High pressure gas TPC simulation

George Christodoulou
DUNE ND Meeting
22/10/2015
Overview

- Benefits of high pressure (HP) gas TPC
- HP gas TPC simulation
 - Status, tools available, repository
- First simulation results
 - Event rates
 - Signals and backgrounds
Benefits of HP gas TPC

- Magnetized and $\sim 4\pi$ coverage
- Same target as the DUNE far detector
- Pressure and target flexibility
 - He, Ne, Ar, CF4 can be used to study A-dependence and FSI
- Excellent PID
- Low density and low thresholds
 - Sensitivity to < 100 MeV/c protons and < 25 MeV/c muons and pions
 - Model testing and generator tuning
 - 2p2h, spectral functions, FSI
 - 1π and high mass resonance
HP TPC for neutrino experiments

- HP TPC has also been considered as a near detector for other proposed neutrino oscillation experiments (LBNO, Hyper-K, T2K-Upgrade, DUNE etc)

- Simulation framework developed by T. Stainer et al for LBNO
 - https://dpnc-indico.unige.ch/indico/getFile.py/access?resId=0&materialId=1&confId=354
Global effort on HP Gas TPC

- Effort to build a common simulation framework for all the HP Gas TPC experiments
 - Barcelona meeting
 [Link](https://indico.ifae.es/conferenceDisplay.py?confId=169)
 - Within the UK we will start having common Dune-Hyper-K meetings to combine the efforts in a join simulation framework
 - Timescale of the two projects may not be the same
Adopting the HP TPC simulation to DUNE

- Major updates to adopt the LBNO simulation to DUNE
 - Update against recent GEANT4 release, 4.10.*
 - Code won’t compile with older versions of GEANT4
 - Update against the latest ROOT 5 release
 - Update against the latest virtual MC packages for the geometry interface and readout
 - Virtual Geometry Model (VGM) and geant4_vmc
 - Older root/geant versions may require different versions of VGM and geant4_vmc
 - General software bug fixes
 - Tested against Genie 2.8.4(6)
Update the flux and Geant4 simulation

- Code cleaning
 - Update GEANT’s physics lists and optimize in terms of speed/physics output
 - For example low energy thresholds
 - Remove old/unused code
 - Give option to checkout, compile and run only some parts of the software
 - For example ignore GEANT4 for studies at the generator level
 - Check dependency against third party software
- Use Genie’s NuMi flux driver instead of flux histograms
- Add particle gun option
How to run the HP Gas simulation:
Step 1: Produce vertices

Geometry Builder → Controlled by an xml file

Genie(+Dk2nu) → Output is Genie’s ghep ntuple

DUNE flux file

Change the gas type, mixture and pressure
Add/remove detector components and dimensions
Step 2: G4 simulation

- Geometry Builder
 - Controlled by an xml file
 - Genie(+Dk2nu)
 - GasTPCTracking
 - Change the gas type, mixture and pressure
 - Add/remove detector components and dimensions
 - Control physics list and thresholds
 - DUNE flux file
 - Input (ghep, gst, PG and easily extended to other formats)
 - Neutrino Data format
 - Output is all the truth Genie+G4 information and the G4Hits (energy depositions)

- Geant4
Step 3: Mock reconstruction

Geometry Builder

Genie(+Dk2nu)

DUNE flux file

Controlled by an xml file

GasTPCTracking

GasTPCAnalysis

Output is ROOT flat tree with truth and recon information

Do mock reconstruction
Basic design of the HP TPC for DUNE

- HPTPC vessel is surrounded by the ECAL for neutral particle containment.
- ECAL can provide an additional target for neutrino interactions.
- ECAL inside the vessel is another (challenging) possibility.
- Could also be another target for neutrino interactions.
HP TPC simulation for DUNE

- Near detector located 459m from the target
- Test and debugging production of 1.5×10^{19} POT for forward horn current (FHC)
- Flux files provided by Laura Fields
 - “Nominal” beam simulation version v3r3p5 at 200kA
- Simulate only the HP TPC gas volume and the vessel
 - Flux+Genie(+Dk2nu)+Geant4
 - Code in https://github.com/DUNE/wp1-neardetector
 - 4.0×4.0×4.0 m active volume
 - 20 bar, ~550 kg, 0.035g/cm3
 - ~35k events/1.5×1019 POT in the gas volume
 - ~10 times more events in the 10 cm thick aluminium vessel
 - 70% give some activity in the HP TPC
The vessel

