraded to ~7000)
- 2GB RAM per (HT)core

- ~ 350 GPUs
- ~ 4PB disk

Opportunistic Resources

IceCube makes extensive use of opportunistic shared resources.

Currently about ~50% of our used CPU is opportunistic

- Largest chunk from UW clusters (HTCondor flocking)
- Substantial amount from OSG (GLOW & OSG VOs)

Evolving from a setup where the distributed infrastructure was managed end-
to-end by our in-house Grid framework:

- IceProd (started in 2006, http://arxiv.org/abs/1311.5904)

Towards a model where the new framework (IceProd2) focuses more in the
IceCube specifics (dataset configuration & bookkeeping, ...) and “delegates”
the resources federation to 3rd party tools like HTCondor.

Current system:

HTCondor flock

Grid Tools

IceProd2

Workflows,
Dataset
configuration &
bookkeeping

schedd

UW campus htcondor pools

GlideinWMS

pyglidein
icecube

Grid sites (VO=GLOW, icecube)

Non-grid sites

condor_submit

http://arxiv.org/abs/1311.5904

Used since 2013 “as a service” via the GLOW VO (thanks!)

GlideinWMS

GlideinWMS: GLOW

Some of the IceCube sites out there are Grid sites (shared w LHC). We try to
use them with standard tools.

- Did this with DESY-ZN (Berlin) and SCINET (Toronto) in 2014/2015

Downside:

- Requires VOFrontend configuration - sync with list of IceCube sites
- Not all sites will be ok with accepting GLOW VO for IceCube

GlideinWMS: IceCube

Next → try and use VO=icecube for our pilot based Grid infrastructure

OSG/GlideinWMS proposed configuration:

- Configure UW/CHTC VOFrontend to manage 2 sets of credentials: GLOW,
icecube.

- OK! We still get this “as a service” from UW/OSG. No need to run our own
Frontend/Factory.

Got a lot of support from UW/CHTC & OSG (thanks @moate, @efajardo,
@mkandes, @bbockelm!)

- Feb-8 : initial phone call to set requirements & goals.
- Feb-9: everyone in a slack team, active discussion.
- Feb-10: 1st icecube glideins running at DESY and SDSC.
- …
- Today: icecube glideins from OSG factory running at 5 sites (3-5 more in the

pipeline with open GGUS tickets, more to come …)

pyglidein icecube

Several IceCube sites are “non-Grid”

2015: started experimenting with BOSCO for this

- Our experience was that often lots of jobs ended up on “hold” because
the ssh tunnel becoming flaky.

The BOSCO idea of a glidein factory “via ssh” is nice.

- Why do not try and move the factory to the other side of the ssh
connection?

login/submit
node Local cluster

ssh local
submit

pyglidein icecube

Decided to try and write our “minimalistic” factory - it might be worth as long
as it is simple (currently ~1000 lines of python code)

- Developer: David Schultz
- Code: https://github.com/dsschult/pyglidein

https://github.com/dsschult/pyglidein

pyglidein icecube

Decided to try and write our “minimalistic” factory - it might be worth as long
as it is simple (currently ~1000 lines of python code)

- Developer: David Schultz
- Code: https://github.com/dsschult/pyglidein

Running in production at 5 sites
since mid-2015.

Cons: yet another factory, yet
another glidein, ...

Pros: Useful to be able to
customize our glidein quick, e.g.

- GPU discovery/assignment
- ClassAdd to advertise

CVMFS/icecube
- Parrot

https://github.com/dsschult/pyglidein

GPUs: direct photon propagation

GPUs are ideal for the workload
- Many independent photons + scattering model is simple

(scatter, absorb, change ice layer or hit a DOM)
- Simulate each photon with an independen thread
- Only interrupt parallelism when a photon hits a DOM and

signal needs to be stored (very rare!)

GPUs are O(~100) faster than CPUs for this workload

IceCube GPU Cluster

Good news: code is ok with consumer-grade GPUs

Not so good: GPUs still a rare beast, not easy to find
accessible GPU clusters out there.

⇒ needed to build an in-house sizeable cluster.

Current IceCube GPU cluster at UW-Madison:

- 48 Nvidia Tesla M2070
- 32 AMD 7970
- 32 Nvidia GeForce GTX690
- 256 Nvidia GeForce GTX980

(~1.5 PFLOPs single precision
… small gaming supercomputer)

GPU Resources - XSEDE

We want to explore the possibility of expanding our GPU capacity by
requesting time allocations in GPU-enabled supercomputers.

2015: requested a “startup” allocation to test running IceCube GPU jobs:
50,000 SU at TACC Stampede awarded

- CVMFS was there. David Lesny (ATLAS MWT2) got /cvmfs/icecube.
opensciencegrid.org/ replicated in 1 day (thanks!)

- Successfully ran IceCube GPU jobs (glidein was not possible, due to firewall)

2016: XSEDE “research” allocation awarded in 2 GPU-enabled systems:
- Comet at SDSC: 5,543,895 SUs (36 nodes with 2x NVIDIA K80 GPUs each)
- Bridges at PSC: 512,665 SUs (16 nodes with 2x NVIDIA K80 GPUs each)

- Fall 2016: +32 nodes with 2x NVIDIA Pascal GPUs each

- Requested ECSS support → working with Mats Rynge to integrate these
resources in our workload (mostly: CVMFS + glidein-friendly network)

- Good news: we are already running GPU glideins in Comet/SDSC!

-

Data Management

The IceProd framework orchestrates the simulation production workflows.

Tasks write/read intermediate output/input from the UW-Madison GridFTP.

- Most IceCube sites that provide a CE, do not provide an SE.

Average temporary output ~10-200 MB
Average task duration ~0.5-2 hours.

We do not see big problems with the “central SE” model so far. However, we
need to tackle it if we want to scale in the next years.

- Few IceCube sites might provide SE’s → ~5 “regional” gridftp servers?
- Need to add some “locality awareness” to the scheduling

Summary

IceCube benefits a lot from OSG. Big users of opportunistic CPU (thanks!)

- Plans for the UW-Madison site to become a fully functional OSG site
(including sharing the CPU/GPU cluster)

GPU continues to be a critical resource in the simulation chain. Main facility is
the UW-Madison cluster.

- Work with IceCube sites to integrate their GPU clusters seamlessly with
simulation production framework using pyglidein icecube.

- Actively explore new opportunities for tapping on other GPU resources
(XSEDE, opportunistic GPU at OSG sites …)

Long Term Archive service using remote DESY and NERSC sites to be rolled
out this year. Plan is to write software to handle data transfers to archive.

- Remote archive includes one ~400 TB bulk transfer UW→NERSC once a
year. Plan is to leverage gridftp/globus.org services as much as possible.

