MECO Simulations

Yury Kolomensky UC Berkeley

August 1, 2007

Copyright 3 2000 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited

History

- MECO proposal and technical design developed over about 10 years
 - Accompanied by detailed Monte Carlo analysis of all major subsystems
 - Main focus on beam transport, radiation and background issues in the solenoids, detector performance
 - © 20-30 man-years of effort
 - © Concentrated mostly at UCI and NYU

Example from V. Tumakov: PS Heat Shield

2005/01/04 12.21

Existing Software Base

- Two simulations packages, based on Geant3 and Geant4
 - □ GMC (G3): most developed
 - Package based on Geant3, with ascii-driven configuration
 - Detailed geometry, field maps for the entire MECO beamline
 - ^(S) Beamline simulations, signal and backgrounds
 - ^{CP} Integrated (perhaps too tightly) pattern recognition/tracking
 - ⁽³⁾ Most of the development centered at Irvine
 - Standalone G3
 - S NYU effort, including "pure" GMC
 - Some work on Geant4
 - [©] Work by Vladimir Tumakov on porting MECO geometry
 - Comparisons of hadronic codes in G4
- No hardware response (hit digitization, efficiency)
 - Resolution smearing

Reconstruction

- Mostly developed for tracking
 - L-Tracker studies at Irvine
 - PatRec (new C++ code by Paul Huwe) and track fitting (Jim Popp)
 - Tightly coupled to GMC (via common blocks, event structure, makefiles, etc)
 - ⁽³⁾ Used for performance studies (background rates, resolutions)
 - T-Tracker studies at NYU
 - ^C C++-based PatRec and fitting, including Kalman filter
 - Standalone (G4-based makefiles, ascii file inputs from MC for signal and backgrounds)
- Some code was also developed for calorimeter simulations and reco, trigger

Example: Energy Leaving PS Bore

Particle	Radial [W]	Forward [W]	Backward [W]	
ν	358	37	20	
K	3	52	-	
γ	16	461	2	
e	4	703	86	
μ	1	77	30	
π	18	2351	85	
n	279	2893	5	
р	16	12438	8	

- Load on PS cold mass primarily from neutrons
- Backward energy flow requires some TS shield

Energy deposition in different volumes, [W]						
Target	4186					
PS shield	15937					
Collimator	179					
TS shield	72					

- PS heat shield must be water cooled (16 kW)
- TS heat shield may be water cooled
- Thermal management of SM bores is important

V.Tumakov

- Cylindrical proton beam pipe R=4cm
- Azimuthal asymmetry due to targeting angle

08/01/2007

Transport Solenoid

Sign and momentum select in curved solenoid section.

- Curvature eliminates direct photon transport
- Collimators absorb high momentum and positive particles.

Collimators tuned for specific purposes

- Offset center collimator to reduce positrons (high rates)
- Thin disks at end collimator to absorb very low momentum muons

08/01/2007

YGK, MECO Simulations

Calculation of Pion Fluxes

Experimental measurements of $\pi^{\text{-}}$ production cross section for 10 GeV protons on Ta

Data and Monte Carlo in 20-40 MeV region agree well in angular

distributions after correction of the multiplicity by factor 2 (G3) or 3 (G4)

Comments: low energy e⁺ suppressed with highly asymmetric central collimator, small μ^- loss late e⁻ from stopped muon decay – μ^- capture implemented in GEANT3 flash of prompt e⁺, e⁻ primarily from γ conversions in production target

V.Tumakov

L Tracker Simulations

- 5 × 10⁶ reconstructed
 conversion events using the
 "average material" tracker
 and detailed CDR field map
- The intrinsic resolution is 180 102 Married KeV
- The acceptance is 19% for $N_{Back} / N_{signal} = 0.05$

T-Tracker Resolution with Background

- Nominal background and 25 μ m
- Delta-ray and straw inefficiency
- Kalman filter reconstruction
- Tracker Resolution $\sigma = 0.19 \text{ MeV/c}$
- Plot is the Difference between reconstructed input momentum and actual input momentum

Average straw rate 550 kHz

Straw eff.	Overall acceptance
100%	19.2 %
97%	18.7 %

YGK, MECO Simulations

DIO Reconstruction with Background

- 1M DIO events (> 100 MeV/c)
 → 20 times more than expected Fit by Norm x (E_{max} - E)⁵
- 3 event found in search range > 103.5 MeV Background → 3 / 20 = 0.2 event

Muon Conversion Signal → 5.5 events expected for Br = 10⁻¹⁶ Background/Signal Ratio = 0.03

R. Djilkibaev

Code Base

- Originals in CVS repository at UCI
- Geant3-based GMC was the standard at MECO
 - □ I have a copy at Berkeley; last run 2 years ago
 - Includes proton beamline, production target, PS, TS, detector, Ltracker, calorimeter
 - □ Also start-up G4 code from Vladimir
- Reconstruction
 - □ Integrated into GMC: was in a messy state last time I checked
 - PatRec converted to C++ for both trackers
 - Fitter for the L-tracker still in Fortran (Jim Popp)
- Would take some effort to get it back running again, but this is doable
 - Ultimately, need to migrate all this to maintainable code base (G4)
 - Need manpower

Documentation

• MECO internal document repository still alive

http://meco.ps.uci.edu/internal/meco_internal_memos.html

• (links broken but URLs work)

- Also brief README in GMC package
- Experts also still accessible
 - Vladimir Tumakov (UCI)
 - Rashid Djilkibaev (NYU, INR)
 - Jim Popp (ISU)

Backup

Number of $\pi^{\scriptscriptstyle -}$ per Interaction

Only Geant3 FLUKA and modified Geant4 QGSP give pion spectrum close to experiment

08/01/2007

Particle Fluxes in FLUKA and QGSP Simulations

- Particle fluxes per proton calculated without any corrections
- Good agreement between GEANT3 and GEANT4 simulations

	µ⁻	μ^+	All e-	Late e⁻	All e ⁺	Late e+	π -
FLUKA	1.8x10 ⁻²	8.2x10 ⁻⁶	0.226	4.6x10 ⁻⁴	0.0324	7.4x10 ⁻⁵	2.7x10 ⁻⁶
QGSP	2.0x10 ⁻²	6.1x10 ⁻⁶	0.182	6.3x10 ⁻⁴	0.0185	12.4x10 ⁻⁵	4.1x10 ⁻⁶