

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

MEBT status and plans

A. ShemyakinPIP-II Collaboration Meeting9-10 November 2015

Outline

- Configuration and functions
- Components
- Commissioning plans
- MEBT at PXIE vs PIP-II

MEBT configuration

 3σ envelopes of passing bunches. 2.1 MeV, 5 mA. TraceWin. A. Saini.

- Two doublets and 7 triplets; three bunching cavities
 No significant changes in the optical design since 2011
- Chopping system: two kickers and absorber
- Smaller beam size after absorber for differential pumping

🚰 Fermilab

MEBT functions

- Optical matching from RFQ and to HWR
- Chopping
 - Any bunch from initial CW train can be removed
- Scraping
- Transition from HV to particle-free, UHV part upstream of HWR
- Measuring beam parameters, MPS

MEBT components

- Magnets
- Bunching cavities
- Scraping system
- Chopping system
- Vacuum components
- Instrumentation- see Vic Scarpine's talk

Magnets

- 25 quadrupoles, 9 dipole correctors (X&Y) + spares
 - Produced by BARC, India and delivered in batches
 - First two doublets with dipole correctors are installed on girder
 - Considered prototypes, but quality within specs
 - Four triplets are coming in June 2016
 - The rest in FY17
- Power supplies are inherited from ECool

Relative quadrupole strength measured at Fermilab. M. Tartaglia

Two doublets and bunching cavity installed on a girder in the PXIE cave

6

Bunching cavities

- Designed by Fermilab, procured at HiTech
- A prototype was fully tested
 - A vacuum leak was cured with epoxy
 - Properties are within specs
- Three production cavities have been ordered
 - Delivery is expected in May 2016

Prototype bunching cavity under testing in the PXIE cave (D.Sun, J.Steimel, D.Peterson)

Bunching cavity amplifiers

- Five units had been ordered and delivered
 - Comark 3 kW CW 162.5 MHz TAVD-600L
 - need ~1 kW for bunchers, 3 kW for the first HWR cavity
- All five returned to Comark for repair; two
 returned to FNAL
 - one of them failed again on flow meter fault
 - second can run CW at 3 kW with a 50 ohm load
 - does not operat correctly into a non 50 ohm load.
 - Same for all modified units, requiring a software revision. Status pending.
 - Waiting for response from Comark on how to proceed

R. Pasquinelli, D. Peterson

🛠 Fermilab

11/9/2015

MEBT scraping system

- 4 scraper sets, 4 blades in each set. Will be used for
 - Diagnostic
 - Beam size and profile measurements; beam halo
 - Part of active protection system
 - Increased scraper current generates alarm signal for MPS
 - Scraping (the main function)
 - Scrape the beam halo or intercept the beam in case of incidents
- One set was successfully tested at LEBT
 - 100W/set rating

Single blade. C. Baffes, K. Kendziora

11/9/2015

Nominal scraping scenario

Beam losses for passing bunches. Nominal beam (5 mA, $\epsilon_{tr/z}$ =0.21/0.28 µm). A. Saini.

🛠 Fermilab

Chopping system

- Two travelling-wave kickers working in synch and absorber
 - Two kicker versions, 50 Ohm and 200 Ohm

Passing bunch. -250V, +250V on upper plates.

Removed bunch. +250V, -250V on upper plates. Case with 0.05% of beam leaking to scrapers is shown.

3σ envelopes. 2.1 MeV, 5 mA. A. Saini.

50 Ohm kicker

- Features
 - Bipolar signal; commercially available amplifier
 - bunches to be removed or passed are kicked in opposite directions
 - Plates connected in vacuum with 50 Ohm cables
- Status
 - One plate is successfully tested in vacuum
 - Full-power and RF measurements
 - Final prototype is fully assembled
 - Will be power-tested in coming months

Half of the kicker (one plate) assembled. D.Sun

Kicker under testing. D.Sun, D. Peterson

11/9/2015

200 Ohm kicker

- Higher impedance allows considering a fast switch as a driver
 - Potentially simpler and cheaper solution; DC-coupled
- TW structure is a helix
- One vacuum-compatible helix was tested
 - Power testing in vacuum is successful
 - The phase velocity was found off by 5%; redesigned
- Parts for a complete kicker have been ordered
 - Will be fully tested before June 2016

Kicker prepared for power testing in vacuum. A.Chen, G.Saewert

200 Ohm Helix Driver (G. Saewert)

- Initial scheme: bipolar cascode switch; 5 FETs each side
 - 500V with one side was demonstrated; 2.3/9 ns times
 - Bipolar: too high capacitance; dead time during transition
 - Found that driver jitter is low => can drive FETs individually
- Present stage: unipolar switch
 - Two FETs driven individually
 - matched to <0.2ns
 - 200V pulse with good rise/fall time
- New development
 - New GaN FETs, 650V rating
 - Switch with 3 FETs is being assembled; goal is ≥500V
 - Cooling scheme for CW (~35 MHz) is being designed

Kickers simulations (M. Hassan)

- Both kickers were simulated with time domain solver of CST
 With all mechanical details and realistic pulse shapes
- Angles differ from the model of parallel plates by <10%

Vacuum components

- MEBT vacuum concept did not change since 2012
 - HV in most of MEBT and UHV, particle-free in last ~3m

PXIE_MEBT Residual Gas Pressure Profile

- All vacuum equipment was identified and most purchased
- Design of the differential pumping section will start in FY16
- During PXIE operation, need to determine for PIP-II
 - Length of particle-free region
 - Fast acting valve system area (see C. Baffes' talk)

Fermilab

MEBT commissioning plans

- MEBT length will grow in 3 steps, determined by magnet delivery schedule
 - MEBT-1 2 doublets, 1 bunching cavity (FY16)
 - Main goal: commission the RFQ beam see J. Steimel's report
 - Test absorber prototype with H- beam
 - MEBT-2 + 4 triplets, 1 bunching cavity
 - Install in Jul-Sep 2016, run in Oct-Dec 2016
 - MEBT-3 + 3 triplets, 1 bunching cavity
 - Install in Jan-Feb 2017, run Mar-Apr 2017
- The final MEBT (install in 2017)
 - Particle-free vacuum chamber in front of HWR
 - Final chopping system

MEBT-2

- 2-3 versions differing by placement of diagnostics
- The main goal is to test kickers
 - Both prototypes are installed
 - Test: kickers survival and resulting angle
 - 50 Ohm: two 81.25 MHz CW drivers
 - 200 Ohm: two 500V switch prototypes
 - If lucky and time permits, may try to run them in synch aiming to observe separation of every other bunch
- Also: optics; tests of laser wire and extinction monitor (RWM)

MEBT-3

- All magnets, cavities, and scrapers are in final locations
- The last ~2m are "cleanable" but assembled not particle-free
- The kickers are 50 Ohm and 200 Ohm prototypes
- 5kW absorber prototype instead of full absorber
- Likely several versions similar to MEBT-1,2
- Main goals

19

- Prepare beam for injection into HWR
- Optics; UHV sections and differential pumping
- Continue previous measurements

PXIE MEBT vs PIP-II MEBT

- While all PXIE MEBT components are designed to PIP-II specs, there may be differences
 - The ion source needs to be accessible during linac operation
 - Need a radiation wall (similar to SNS) in MEBT; might fit into one more section
 - PXIE experience may indicate a need for a longer particle-free region in MEBT

 - Longer MEBT would require additional triplets and may need an additional bunching cavity