- Composite materials appear a very attractive solution to build a low density vessel
 - Reduce pile-up
 - Reduce out of TPC background
 - Reduce the shield for gammas going in the Ecal
- 5cm thick honeycomb aluminium panel is now considered for the vessel
 - 10 times lighter than custom aluminium
 - Large strength to weight ratio (larger than steel)
 - Used in many applications
 - For safety reasons the vessel must hold at least four times the gas pressure (80 bar)
Mock reconstruction

- Momentum resolution
 - Sagitta $s = B \times L^2 / (26.7 \times p_t)$
 - $\sigma_s = 0.05\, \text{mm}$, $\sigma_L = 0.6\, \text{mm}$ (from T2K)
 - Smear s and L and calculate p_t
 - Then $p = p_t / \sin \Theta$, with Θ the polar angle between the track and the magnetic field
 - This method also provide a first estimation of the charge confusion if Sagitta $< \sigma_s$

- Angular resolution = 0.2 rad

- dE/dx resolution = $5.4 \times L^{-0.37}$
 - Effective track length $L = \text{track length} \times \text{pressure}$

- Still to add
 - Recon efficiency (almost complete)
 - Low energy electrons might be an issue
 - dE/dx parameterization
Pile-up in the near detector

- For every 1 neutrino interaction in the HP TPC Ar Gas
 - ~10 neutrino interactions in the vessel (from simulation)
 - ~125 neutrino interactions in the ECAL (estimated)
 - Assuming 30cm pure scintillation detector
 - ~625 neutrino interactions in the magnet (estimated)
 - Assuming 50cm iron

- Challenges
 - Veto against charged particle tracks coming outside the HP TPC volume
 - Reconstruction of ECAL neutral clusters
FHC true topology $(1.5\times10^{19} \text{ POT})$
Momentum distributions at the generator level

- **μ⁻/μ⁺**
- **π⁻/π⁺**
- **K⁻/K⁺**
- **π⁰**
- **e⁻/e⁺**
- **protons**
- **neutrons**
- **gammas**
- **other**
dE/dx in the 20 bar HP TPC
Preliminary example of event selection in the HP TPC – CC1π±

- Very preliminary non-optimized event selection
 - Fiducial volume box reduced by 70cm from the HP TPC box in all directions
 - Track length > 25 cm
 - P > 25 MeV/c
 - Highest momentum track is μ⁻ or π⁻
 - Only one π±
 - No tracks starting >15cm from the vertex

<table>
<thead>
<tr>
<th>Events /1.5×10¹⁹ POT</th>
<th>Efficiency (%)</th>
<th>Purity (%)</th>
<th>Events with a FS π⁰ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2315</td>
<td>22.7</td>
<td>59.6</td>
<td>24.5</td>
</tr>
</tbody>
</table>
Preliminary example of event selection in the HP TPC - CC-ν_e inclusive

- Very preliminary non-optimized event selection
 - Fiducial volume box reduced by 70 cm from the HP TPC box in all directions
 - Track length > 25 cm
 - $P > 25$ MeV/c
 - Highest momentum track is e^-
 - No other e^-/e^+ tracks
 - No tracks starting >15 cm from the vertex
- π^0 induced background dominated near the 1st and 2nd oscillation maximum
- Need more careful studies

<table>
<thead>
<tr>
<th>Events / 1.5×10^{19} POT</th>
<th>Efficiency (%)</th>
<th>Purity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1368</td>
<td>21.6</td>
<td>9.3</td>
</tr>
</tbody>
</table>

![Graph showing event distribution by p_{ν_e}]
Next steps in the HP Gas TPC simulation

