Multidimensional Optimization Plan

And Simulation News

Laura Fields

- * I'm planning to start a new optimization this week
 - It will use three horns:

Horn lengths are defined sligtly differently than I've done in the past. I'm going to set one total horn length, then each segment's length will be a variable fraction of the total length. This will make it mechanically easier to study the dependence of results on total horn length (rather than individual segment length)

- Optimization metric
 - Will use same metric considered before:
 - ❖ 6 year 75% CP coverage estimated based on 2014 Fast MC
 - In parallel, will run simulations necessary to compute:
 - Updated 75% CP coverage estimated based on updated sensitivity calculation used for CDR
 - * 75% CP coverage after a longer exposure (12 years?)
 - Minimum MH sensitivity
 - Error on delta CP:
 - Averaged over delta CP
 - ♣ At pi/2

Parameter	Lower Limit	Upper Limit	Unit
Horn A: L _A	2000	4500	mm
Horn A: F1 _A	1	99	%
Horn A: r1 _A	20	50	mm
Horn A: r2 _A	20	200	mm
Horn A rOC _A	200	650	mm
Horn B: L _B	2000	4500	mm
Horn B: F1 _B	1	96	%
Horn B: F2 _B	1	96	%
Horn B: F3 _B	1	96	%
Horn B: F4 _B	1	96	%
Horn B: R1 _B	20	200	mm
Horn B: R2 _B	20	200	mm
Horn B: R3 _B	20	200	mm
Horn B: ROC _B	200	650	mm
HornB: Z position	2000	17000	
Horn C: L _C	1000	4500	mm
Horn C: F1 _C	1	96	%
Horn C: F2 _C	1	96	%
Horn C: F3 _C	1	96	%
Horn C: F4c	1	96	%
Horn C: R1 _C	20	200	mm
Horn C: R2c	20	200	mm
Horn C: R3c	20	200	mm
Horn C: ROC _C	200	650	mm
Horn C: Z Position	4000	19000	mm
Target Length	0.5	1.75	m
Beam spot size	1.6	2.5	mm
Target Fin Width	9	15	mm
Proton Energy	60	120	GeV
Horn Current	200	300	kA
Off-axis Angle	0	15	mrad

Parameters that will be varied and their constraints

Other Constraints:

•
$$F1_B + F2_B + F3_B + F4_B < 99\%$$

$$* F1_C + F2_C + F3_C + F4_C < 99\%$$

- Horn B must start after Horn A ends; Horn C must start after Horn B ends
- All horns must be contained within 21 m of MCZERO
- Variable conductor thickness (see next slide)
- Will run three different optimizations
 - Graphite fin target
 - Beryllium fin target
 - Graphite cylindrical target

- Conductor thickness proportional to their radii
 - 2mm for 200 mm radii or less
 - * Add 0.5 mm for ever 100 mm increase beyond that
 - One thickness for entire inner conductor determined by largest IC radius

- Optimization options to be studied separately from genetic algorithm
 - Targets with high-Z material in downstream region
 - Parabolic horn shape
 - Target position with respect to horn A
 - * Requires realistic description of endcap material, not currently in simulation
 - Spherical array target option
 - Target fin spacing(?)
 - Split target option

Simulation News

* The three horn option works in G4LBNE!

visualization of a randomly chosen three-horn configuration

Simulation News

- I tagged v3r3p9
 - Includes the 3(+) horn option
 - Nominal flux has not changed significantly since v3r3p8
- I also successfully ran a g4lbne job on the Open Science Grid (OSG)
 - Will increase the amount of CPU we have available
 - Not ready to become default yet missing libraries prevent root jobs from running at some sites
 - But submit_flux.py has an —osg option
 - Thanks to Ken Herner for his help with this

The End