

SRF Infrastructure at RRCAT

Satish Chandra Joshi, RRCAT PIP-II Collaboration Meeting 9-10 November 2015

Proposed ISNS Facility

The SRF infrastructure to support : ISNS activity and Participation in IIFC related activities

SRF Infrastructure facilities

Cavity fabrication & inspection facility

Cavity Forming Facility

15 kW EBW Machine

3D CMM

Optical Inspection Bench

11/9/2015

Material Characterization facility

SIMS Facility

Universal Testing Machine

Laser scanning confocal microscope

SRF Infrastructure facilities

SCRF Cavity Processing Facilities

Barrel Polishing Machine

Electropolishing Setup

High Pressure Rinsing Setup

Ultrasonic cleaner

High Vacuum Annealing Furnace

Cavity polished & processed

Buildings for SCRF Cavity Development

SCRF Cavity Fabrication & Processing Building

SCRF Cavity Test Building (for VTS & HTS and Helium Plant)

Cavity Forming Facility

Forming of half-cell for 650 MHz cavity

Machining facility

Hollow Spindle Lathe

Spindle Through Bore-210mm, Swing-over bed Dia.-1000 mm Accuracies - 10 μm

Die-Punch assembly for 650 MHz cavities

Cavity Fabrication Facility

Electron Beam Welding Machine

Beam power	15 kW
Gun Voltage	90 to 150 kV
Duty cycle	100%
Beam current range	0 - 100 mA or wider
Beam current setting	0.1 mA
resolution	
Beam oscillations	1 – 1000 Hz or more
Beam focus diameter	0.25 mm
Inner size of chamber	3650 x 1500 x 1800 mm ³
X-Y table size	1780 m x 710 mm
Vacuum ready	< 1x10 ⁻⁴ mbar in 15 min
pressure	
Ready for welding	< 1x10 ⁻⁶ mbar in 60 min
pressure	

Welding of single-cell 650 MHz cavity

Cavity Fabrication Facility

Nd-YAG laser beam welding facility – for 1.3 GHz single-cell cavity

A novel technique of fabrication of SRF cavities using Nd-YAG laser welding process, has been developed at RRCAT. The process has received patent from Japan.

A 1.3 GHz single-cell cavity fabricated using the facility was processed and tested at Fermilab. The cavity produced an accelerating gradient > 31 MV/m

SRF Cavity Inspection Facility

3D CNC Coordinate Measuring Machine

Applications : Dimensional inspection of SRF cavity components like half cells, dumb-bells, multi-cells etc

<u>Accuracy</u> : 1.6 + L/400 microns

Inspection of machined components

SRF Cavity Inspection Facility

Optical Inspection Bench

Inspection of five-cell 1.3 GHz cavity

- Cavity internal surface measurement using a digital CCD camera with 10X-200X magnification.
- Tri-color LED for illumination
- Smallest measurable feature size : 10 microns

Inspection of single-cell 650 MHz cavity

Images from optical bench (650 MHz cavity)

SRF Cavity Inspection Facility

Laser Scanning Confocal Microscope

Imaging Method	3-D Laser Scanning
	Confocal system
Z - Resolution	1 nm
(Depth)	
Z - Measurement	12 nm
repeatability	
X-Y Resolution	0.12 μm

	No.	Result	Width[µm]	Height[µm]	Length[µm]
2	1		1806.831	252.657	1824,410
7	2		1689.145	212.954	1702.516

Measurement of bead profile

Confocal image of replica

SRF Cavity Material characterization Facility

Secondary Ion Mass Spectrometer (SIMS)

To develop understanding of impurity distribution near the top layer (~100 -200 nm) of niobium by 2-D, 3-D ion mapping of the impurities.

Quantification of the elemental impurity distribution using niobium standards.

