SSP Data Rate

Alex Himmel, Fermilab

35ton Meeting

October 28th, 2015

How the SSPs Read Out

- Expected mode during operations: self-triggering
- In this mode each channel is independent:
 - If a channel goes above threshold it triggers only itself to read out
- Can also be externally triggered (all channels together) or externally gated (inhibit triggers outside the gate)
- Knobs
 - The threshold is configurable
 - Current value in DAQ configuration is 500, "High"
 - The size of the minimum readout window is configurable
 - Current value is 2000 samples, or 15.6 μs
 - Because of overlap protection there may be multiple contiguous windows if the signal is longer than the specified readout window.

SSP Data Rate

- Each waveform is $(48 + 16 \times n_{samples})$ bits
 - 32 kbits/waveform w/ 2,000 samples
- We currently have 71 live channels
- Each cosmic ray is likely to trigger ~every photon detector
 - -2.3 Mbits/cosmic ray \rightarrow 9 Mbits/5 ms
- Dark noise is ~20 Hz/PD
 - $-\sim$ 2 waveforms \rightarrow 64 kbits / 5 ms

SSP Data Rate

- Radiologicals: ³⁹Ar, ²²²Rn
 - These are the big unknowns, since they depend both on the photon detector sensitivities and on the 35ton filtration setup
- Estimate based on FD simulation:
 - Singles rate: 8.8 kHz/PD with radiator design
 - Assume ×4 less light with 35ton designs
 - ~ 18 kHz singles rate for the whole 35ton
 - $-90 \text{ waveforms} \rightarrow 2.9 \text{ Mbits/5 ms}$
- In µBooNE the radon is much worse...
 - Don't have a numbers yet maybe double ³⁹Ar?
- Expect a better estimate next week from Jonathan based on 35ton simulation

All Together

Source	Rate (Mbits/5 ms)
4 cosmic rays	10.0
T Cosime rays	10.0
Dark noise	0.1
³⁹ Ar	2.9
²²² Rn???	5.8
Total	~19

~Half of a gigabit ethernet link if run continuously.

- Easy savings: 15.6 μ s \rightarrow 2 μ s windows
 - ×8 savings, 19 Mb/millislice \rightarrow 2.4 Mb/millislice
 - Long enough for the SiPM fall time, rely on overlap identification to get full waveforms.
 - Commissioning: need to confirm looking at real waveforms in the cold that 2 μs is long enough.
- Harder savings: raise thresholds above radiologicals
 - Likely means giving up late light
 - May require external triggering if PDs are not performing well