Summary of "LArTPC Reconstruction Assessment and Requirements Workshops"

Amir Farbin UTA

Context

- Link: https:// indico.fnal.gov/ conferenceDisplay.py? confld=10394
- Prompted by LBNC
- Actually 2 workshops
- LBNC Mandate Expande to LBN and SBN
- Primary organizer Ruth Pordes with representatives from nearly all LArTPC experiments...

Origins of the two contiguous workshops

- Reconstruction assessment workshop:
- David MacFarlane Requested through the Fermilab PAC by the Long-Baseline Neutrino Committee (LBNC) as a first step along a path of focusing community attention on automated reconstruction in LAr TPCs
- Requirements workshop:
 - Community-led effort to collectively put together a shared goal of setting overall requirements for a LAr eco-system of software, hardware, and computing to guide work over the next few years
 - While strongly encouraged by the LBNC, bottoms up is a much better approach!

PAC feedback on the SBN program from June 2015

- Concerned about:
 - Pace at which automated LAr reconstruction is developing, despite being absolutely crucial to the SBN and LBN programs
 - Slow progress in coordinating the analysis across the three experiments, which is critical to the success of the SBN program and required for Stage 2 approval
 - Very aggressive SBN schedule with little flexibility
- Recommended that Fermilab continues:
 - Monitoring progress on achieving automated event reconstruction
 - Providing relevant resources and expertise towards catalyzing this effort, since it is critical to quickly demonstrate the capabilities of the LArTPC technology.

LArTPC Reco must meet assumptions made for DUNE reach.

- Full Simulation and Automatic reconstruction for CD-2
- Need a thorough assessment for CD-2

David MacFarlane LBNC comments on DUNE Far Detector (FD) Task

- Comments from Sept review
 - The LBNC notes that the 80% efficiency for automated reconstruction for quasi-elastic, resonant elastic scattering and deep-inelastic scattering events is a key assumption in the projected physics reach of DUNE. Much progress in demonstrating this capability should be accomplished by the TF within the next 18 months.
 - An important part of the FDTF planning would be to lay out a common understanding of the level of reconstruction sophistication needed at various stages during the 18 months and then beyond through the DUNE design phase leading up to CD-2
- A comprehensive summary of the current status of and future plans for further development of automated reconstruction efforts:
 - Basic physics information, such as event classes and topologies, backgrounds for each experiment, performance requirements, etc.;
 - Current state-of-the-art, including quantified performance of the reconstruction;
 - Leadership for the current effort and the level of effort across the collaboration:
 - Degree to which the effort relies on common software tools, such as analysis framework development, etc. and their further development;

- Timeline, milestones, deliverables and level of effort required for further development;
- Linkages to hardware system development and experience with neutrino and test beam data
- Assessment of areas of commonality with other SBN or LBN experiments; and
- Assessment of resource limitations and impact of bringing additional targeted help, either from Fermilab or in cooperation with other science collaborations.

Assessment Workshop

Monday, October 19, 2015

09:00 - 12:30 Reconstruction Assessment Convener: Dr. Ornella Palamara (Fermilab) 09:00 **Introductory Remarks** 10' Speaker: Dr. David MacFarlane (SLAC National Accelerator Lab) Material: Slides [1] 09:10 ArgoNeuT 30' Speaker: Tingjun Yang (FNAL) Material: Slides Icarus (LNGS) 30' 09:40 Speaker: Christian Farnese (INFN) Material: Slides 10:10 MicroBooNE 30' Speaker: Tracy Usher (SLAC) Material: Slides LArIAT 30' 10:40 Speaker: Jennifer Raaf (Fermilab) Material: Slides 11:10 Break 30' 11:40 Pandora software 30' Speaker: Prof. Mark Thomson (University of Cambridge) Material: Slides T 12:10 LArSoft software 20' Speaker: Dr. Erica Snider (Fermilab) Material: Slides

ArgoNeuT

- ArgoNeuT was the first user of LArSoft after Brian Rebel et al. started this project.
- Pioneered in development and validation of simulation and reconstruction tools.
- Physics analyses done using LArSoft.

