

High pressure gas TPC simulation

George Christodoulou DUNE ND Meeting 22/10/2015

Overview

- Benefits of high pressure (HP) gas TPC
- HP gas TPC simulation
 - Status, tools available, repository
- First simulation results
 - Event rates
 - Signals and backgrounds

Benefits of HP gas TPC

- Magnetized and $\sim 4\pi$ coverage
- Same target as the DUNE far detector
- Pressure and target flexibility
 - He, Ne, Ar, CF4 can be used to study A-dependence and FSI
- Excellent PID
- Low density and low thresholds
 - Sensitivity to < 100 MeV/c protons and < 25 MeV/c muons and pions
 - Model testing and generator tuning
 - 2p2h, spectral functions, FSI
 - 1π and high mass resonance

HP TPC for neutrino experiments

- HPTPC has also been considered as a near detector for other proposed neutrino oscillation experiments (LBNO, Hyper-K, T2K-Upgrade, DUNE etc)
- Simulation framework developed by T. Stainer *et al* for LBNO
 - https://dpncindico.unige.ch/indico/getFile.py/access?resId=0&materialId =1&confId=354

Global effort on HP Gas TPC

- Effort to build a common simulation framework for all the HP Gas TPC experiments
 - Barcelona meeting <u>https://indico.ifae.es/conferenceDisplay.py?confId=169</u>
- Within the UK we will start having common Dune-Hyper-K meetings to combine the efforts in a join simulation framework
 - Timescale of the two projects may not be the same

Adopting the HP TPC simulation to DUNE

- Major updates to adopt the LBNO simulation to DUNE
 - Update against recent GEANT4 release, 4.10.*
 - Code won't compile with older versions of GEANT4
 - Update against the latest ROOT 5 release
 - Update against the latest virtual MC packages for the geometry interface and readout
 - Virtual Geometry Model (VGM) and geant4_vmc
 - Older root/geant versions may require different versions of VGM and geant4_vmc
 - General software bug fixes
 - Tested against Genie 2.8.4(6)

Update the flux and Geant4 simulation

- Code cleaning
 - Update GEANT's physics lists and optimize in terms of speed/physics output
 - For example low energy thresholds
 - Remove old/unused code
 - Give option to checkout, compile and run only some parts of the software
 - For example ignore GEANT4 for studies at the generator level
 - Check dependency against third party software
- Use Genie's NuMi flux driver instead of flux histograms
- Add particle gun option

Step 3: Mock reconstruction

Basic design of the HP TPC for DUNE

HP TPC simulation for DUNE

- Near detector located 459m from the target
- Test and debugging production of 1.5×10^{19} POT for forward horn current (FHC)
- Flux files provided by Laura Fields
 - "Nominal" beam simulation version v3r3p5 at 200kA
- Simulate only the HPTPC gas volume and the vessel
 - Flux+Genie(+Dk2nu)+Geant4
 - Code in https://github.com/DUNE/wp1-neardetector
 - 4.0×4.0×4.0 m active volume
 - 20 bar, \sim 550 kg, 0.035g/cm³
 - \sim 35k events/1.5×10¹⁹ POT in the gas volume
 - ~ 10 times more events in the 10 cm thick aluminium vessel
 - 70% give some activity in the HPTPC

The vessel

- Composite materials appear a very attractive solution to build a low density vessel
 - Reduce pile-up
 - Reduce out of TPC background
 - Reduce the shield for gammas going in the Ecal
- 5cm thick honeycomb aluminium panel is now considered for the vessel
 - 10 times lighter than custom aluminium
 - Large strength to weight ratio (larger than steel)
 - Used in many applications
 - For safety reasons the vessel must hold at least four times the gas pressure (80 bar)

Mock reconstruction

- Momentum resolution
 - Sagitta s= $B \times L^2/(26.7 \times p_t)$
 - $\sigma_s = 0.05 \text{mm}, \sigma_L = 0.6 \text{mm} \text{ (from T2K)}$
 - Smear s and L and calculate p_t
 - Then $p = p_t / \sin \Theta$, with Θ the polar angle between the track and the magnetic field
 - This method also provide a first estimation of the charge confusion if Sagitta $< \sigma_s$
- Angular resolution = 0.2 rad
- dE/dx resolution = 5.4×L^{-0.37}
 - Effective track length L = track length×pressure
- Still to add
 - Recon efficiency (almost complete)
 - Low energy electrons might be an issue
 - dE/dx parameterization

Pile-up in the near detector

- For every 1 neutrino interaction in the HPTPC Ar Gas
 - ~ 10 neutrino interactions in the vessel (from simulation)
 - ~125 neutrino interactions in the ECAL (estimated)
 - Assuming 30cm pure scintillation detector
 - ~625 neutrino interactions in the magnet (estimated)
 - Assuming 50cm iron
- Challenges
 - Veto against charged particle tracks coming outside the HPTPC volume
 - Reconstruction of ECAL neutral clusters

