Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Booster collimation system: status and future

Valery Kapin PIP-II Collaboration Meeting 9-10 November 2015

Present activities for collimation system and people involved

Two stage collimation system for booster designed and installed in 2004. It was tested but is not used in operations

Tests for collimators motions :

Primary collimators moves reliably (tested by Salah Chaurize & myself VK)
Secondary collimators (Sec-Colls) tests on 23-Jul & 11-Aug (Rick Tesarek, Todd Sullivan, Matt Slabaugh, VK, Salah) have showed some problems for all 3 collimators: vertical motion for all 3 collimators and horizontal motion for 2nd collimator.
Several meetings & discussions (see Beam-Doc DB); team including Rick, Mike Coburn & Charles Briegel (controls), Matt (mechanics); support from Salah & Todd.
The last Sept-2015 tests show some improvements after Rick' analysis and suggestions has been realized by Mike & Charles. Thanks !

Simulations support (a'la STRUCT+MARS):

o General problem formulation and tuitions– N.Mokhov & V.Lebedev
o subroutines for primaries extracted from STRUCT – checked by S.Striganov
o MARS models for secondary collimators (& Notch-absorber) – created on
Heimdall by I.Tropin & I.Rakhno
o work with MADX – source and gluing scripts – myself

General support, guidance, consulting & encouragements: Bill Pellico, C.Y.Tan, Vladimir Sidorov

Principle scheme of 2-stage collimation system

Usual "1-stage" collimation produces uncontrolled out-scattered protons => "2-stage" scheme Bryant, in CERN Acc. School (1992), p.174

Fig. 11 Main features of a collimation system

The primary collimator is followed by two secondary collimators set at optimized phases for intercepting the scattered particles.

halo particles => large amplitudes => Correct treatment non-linear dynamics => ~MADX

Collimator placements in booster

Figure 1. Blue boxes represent the main magnets; collimators are represented by brown boxes.

Restrictions for design: Not optimal phase advances; Small magnet apertures; Bending magnets in coll system; Variable beam parameters during accelerator cycle

11/9/2015

Fermilab

Collimation system transverse layouts by A.Drozhdin

‡ Fermilab

Tests for effects of collimator on Ring Losses

Task started in 2014: optimal thickness of primary coll.

- MADX code has been modified to include proton interactions with thin primary collimators (Prim-Colls), while out-scattering from secondary collimators is neglected
- Dependence of collimation efficiency on thickness of Cu Prim-Colls at injection energy (400MeV) within thickness range {0; 381um} has been simulated. It is quite smooth.
- Collimation efficiency grows up **with the number of turns** (simulated up to 100) under simulation approach that all accelerator parameters are constant *(is it a case of booster ?)*
- **Optimal thickness** of Prim-Colls for Cu is **~50um (or thinner)** to reduce losses of scattered protons in magnet apertures and pipes between primary and secondary collimators.
- ~50 mkm is much less of existing 381 um (0.015") Cu foil for both hor. and vert. primaries
- Original STRUCT's calculations at 400 MeV corresponds to equivalent Cu foils of ~12um

MADX (w/o out-scattering): horizontal collimation for 2004-design

Maximum N_colls_sum at 50um (within 30-60um)

‡ Fermilab

Primary thickness for ~2004 "STRUCT" design & Equiv. materials

New aluminium Prim-Colls

2005: Cu primary heat sink with signal cable (+ceramic ins.)

Aug. 2015: 381 um Al primary with the same sizes as Cu

Oct.2015 New simplified primary assembly (just AI plate without any ceramic insulators):

R.J. Tesarek, B. Hartsell, V. Kapin, N.V. Mokhov, M.Slabaugh, "Calculations of Power Deposited in the Booster Primary Collimators", Beams-Doc-5983, November 4, 2015.

From abstract: ... a candidate primary collimator design of a uniform aluminum foil with a uniform thickness of 381 um. ... the steady state temperature of the collimator under nominal beam conditions to be at or below 140 C (absorb <4.6W).

11/9/2015

New simulations: upgraded model

- A new simulation approach including out-scattering in Sec Colls is under development for a correct comparison of two stage and one-stage collimation in the booster.
- ➤The proton interactions with Sec-Colls are simulated by MARS (Mokhov's group) and will be used by MADX tracker as black-boxes.
- > The first runs performed on the last week (below)
- Plans: simulations for different beam sigma and halo sizes
- Calulations for different collimator layout (2004-design;
- 2011 Drozhdin "real" configuration; and find optimal one)
- >Optional: Optimizations for existing single-stage scheme

New simulations: Mars model for booster secondary collimators

Model created by I. Tropin & I.Rakhno. Interface with "STRUCT" coordinate system (x,x',y,y',p)

Model is centered on ref. orbit. Transverse shifts simulated Via shift of input and output particle coordinates for MADX

Example of outscaterring for "usual" (1-stage) collimation

Loss distributions with present 381um Cu foil (10turns)

Loss distributions with present 381um Cu foil (100turns)

Loss distributions with outscattering (381um Cu foil)

Loss distributions with new 381um AI "50um Cu" foil (10turns)

Loss distributions with new AI "50um Cu" foil (100turns)

Loss distributions with outscattering (new Al 381um foil)

Plans for near future

 Matt made drawings for new Al foil and its "fork " holder: submitted for fabrication (this week) & alignment measurements Installation of both(?) primaries in vacuum (a future >8hrs shutdown)

- "Easy" replacement of prim. plate (Al: 0.015"->0.005" -> ? mm-Be)
- •Beam tests could be started afterwards (~Dec. 2015)
- •Simulations plans (see above) include comparison with 1-stage colls

• Due to many concerns (collimation in synchrotron, not storage/collider ring) : review of collimation systems on similar proton synchrotrons (J-PARC, SNS, ISIS, ?) to work out possible alternative solutions, if present booster two-stage collimations is failing.

- Considering alternative collimations schemes
- (e.g. a'la "septum" suggested by V.Lebedev)