The Nevis TPC Readout Hardware for MicroBooNE and SBND

Leslie Camilleri

for the Nevis electronics Group:
Mike Shaevitz, Bill Sippach, Cheng-Yi Chi, Kazu Terao, LC.

Joint DUNE-SBN DAQ meeting
20th November 2015
Our task

- For 8256 wires in MicroBooNE and 11,264 wires in SBND:
- Readout **Neutrino** data upon appropriate trigger, compress it, format it and send it on to storage.
- Readout **SuperNova** data continuously and store it temporarily awaiting for external SNEWS network alert.

Plan of talk

- The MicroBooNE warm readout system and data flow.
- How it is modified for SBND. Clearly advantages:
 - Building on an existing system.
 - Potentially identical DAQ and data format as MicroBooNE.
- The Trigger module.
The MicroBooNE Electronics Functionality

TPC: (2 MHz)
- Neutrino events: Read them and compress them (factor of ~5) losslessly (Huffman coding) following a beam trigger.
- SuperNova: Readout Data continuously compress (~80, some loss) and store for several hours awaiting a SNEWS alert (< 1 hour delay)

PMT’s: (64MHz) MicroBooNE only
- Readout for both beam and SuperNova data
- Use PMT Information to provide a trigger for beam events and for cosmic rays, based on amplitude and multiplicity of all, or groups of, PMT’s.

Additional readouts/triggers:
- LED’s for PMT calibration
- Cold electronics ASIC calibrations
- Cosmic paddles
- Laser TPC field calibration
- Randoms

Master Trigger board
- Allows/inhibits various triggers
The MicroBooNE Electronics Scheme

Single Vessel Cryostat with 8-10% Ullage Foam Insulation

Decoupling and Wire Bias

CMOS Analog Front End ASIC in LAr @ ~90K

"Cold"-Twisted Pair Cables [-2-5 m]

Warm Flange 2x8 + 2x7 rows pin carriers 32 readout channels/row

"Warm"-Shielded Twisted Pair Cables [-10-20 m]

Intermediate Amplifier Line Driver

Faraday Cage Extension

8256 TPC channels

LAr

30 PMT channels

GAr

ADC

Digitizing Section

Data Handling Section

On Board Memory

TPC Readout Board

FPGA

D-SER

Optical Transmitter

Optical Transmitter

Transmit Module

Transmit Module

Backplane

To DAQ PC

To DAQ PC

Optical Link

Optical Link

Backplane

Beam Gate

Basis for SBND Warm Electronics

Basis for SBND Warm Electronics

MicroBooNE Readout Board:
BNL receiver+ADC board + Nevis FEM board
Generic FEM signal flow

Organized as a circular ring buffer. Hold the data for the trigger decision. Buffer the incoming data for the deadtime less readout.

Signal is recorded in time order. Readout in order of wire number. For compression (and decimation) On alternate memory cycles

Address field (wire number + time sequence)
System Diagram for Triggered beam events and Continuous supernova data.

Frame size: 1.6ms = drift time

Beam Neutrino trigger: Read out 3 frames
Lossless Huffman coding ~ **factor 5 reduction**

SuperNova: Read out every frame:
Huffman + lossy compression
(Region of Interest) ~ **factor 10 reduction**
The MicroBooNE Front End Module

STRATIX III to DATAWAY

SRAM

ARRIA FPGA

NEVIS

2 x DRAM

8 x BNL ADC's

BNL

TPC data IN

TPC data IN

11/20/15 Leslie. DUNE-SBN DAQ Meeting
Crate dataway recording Scheme

9 TPC Crates + 1 PMT crate
Up to 16 FEM’s per crate.
Token passing scheme from one FEM to other.
Initiated by XMIT
512MB/sec dataway capability.
50MByte/sec rate expected → Deadtime-less readout.

One PC/crate.
Via 2 PCIe cards in each PC: 1 for ν data, 1 for SuperNova
The 10 PC’s send ν data to an additional event builder PC.

SuperNova data stored locally in each PC in a circular buffer resident on disks for several hours.

2 optical Transceivers 6.4 Gbits/sec

PCIe express 4 lanes x 2 Gbits/sec
Crate

Backplane

Crate Controller

16 FE Boards

XMIT

3 PCIe’s in PC

Cables from Feedthroughs
MicroBooNE data rates and Experience

- Currently getting 5Hz neutrino batches from BNB.
- Studying our on-line PMT trigger.
- Reading out all 5Hz beam spill TPC data at 2 MHz.

- Per crate:
 - Per beam spill we readout 4.8 ms of data
 - \((4.8 \times 10^{-3}) \times (2 \times 10^6) \times (16 \text{ boards} \times 64 \text{ ch/board}) \times 2\text{B/word}\)
 - = 20MB/event
 - = 100MB/sec at 5Hz.

- Huffman compression (factor of 5) = 20MB/sec on each crate dataway
- (512 MB/sec capability)
- 9 TPC + 1 PMT crates at event builder stage
Adapting the MicroBooNE electronics

Replace: BNL Receiver/ADC by Optical Receiver and deserializer
Functionality of Nevis FEM board would remain the same.
SBND electronics

- The ADC’s are inside the vessel. The digitized data are sent through the feed throughs via high speed serialized copper cable.
 - The high speed serialized data is translated to optical data to go some distance.
 - Goes into optical receiver and deserialized on FEM boards.

