Spectroscopic Surveys: High Density Clustering After DESI

aka Billion Object Apparatus (BOA)

Kyle Dawson University of Utah

Anze Slosar

Brookhaven National Laboratory

November 10, 2015

Current Status

BOSS/eBOSS/DESI

- Excellent programs
 - Measure BAO near cosmic variance limit to z<1.5
 - Percent level BAO at z>1.5
 - RSD measurements possible to kmax=0.2
 - Nearly 40M spectra
- Fiber fed positioner depends on imaging for target selection
 - Convolves selection function across multiple imaging surveys
 - Sensitive to zeropoint calibration
- Galaxies at higher redshifts are faint and hard to classify
 - LRG ID-ed by absorption, need high S/N
 - ELG ID-ed by narrow emission, separate from sky residuals

Target Selection Systematics

- Variations in imaging conditions introduce structure into target selection
 - SGC and NGC feature different systematics
 - Steepest relationship: zband imaging conditions for LRG
 - Steepest relationship: image depth for QSO selection
- Calibration of imaging data essential
 - 0.01 magnitude rms errors in zband zeropoint cause 6.2% LRG density change

Characteristic Spectra from BOSS

- Galaxies classified automatically at 98.5% completeness
- Quasars classified via visual inspection, >400,000 spectra inspected

Characteristic Spectra from eBOSS

- QSO \rightarrow understand astrophysics to reduce systematics in redshift estimates
- LRG spectra are faint
 - Reduces classification efficiency relative to BOSS (30% failure if routines unchanged)
- Flux calibration is essential
 - Loss of information due to non-physical broad-band spectral features
 - Should improve with bench mount system in DESI

Spectroscopic Completeness in eBOSS

• LRG spectra are faint

- Difficult to discriminate non-physical continuum from astrophysical signal
- Small delta chisq from astrophysical templates
- Many local minima

Statistical Limitations of BOSS/eBOSS/DESI

- BOSS/eBOSS >3 orders magnitude smaller sample than LSST
 - Galaxy population demographics not well-sampled
- DESI science reach still not statistically limited
 - Lack mixed bias tracers and high density sampling of large modes
 - Room to improve RSD at small scales (k>0.2)
- Statistics for future optical spectroscopic survey
 - More modes to explore
 - Can increase mix of tracer bias
 - Explore to non-linear scales at z<1.75
 - Explore to linear scales at 1.75<z<3.25

Red: Fourier space coverage of spectroscopic surveys Blue: Lensing (Primarily CMB) Green: Photo-z density field

More galaxies, Wider redshift range

Mode Counting

- Assume 14k sqdeg program
- Sample modes to nP=1
- Linear regime: kmax evolves as 1/g (0.15 at z=0)
- Bias evolves as 0.84/g
- Nonlinear regime \rightarrow increase kmax by factor of 2, 8X increase in N modes

Redshift	kmax	Modes (Millions)	N (per sqdeg)	N (nonlinear)
0.25 <z<0.75< td=""><td>0.19</td><td>1.75</td><td>424</td><td>1600</td></z<0.75<>	0.19	1.75	424	1600
0.75 <z<1.25< td=""><td>0.25</td><td>7.37</td><td>1410</td><td>5600</td></z<1.25<>	0.25	7.37	1410	5600
1.25 <z<1.75< td=""><td>0.30</td><td>17.47</td><td>2713</td><td>10800</td></z<1.75<>	0.30	17.47	2713	10800
1.75 <z<2.25< td=""><td>0.36</td><td>31.97</td><td>4178</td><td></td></z<2.25<>	0.36	31.97	4178	
2.25 <z<2.75< td=""><td>0.41</td><td>50.67</td><td>5744</td><td></td></z<2.75<>	0.41	50.67	5744	
2.75 <z<3.25< td=""><td>0.47</td><td>73.33</td><td>7383</td><td></td></z<3.25<>	0.47	73.33	7383	
3.25 <z<3.75< td=""><td>0.53</td><td>99.75</td><td>9076</td><td></td></z<3.75<>	0.53	99.75	9076	

Mode Counting

- DESI \rightarrow 0<z<1.5 to kmax=0.2, 10-15M modes
- Proposal: 20k/sqdeg galaxies to z<1.75
 - 200M modes with new sample
 - kmax=0.38 (z=0.5); kmax=0.6 (z=1.5)
- Proposal: 20k/sqdeg galaxies at 1.75<z<3.25
 - 150M modes with new sample
 - New BAO, kmax=0.36 (z=2), kmax=0.47 a(z=3)
- 40k galaxies/sqdeg \rightarrow full power spectrum to kmax=0.35 and z<3.25

Redshift	kmax	Modes (Millions)	N (per sqdeg)	N (nonlinear)
0.25 <z<0.75< td=""><td>0.19</td><td>1.75</td><td>424</td><td>1600</td></z<0.75<>	0.19	1.75	424	1600
0.75 <z<1.25< td=""><td>0.25</td><td>7.37</td><td>1410</td><td>5600</td></z<1.25<>	0.25	7.37	1410	5600
1.25 <z<1.75< td=""><td>0.30</td><td>17.47</td><td>2713</td><td>10800</td></z<1.75<>	0.30	17.47	2713	10800
1.75 <z<2.25< td=""><td>0.36</td><td>31.97</td><td>4178</td><td></td></z<2.25<>	0.36	31.97	4178	
2.25 <z<2.75< td=""><td>0.41</td><td>50.67</td><td>5744</td><td></td></z<2.75<>	0.41	50.67	5744	
2.75 <z<3.25< td=""><td>0.47</td><td>73.33</td><td>7383</td><td></td></z<3.25<>	0.47	73.33	7383	
3.25 <z<3.75< td=""><td>0.53</td><td>99.75</td><td>9076</td><td></td></z<3.75<>	0.53	99.75	9076	