Analysis Gun : Bi^+ at 30 kV C ₆₀ at 20 kV

```
Sputter Gun : Cs^+ ; 0-2 kV

O_2^+ ; 0-2 kV

Xe<sup>+</sup> ; 0-2 kV

Ar<sup>+</sup> ; 0-2 kV
```


"Study of impurity distribution in chemically treated and high pressure rinsed pure Niobium samples for SCRF cavity applications using TOFSIMS technique", A. Bose and S. C. Joshi , Superconductor Science and Technology, July 2015

Cavity Processing Facility

Centrifugal Barrel Polishing (five-cell 650 MHz cavity)

Main features of CBP machine

- Turret speed 0 200 rpm (variable)
- Barrel speed 0 200 rpm (variable)
- Machine size 4 m X 5 m X 3 m
- Temperature is maintained by closed loop air conditioner

Barrel Polishing Machine at RRCAT

Cavity Processing Facility

Electropolishing setup for 1.3 GHz & 650 MHz Cavities

Electropolishing of nine-cell 1.3 GHz cavity Electropolishing of single-cell 650 MHz cavity

Thermal Processing Facility

High Vacuum Annealing Furnace

Specification of High Vacuum				
Furnace				

Orientation	Horizontal
Maximum Temperature	1400°C Max
Working Vacuum	<1 x 10 ⁻⁷ mbar (600°C -1000°C) <1 x 10 ⁻⁶ mbar (> 1000°C)
Working Volume	Dia : 825 mm Depth :1500 mm

Single-cell 650 MHz cavity prepared for annealing

Cavity Processing Facility

High Pressure Rinsing Setup

Ultra Pure Water Plant

Features:

Rotational speed:2-20 RStroke:1300 rVertical speed:50-25 rmm/m

Pressure:

18

2-20 RPM 1300 mm 50-250 mm/min 80 – 100 bar

UPW generation rate – 600 lph

Upgradation of ultra pure water generation plant and high pressure pumps is in process

Pilot Cleanroom Facilities

Pilot Class-100 clean room facility

SRF Cavity Tuning Machine

Tuning Setup of SRF Cavity

Separate Semi-automatic tuning facility for 1.3 GHz and 650 MHz cavities (under development)

Semi-automatic tuning facility

Cryogenic facility

- ✓ One Helium liquefier with a liquefaction capacity of 50 l/h.
- ✓ One Helium liquefier with a liquefaction capacity of 145 l/h

Liquid Dewar 10,000 liters and Cold Box: LR 280

Cyclic Compressor

Cryogenic facility

Jumbo Cylinder cascades: Helium gas evaporated from 10,000 liters of liquid helium can be stored in these cylinder banks at 140 bar.

Vertical Test Stand (VTS) Facility for Cavity Qualification

Schematic of VTS cryostat assembly

1.3 GHz 500 W RF source

RF Control GUI

VTS cryostat & cavity insert assembly

Vertical Test Stand (VTS) Facility for Cavity Qualification

A vertical test facility for RF characterization of SCRF cavities at 2 K has been commissioned. A single-cell 1.3 GHz cavity has been successfully tested using the facility.

Transfer of liquid helium in the VTS cryostat

Testing of single-cell 1.3 GHz SCRF cavity in the VTS facility at RRCAT

Horizontal Test Stand for testing SCRF Cavities at 2K

Horizontal Test Cryostat (Continuous flow type cryostat) Liquid helium requirement for each test: 3000 lit Flow rate: 6 g/s, ~ 115 W @ 2K Duration of Tests: Two cool-down per month.

Horizontal test stand cryostat has been designed under IIFC.

Procurement of the HTS cryostat is under progress.

Building for SRF Cavity Test Facility

Layout of the cavity test building

Exisiting & Planned Facilities

Plans ahead

- Commissioning of CBP machine for 650 MHz cavity
- Setting up of LTB facility
- Integration of new LHe Plant with VTS facility
- Development of tuning machine for 650 MHz cavity
- Setting up of class 10 clean room
- Shifting of EP facility in processing building
- Development of glove box for HB650 cavity dressing
- Fabrication, assembly, testing and integration of HTS
- Many more to come.....