Raw and deconvoluted signal shapes

DUNE Far Detector Simulation and Reconstruction

David Adams
BNL
October 21, 2015

Introduction

I have been looking at LAr TPC signal spectra
Inspired by talk by Michelle at Oct. 13 FD physics meeting

https://indico.fnal.gov/conferenceDisplay.py?confld=10567

See my talk at the last 35 ton sim/reco meeting

- https://indico.fnal.gov/conferenceDisplay.py?confld=10604
- Strange results for detector simulation
 - Raw signal is narrower in channels than SimChannel signal
- And I see some issues with the deconvolution
 - Negative tails on the deconvoluted signal
 - Width large compared to SimChannel for short drift
 - Signal disappears at long drift for very wide signals
- Issue of deconvolution normalization now understood to be due to calibration: ADC count -> fC
 - I have not (yet) checked that the normalization is as expected

Introduction

Simulation studies

- Throw horizontal single muons at 35t or FD workspace detector
- Transverse muons (along x)
 - Perpendicular to wire plane
 - To study signal shape as a function of channel
- Longitudinal muons (along z)
 - Parallel to wire plane
 - To study signal shape as a function of TDC tick
- Select ticks or channels by hand where signal is
 - in expected direction
 - not scattered
 - and narrow
 - no delta rays

10 kt workspace

Transverse muons

SimChannel channel vs. tick

Sim channels for apa1z2 event 4 MC particle 1

Raw channel vs. tick

Deconvoluted channel vs. tick

Deconvoluted signals for apa1z2 event 4

Channel signal shapes: short drift

Signals for apa1z2 event 4 ticks 200-249

Channel signal shapes: long drift

Signals for apa1z2 event 4 ticks 3800-3849

Longitudinal muons

TDC signal shapes for 10 ktw: short drift

Raw signals for apa1z2 event 1 channel 350

Comments

Simulation

- How can raw signal be narrower (in channels) than SimChannel?
 - Raw is derived from SimChannel
 - Zero suppression keeps neighboring channels
 - Signal is well above a single ADC count

Deconvolution

- Negative tails evident
 - Make me worry about resolution
 - different response for different signal widths
 - Removing tails might improve two-track separation
- Very long signal (perp to wire plane) disappears at long drift
 - Due to low-frequency filter? If so, why filter?
- Deconvoluted signal is much wider than the (very narrow)
 SimChannel at short drift
 - Maybe deconvolute as a function of drift?
 - To obtain better time resolution for short drifts

Conclusions

Number of issues raised for simulation and deconvolution

See preceding page

I will continue to study these

- Now have a standalone (i.e. no art framework) example making use of the 35 ton deconvolution service
- This was crashing but problem tracked to issue of histogram management
 - Both and DUNE were deleting a histogram
 - Plan to protect DUNE against this
 - Although problem does not manifest in normal DUNE running (with art)
- Likely will make a standalone program that reads raw histograms and runs deconvolution on them

Extras

Other issues Detector displays

Made with draw_detector

dune35t4apa_v5

dune10kt_v1

dune10kt_v1_workspace