- Adapted MicroBoone digital electronics to achieve this.

1) Increase the FEM board depth
 6U size and 160mm depth.

2) Add optical transceiver ~ 2 Gbits/sec bandwidth

3) Add deserializer to convert optical serial data to parallel data.

4) Remove power inputs and regulators needed for MicroBooNE BNL ADC.
Analog power
+3V, -5V, +5V

Digital power
+12V
(4.5V – 24V)

MicroBooNE
14 Layers
233 X 118 mm

SBND
14 Layers
233 X 160 mm

Leslie. DUNE-SBN DAQ Meeting
Some numbers

- 11264 wires:
 - \(\rightarrow 176 \) 64-channel boards
 - \(\rightarrow 11 \) crates at 16 boards/crate. (9 TPC crates in MicroBooNE)
- Crates will be reduced from 9U to 6U as 9U was only required for BNL Receiver/ADC, and will be shallower.
- Backplane will remain the same as only the 6U Nevis FEM part “talked” to it.
- All other support modules would remain the same.
 - Controller: 1 per crate
 - XMIT: 1 per crate
 - PCIe: 3 per crate
 - Clock module: 1 per crate
 - Fanouts: 1
 - (Trigger module): 1

Cables replaced by fibers
Triggering

Beam neutrinos would be triggered on using
- Signals generated by the Light System (SiPMT/PMT) readout system.
- In coincidence with the BNB and/or NUMI beam gates.
- Expected to be dominated by neutrinos over cosmic rays (unlike MicroBooNE): 1 ν every 18 spills and 1 CR every 220 spills.

- Additional readouts/triggers:
 - LED’s for PMT calibration
 - Cold electronics ASIC calibrations
 - Cosmic paddles
 - Laser TPC field calibration
 - Randoms

- We will provide a Trigger board with this functionality.
 It will be based on the MicroBooNE trigger board, modified as necessary.
MicroBooNE Trigger Board

2 SPARE Inputs: PMT FEM (can be implemented as LG PMT trigger input in the future)

2 Inputs for PMT HG FEM (PMT cosmic/PMT gate trigger: marker plus trigger type)

3 Inputs for BNB ($1D.$1F), NuMI ($AE.$A9), and Strobe (fake beam)

1 Input for LASER calib

1 Input for GPS marker (not a trigger)

1 Input for cosmic paddles (during commissioning)

4 Scalar outputs: TBD (not triggers)

1 Trigger BUSY output (not a trigger)

1 Output for ASIC or PMT LED calibration

2 SPARE Outputs: DAQ-driven triggers (one to be used as sync for muon paddles?)

Information as to which trigger fired and, if a PMT trigger, which configuration fired is read out from the trigger board.
MicroBooNE Trigger Scheme

In PMT FEM FPGA, several trigger configurations can be implemented: multiplicities and/or summed pulse heights of all or groups of pmt’s.
The trigger module may have to be redesigned to adapt to the new Light system communication.
Schedule

- Prototype → 6/30/2016
- Final design → 12/01/2016
- Production and Testing → 10/27/2017
Back up
Beam data compression (slow variation of signal)

Huffman Coding

- The U(n+1)-U(n) value with highest probability is assigned to shortest code, i.e., single bit 1.
- Values with lower probabilities are assigned with longer codes, e.g., 01, 001, 0001 etc.
- Huffman coded words and regular words are distinguished by bit-15.

Regular ADC data for first point or when U(n+1)-U(n) is outside +3

<table>
<thead>
<tr>
<th>ADC value (13-bit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
</tr>
</tbody>
</table>

Huffman Coded

<table>
<thead>
<tr>
<th>-1 0 0 0 0 +1 +2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 1 1 0 0 0 0 0 1 0 0 0</td>
</tr>
</tbody>
</table>

In this example, 6 differences of the data samples are packed in the 16-bit data word.

Achieve Factor 10 reduction

<table>
<thead>
<tr>
<th>U(n+1)-U(n)</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4 and others</td>
<td>Full 16 bits word</td>
</tr>
<tr>
<td>-3</td>
<td>0000001</td>
</tr>
<tr>
<td>-2</td>
<td>0001</td>
</tr>
<tr>
<td>-1</td>
<td>01</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>+1</td>
<td>001</td>
</tr>
<tr>
<td>+2</td>
<td>00001</td>
</tr>
<tr>
<td>+3</td>
<td>0000001</td>
</tr>
</tbody>
</table>
Supernova (continuous) data compression

- The current method will only keep data above threshold (per channel) + pre and post samples. Data will be Huffman compression coded.
 - The shaping time is slow then sampling frequency limits the changes in the ADC data.
- The baseline will be adjusted based on 64 samples average.
 - This is to deal with possible slow baseline variation.
 - To update a new baseline 3 adjacent 64 sample average and variance have to be within downloadable limits.