Sample selection (z<1.75)

- Galaxy science programs \rightarrow mass limited samples with 8-m telescopes
- VIMOS VLT Deep Survey (VVDS)
 - 20k per sqdeg at i<22.5
 - R=230
 - 5500<lambda<9350 \AA
- Results
 - Median(z)=0.55
 - 94% success rate (4.5hr exp)
 - 75% success rate (45min exp)
- i<22.5
 - Reduces imaging selection effects with simple selection
- Choose g-band limited survey?
 - N(z) not known
 - Should increase <z>

Sample selection (1.75<z<3.25)

- Galaxy science programs \rightarrow target star forming galaxies with 10-m telescope
- Steidel et al, LRIS on Keck I
 - 40k per sqdeg at r<25.5
 - R=1000
 - Redshifts from UV interstellar lines
 - 1.5 hour exposures
- Results
 - 90% success rate (good conditions)
 - 65-70% success rate (average)

Sample selection (1.75<z<3.25)

- Well=studied luminosity function, e.g. Reddy et al 2008, 2009
- UGR selection to r<25.5
 - Sensitive to u-band calibration
 - May have large fluctuations
 - 25% of all r<25.5 objects
- Observations at r<23.5
 - Very high success rates
 - Well-defined O, Si, C lines
- Reduce to r<24.5?
 - S/N increases by 2.5
 - N=20k/sqdeg

Survey Design

Overview

- 40k per sqdeg, 14k sqdeg
 - Could be g-band or r-band limited, but need to test n(z)
 - 560M spectra
 - 15X DESI
- 350M Fourier modes
 - 30X DESI
- 10m telescope
 - 6X DESI collecting area
- 1-2 hr exposures for 90% redshift success
 - 2-4X DESI exposure times
- Overall ~4X better [OII] sensitivity than DESI for low z sample
- 3600-14,000 \AA
 - Includes IR channel for [OII] detection to z=2.6
 - R~1000's for UV absorption and [OII] identification

Overview

- Overlap with LSST footprint
 - Deep ugriz imaging
 - Better control over targeting systematics
- Deep exposures
 - Better control over spectroscopic systematics
- Major improvement over VVDS with better resolution/wavelength coverage
- Improvement over Keck program with better control of exposure times

Survey Characteristics

- Assume 1000 hours open shutter per year
- Assume 10 year program
- 5000-10,000 unique pointings
 - Requires 1.4 2 degree FOV
 - 1.5 3 sqdeg per field
- Assume 80% fiber efficiency
 - 50k fibers per sqdeg
 - 75k 150k fibers for instrument
- Bigger spectrograph on bigger telescope: large!
 - E.g. MUSE on VLT, 50 m³ for 100,000 traces
 - MUSE at Nasmyth focus, image slicer
- Difficult to scale to orders of magnitude bigger than DESI
 - How to scale to 100's of thousands of fibers?

Detectors

- Silicon + Germanium CCDs
- Si for two channels, 3500<lambda<8000 \AA
 - Well-known technology
- Ge for two channels, 8000<lambda<14,000 \AA
 - New CCD's being developed at Lincoln Labs
 - 2k x 2k target by 2019, low dark current, low read noise

Possible Fiber Design

- Field very crowded for fiber positioners
- Fill focal plane with lenslet arrays
- Couple ~hundreds of lenslets to single fiber
- Flip to appropriate lenslet through microshutter
- Flip between cells between exposures to resolve "fiber collisions"
- Battle Liouville's theorem in focal plane

Other Possible Designs

- Fill focal plane with massive fiber bundle
- Run fibers to spectrographs
- Feed ~100 fibers to each trace
 - Perpendicular to slithead
 - ~100 wavelength solutions
- Flip between output using microshutter array
- No battle with Liouville
 - only 1/3 fill factor
 - Major fiber run
- Use massive image slicer at Nasmyth
- No target selection, selection function completely contained in spectra
- Need massive instrument and number of pixels
 - 1" x 1" sampling would be 13M traces for 1 sqdeg
 - Requires 3000 4k x 4k CCDs for each channel
- Use microshutter array to parallelize???

Summary

- 350M modes to explore after DESI
 - Nonlinear scales for z<1.75
 - Linear scales for 1.75<z<3.25
- Target selections tested
 - Low z: i<22.5, but too many z<1 galaxies
 - High z: UGR selection at r<24.5 is correct density, but sensitive to U-band
- Instrument
 - Requires 100's of thousands targets simultaneously,
 - Dedicated 10m telescope in southern hemisphere
 - Examine balance of telescope size, fiber number, etc.
 - Optical to IR coverage
- Scientific argument
 - Data argument is clear: fully sample density field to z<3.25
 - Map improved sampling onto which cosmological parameters?
 - What are acceptable levels of completeness, catastrophic failures?