
Comprehensive Grid and Job
Monitoring with Fifemon

Kevin Retzke

OSG All-Hands Meeting, March 2016

Why Do We Need Monitoring?
Grid admins want to know:

● Overall health of the batch system

● Worker node status and

availability

● Efficiency in matching jobs to

resources

● Identify and fix problems quickly

(before users and stakeholders

notice… and open tickets)

Users want to know:

● State of their jobs

● Availability of resources

● WHY ISN’T MY JOB RUNNING?!

Stakeholders want to know:

● Each group is getting the resources

it needs

● Resources are being used

effectively

Fermigrid Monitor (ca. 2004)
Monitoring for local HTCondor grid

(GPGrid).

● Aggregate metrics for grid and

VOs.

● No offsite information, no user

information.

● Difficult to alter or expand.

OK for grid admins, good for

stakeholders, bad for users.

Fifemon v1 (ca. 2014)
Growing usage of offsite resources

through OSG; needed new monitoring.

● Aggregate metrics for users and VOs.

● No grid-level information.

● Cumbersome to maintain and

expand.

OK for grid admins, bad for stakeholders,

OK for users.

Fifemon v2+ (ca. 2015)
Dedicated effort (~½ FTE) to developing

comprehensive monitoring.

● Leverage open-source monitoring

technology

● Focus on incorporating new data

sources and new dashboards

● Rapid development and iteration of

tailored views for each target

audience.

Good for grid admins, stakeholders, and

users alike!

Fifemon v2

Fifebatch
GPGrid

Custom Scripts
Collect:

● Job Details
● Slot Details
● DH Metrics

Graphite

Grafana

CMS Tier 1
CMS LPC
HEP Cloud

Time-series
Aggregations

Data
handling
dCache

Fifemon v2 Components
Data collection:

● Generic HTCondor probe; adding a new

pool is a matter of configuration

● Several other centrally-run probes querying

other specific resources

● Data handling services directly reporting to

Graphite

Graphite:

● Time-series database, stores data in files

similar to RRD, but adds caching and

powerful manipulation library.

Grafana:

● Time-series visualization dashboard

platform.

● Supports numerous data sources (Graphite,

InfluxDB, Elasticsearch, etc).

● Several auth methods (LDAP, OAuth,

proxy).

● Rich user interface for graphing metrics and

building dashboards.

v3

Fifemon v3

Fifebatch
GPGrid

Logstash &
Custom Scripts
Collect:

● Job Details
● Slot Details
● DH Metrics
● Event Logs

Graphite

Elasticsearch

Grafana

CMS Tier 1
CMS LPC
HEP Cloud

Time-series
Aggregations

Raw
Documents

Data
handling
dCache

Kibana

Fifemon v3 Components
Data collection:

● Logstash to collect and manipulate event data (i.

e. logs).

● Current focus is on HTCondor EventLog.

Elasticsearch:

● “NoSQL” document database, powered by

Apache Lucene.

● Store full details on jobs, batch slots, and logs.

● Data adds up quickly (Fifebatch: 4-5 MM

documents, 7-8 GB per day) and keeping history

becomes prohibitively expensive

Grafana:

● Enhancing dashboards with current/recent

status information from Elasticsearch.

● Adding custom tables and views with basic

JavaScript and HTML, still using Grafana UI.

Kibana:

● Restricted access, mainly for Grid Admin

analysis and troubleshooting

Case Studies

“There’s a dashboard for that...”

Case Study:
Grid Admin

“Is the batch system healthy?”

Cinnamon

Photo: Hans Kemperman (Public Domain)

https://pixabay.com/en/users/Hans_Kemperman-358030/
https://pixabay.com/en/users/Hans_Kemperman-358030/

Woof, all green!

Throughput
is Good.

Grid utilization
is OK.

Let’s check
anyways… what
happened here?

Hmm, we couldn’t
query a CE for a
few minutes. I’ll
check the probe
logs.

Case Study:
Stakeholder

“Is my experiment getting the

resources it needs and using them

effectively?”

Hazel

Photo: Claudio Gennari (CC-BY-2.0)

http://www.freestockphotos.biz/photos.php?c=all&o=popular&s=0&lic=all&a=31&set=all

We’re well above
our quota, but
efficiency could be
better.

Grrr… time to send
some emails!
Let’s check on resource
requests.

Disk and Memory requests look
good, lots of users exceeding
request time though.

Otherwise job throughput is
good both onsite and offsite.

Case Study:
User 1

“What’s the status of my jobs?”

Cocoa

Yay my Jobs are
starting, but my
efficiency is dropping!

This cluster has
poor efficiency, let’s
take a look at it.

A few failed
processes, and a
bunch are
disconnected.

Guess that’s life
on the grid...

Case Study:
User 2

“Why isn’t my job running yet?!”

Peanut

Let’s look at the job details

Are there any slots
available?

There are no Glideins running at
Wisconsin with 5GB memory!

Hey, there are some Glideins on GPGrid that
could run a job needing 5GB memory!
Maybe I should submit there instead.

Comprehensive Batch
Monitoring with Fifemon
Increases Grid Utilization
and Job Throughput
(and makes everyone’s life easier)

Next Generation Accounting
Architecting a Replacement for Gratia

Motivation
● Gratia is showing its age - written in 2004 in Java 3

● Changes/incompatibilities in underlying libraries (Hibernate ORM) and database

(MySQL) have made housekeeping cleanup (deleting old records) non-

performant.

● Rigid SQL schema (controlled through Hibernate mappings) makes tracking new

record types and metrics difficult.

Considerable effort would be required to maintain and update Gratia to serve the

needs of the OSG for the next ten years.

A flexible accounting and monitoring

system based on open-source

technology.

Compatible with existing Gratia

infrastructure:

● NO changes to probes required

● Historical data easily migratable

Introducing
Etymology:

● Grid Accounting

● Gratia-Compatible Collector

● Grok: “to understand” (Heinlein,

Stranger in a Strange Land)

GRÅCC

Gracc Architecture
● Swappable, independent

components that communicate

through a data exchange

● Gratia was a monolithic 800-lb

gorilla, Gracc will be composed of

several 10-lb kitties (they’re

cuter...)

Prototype Components:

● Elasticsearch - data

storage

● Grafana - user interface

● Logstash - data handling

● RabbitMQ - data

exchange

Gracc Architecture

RabbitMQ

Elasticsearch

Logstash:
Convert
and enrich
records.

Gratia Collector

Gratia
Probes

Raw XML
Processed
JSON

OIM

Summarizer
(Logstash?)

Summary
JSON

Grafana

Prototype - Summary Data

https://hcc-anvil-175-6.unl.edu/dashboard/db/osg-overview-all-time

Prototype - JobUsageRecord

https://hcc-anvil-175-6.unl.edu/dashboard/db/osg-jobusagerecord

Prototype: Self-Monitoring

https://hcc-anvil-175-6.unl.edu/dashboard/db/gracc-monitor

Gracc will provide a
flexible and extensible
platform for OSG
monitoring and
accounting.