- Manpower
 - G.C. and Justo Martin-Albo (University of Oxford)
 - 1 new Liverpool postdoc starting before the end of the year
 - More hands are very welcome!
- Code maintenance and improvements, validation tools, moving to NuTools(?)
- T_0
- Pile-up
- Detector response
- Reconstruction
 - Apply the T2K gas TPC reconstruction
 - Long term plan and depends on the progress within T2K
- Event selection
- Ecal
 - Very important for vetoing the TPC and for neutral cluster reconstruction
 - Which technology is better (plastic, crystal, LAr etc)
 - Performance and cost dependent
 - Add hadronic part
 - Reconstruction is much more complicated (MIPs vs EM Shower vs hadronic shower)
 - Could be a joined effort with the other near detector options
Summary and future plans

- HP TPC provides an opportunity to detect vertex activity beyond the sensitivity of LAr detectors
- First version of the HP TPC simulation for DUNE has been developed
 - Code in github
- Preliminary results look promising
Back up
The new FNAL flux files

- DUNE uses a different flux n-tuple than the other Fermilab experiments
 - Flux files have to be converted to the new flux file format (Dk2nu)
 - At the moment this is only possible by obtaining the Dk2nu package
 - Later Genie releases will have this implemented
- Change the beam window in GNuMIFlux.xml
- Run the new gevgen_fnal or gevgen_numi from Dk2nu
The role of near detector for DUNE

- Constrain the systematic uncertainties for the neutrino oscillation measurements
 - Select various inclusive and semi-inclusive samples for all neutrino species
 - (Anti-)Neutrino energy scale
 - Background channels for the oscillation analysis (π^0, etc)
 - Cover first and second oscillation maximum
- Neutrino cross section measurements
- New physics in the short baseline
Particle identification using dE/dx

- Proven technology, well understood used for many years
- Advantages
 - Excellent PID in a broad momentum range
 - Very good momentum resolution
- Disadvantages
 - No muon-pion separation
 - Regions where the energy loss curves cross
High pressure gas gain

- Micromegas-TPC operation at high pressure in xenon-trimethylamine mixtures (arXiv:1210.3287)
HP TPC T_0

- Need to determine t_0 for the time co-ordinate
 - Use the ECAL
 - Issue with low energy tracks
 - Light emitted during ionization
 - PMTs inside the detector
 - Gas mixture light absorption
 - Wavelength < 128 nm
 - Transverse diffusion
 - Number of channels
Detection of soft tracks in HP TPC

- Soft protons can be undetectable in LAr

A. Curioni, T. Stainer
Gas TPC neutrino event in T2K near detector
Low energy sensitivity in gas TPC – example from T2K near detector

Fermi momentum “cliff"

Ludicrous GENIE multiplicity tail!
Multiplicity at the generator level

![Charged and neutral particles](image1)

![Charged particles](image2)
Neutrino interactions for FHC in the HP TPC (1.5×10^{19} POT)

<table>
<thead>
<tr>
<th>Primary state topology</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_μ CC-0π</td>
<td>9.4</td>
</tr>
<tr>
<td>ν_μ CC-1π^\pm</td>
<td>15.0</td>
</tr>
<tr>
<td>ν_μ CC-1π^0</td>
<td>4.9</td>
</tr>
<tr>
<td>ν_μ CC-1π^\pm1π^0</td>
<td>4.4</td>
</tr>
<tr>
<td>ν_μ CC-Other</td>
<td>30.5</td>
</tr>
<tr>
<td>NC</td>
<td>25.0</td>
</tr>
<tr>
<td>$\bar{\nu}_\mu$ CC</td>
<td>8.3</td>
</tr>
<tr>
<td>ν_e-$\bar{\nu}_e$ CC</td>
<td>2.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ν_μ interaction</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-QEL</td>
<td>10.5</td>
</tr>
<tr>
<td>CC-RES</td>
<td>28.5</td>
</tr>
<tr>
<td>CC-DIS</td>
<td>35.9</td>
</tr>
<tr>
<td>CC-COH</td>
<td>0.4</td>
</tr>
<tr>
<td>NC-QEL</td>
<td>3.7</td>
</tr>
<tr>
<td>NC-RES</td>
<td>9.5</td>
</tr>
<tr>
<td>NC-DIS</td>
<td>11.3</td>
</tr>
<tr>
<td>NC-COH</td>
<td>0.2</td>
</tr>
<tr>
<td>Other</td>
<td><0.1</td>
</tr>
</tbody>
</table>