FHC true topology $(1.5 \times 10^{19} \text{ POT})$

Momentum distributions at the generator level

dE/dx in the 20 bar HP TPC

Preliminary example of event selection in the HP TPC – $CC1\pi^{\pm}$

- Very preliminary non-optimized event selection
 - Fiducial volume box reduced by 70cm from the HP TPC box in all ⁷⁰ directions
 - Track length > 25 cm
 - P > 25 MeV/c
 - Highest momentum track is μ^- or $_{20}$ π^- 10
 - Only one π^{\pm}
 - No tracks starting >15cm from the vertex

Preliminary example of event selection in the HP TPC - CC- v_e inclusive

- Very preliminary nonoptimized event selection
 - Fiducial volume box reduced by 70cm from the HPTPC box in all directions
 - Track length > 25 cm
 - P > 25 MeV/c
 - Highest momentum track is e⁻
 - No other e⁻/e⁺ tracks
 - No tracks starting >15cm from the vertex
- π^0 induced background dominated near the 1st and 2nd oscillation maximum
- Need more careful studies

Events / 1.5×10 ¹⁹ POT	Efficiency (%)	Purity (%)
1368	21.6	9.3

Next steps in the HP Gas TPC simulation

- Manpower
 - G.C. and Justo Martin-Albo (University of Oxford)
 - 1 new Liverpool postdoc starting before the end of the year
 - More hands are very welcome!
- Code maintenance and improvements, validation tools, moving to NuTools(?)
- T₀
- Pile-up
- Detector response
- Reconstruction
 - Apply the T2K gas TPC reconstruction
 - Long term plan and depends on the progress within T2K
- Event selection
- Ecal
 - Very important for vetoing the TPC and for neutral cluster reconstruction
 - Which technology is better (plastic, crystal, LAr etc)
 - Performance and cost dependent
 - Add hadronic part
 - Reconstruction is much more complicated (MIPs vs EM Shower vs hadronic shower)
 - Could be a joined effort with the other near detector options

Summary and future plans

- HPTPC provides an opportunity to detect vertex activity beyond the sensitivity of LAr detectors
- First version of the HPTPC simulation for DUNE has been developed
 - Code in github
- Preliminary results look promising

Back up

The new FNAL flux files

- DUNE uses a different flux n-tuple than the other Fermilab experiments
 - Flux files have to be converted to the new flux file format (Dk2nu)
 - At the moment this is only possible by obtaining the Dk2nu package
 - Later Genie releases will have this implemented
 - Change the beam window in GNuMIFlux.xml
 - Run the new gevgen_fnal or gevgen_numi from Dk2nu

The role of near detector for DUNE

- Constrain the systematic uncertainties for the neutrino oscillation measurements
 - Select various inclusive and semi-inclusive samples for all neutrino species
 - (Anti-)Neutrino energy scale
 - Background channels for the oscillation analysis (π^0 ,etc)
 - Cover first and second oscillation maximum
- Neutrino cross section measurements
- New physics in the short baseline¹⁰⁰⁰

Particle identification using dE/dx

- Proven technology, well understood used for many years
- Advantages
 - Excellent PID in a broad momentum range
 - Very good momentum resolution
- Disadvantages
 - No muon-pion separation
 - Regions where the energy loss curves cross

High pressure gas gain

• Micromegas-TPC operation at high pressure in xenontrimethylamine mixtures (arXiv:1210.3287)

HP TPC T₀

- Need to determine t0 for the time co-ordinate
 - Use the ECAL
 - Issue with low energy tracks
 - Light emitted during ionization
 - PMTs inside the detector
 - Gas mixture light absorption
 - Wavelength < 128 nm
 - Transverse diffusion
 - Number of channels

Detection of soft tracks in HP TPC

• Soft protons can be undetectable in LAr

Gas TPC neutrino event in T2K near detector

P. Hamilton

Low energy sensitivity in gas TPC – example from T2K near detector

Multiplicity at the generator level

Neutrino interactions for FHC in the HP TPC (1.5×10^{19} POT)

Primary state topology	%	v_{μ} interaction	%
ν_{μ} CC-0 π	9.4	CC-QEL	10.5
ν_{μ} CC-1 π^{\pm}	15.0	CC-RES	28.5
ν_{μ} CC-1 π^{0}	4.9	CC-DIS	35.9
$\nu_{\mu} \operatorname{CC-1} \pi^{\pm} 1 \pi^{0}$	4.4	CC-COH	0.4
ν_{μ} CC-Other	30.5	NC-QEL	3.7
NC	25.0	NC-RES	9.5
$\bar{\nu}_{\mu}$ CC	8.3	NC-DIS	11.3
$\nu_{\rm e}$ - $\bar{\nu}_{\rm e}$ CC	2.2	NC-COH	0.2
		Other	< 0.1