- Long list of accomplishments/ measurements:
 - Tracking, calorimetry, shower reco, PID, ...
- Example: Full Auto redo for inclusive CC x-section
 - 42%/59% off for neutrino/ antineutrino
 - 5-10% Energy resolution
 - 1 degree angle resolution

Topological Analysis 1µ+Np

- Visual scanning for some analyses
- A first Topological analysis is developed by the ArgoNeuT experiment: 1μ+Np (0π)
 - Sensitive to nuclear effects
 - Observation of back-to-back proton pairs

- Analysis steps
 - automated reconstruction (muon angle and momentum)
 - visual scanning
 - hit selection
 - automated track and calorimetric reconstruction
 - Background (pion) removed

Proton angle and momentum

ICURUS

- Highlighted the importance of a powerful event display + hand scanning tool.
- QScan Demo

- The relatively small number of recorded CNGS neurospection events (~3000) allowed a semi automatic approach based selection of events followed by a careful visual analysis of all printeresting data; the reconstructed objects can be saved/modified using a flexible ROOT-based I/O system
- The developed software framework is based on:
 - > Central package (fullreco) for data decoding, basic reconstruction
 - Qt-based event display (Qscan) for visualization/scanning and human interface
 - > Event loop code (AnalysisLoop) for batch analyses and ROOT I/O
 - Higher-level analysis tools (Muon momentum by MCS, EM shower reconstruction, particle identification, 3D reconstruction...);
 - > Interface with FLUKA for analysis/visualization of simulated
- Qscan is a qt-based tool for a fast visualization of events in the T600:
 - the 2D projections associated to the wire planes are shown using a grey/color scale based on signal height/deposited energy;

> the waveforms of wires and PMT signals can be displayed and fast

Fourier transfe

Vertex Properties Position and Links

Primary

Source class

CNGS nu

J

Reaction type

Bis

Incoming particle

Incoming particle

Source Object

Save ADC on wires

OK Cancel

MicroBooNE Commissioning

- Bringing complex detectors online for the first time is rarely a smooth process
 - In particular, there are almost always surprises
- Two issues directly impacting reconstruction
 - Dead channels
 - Tend to be in groups as opposed to the assumed isolated dead channels one might have studied in developing algorithms
 - · Noisy channels with several different signatures
 - "zig-zag" high frequency tick-to-tick oscillations in randomly distributed short bursts
 - "correlated" low frequency (~20 kHz) correlated across wires
 - "chirping" transient issue, switching between "dead" and "live" with large baseline excursions
 - "high noise" steady state very high rms noise effectively dead channels for recon
- · Redirection of reconstruction resources to address these issues
 - Attacking noise issues by developing algorithms ain $\widehat{\mathbb{Q}}$
 - Developing more sophisticated channel status inform
 - Pattern recognition algorithms will need to be able to

Reminded us that noise can significantly increase data volume...

LATIATING UP FRAGMENTS

V1751 data

V1740 data

MWPC data

Apply clock

corrections

Reminded us the importance of timing across different

RAW DATA STRUCTURE

detectors....

Art::DAQ

(TPC, Wire Chambers, TOF, PMT's, etc....) The LArSoft Line SlicerToDigit (Divide "spill" block into multiple "events," where each event has a single trigger) Run 1 Run 1 Spill1 == SubRun1 Spill2 == SubRun2 Event #1 Event # 2 Event #3 Event #5 Event #4 Event #6 Trigger # 0 Trigger # 1 Trigger # 2 Trigger # 0 Trigger # 1 Trigger # 3 - RawDigits - AuxDetDigit - RawDigits - AuxDetDigit - RawDigits - RawDigits · OpDetPulses (WCTrack) - OpDetPulses - OpDetPulses (WCTrack) · OpDetPulses AuxDetDigit - AuxDetDigit AuxDetDigit AuxDetDigit AuxDetDigit AuxDetDigit (TOF) - AuxDetDigit (WCTrack) (WCTrk) (WCTrack) (WCTrack) (TOF) AuxDetDigit - AuxDetDigit - AuxDetDigit AuxDetDigit AuxDetDigit (TOF) (MURS) (TOF) (TOF) (TOF) - AuxDetDigit - AuxDetDigit - AuxDetDigit (MURS) (MURS) (MURS)

supercycle

of LArIAT

at beginning

reset

Clock Time

Pandora

- Impressive performance...
- Don't forget Pandora gives fully recoed topologies in PFParticle.

Requirements

Organization

• 4 x 4 Simultaneous sessions, each on one topic.

Topic 1. Non-beam reconstruction and analysis (includes cosmic ray removal)

• Participants rotate through all topics.

- · Reconstruction, analysis and simulation
- Systematics and constraints
- Cosmic Ray Removal from LarTPC alone, combining information from other detectors
- Scintillation light efficiencies
- · Cosmic Ray analysis for those experiments doing this
 - Topic 2. Beam reconstruction and analysis
 - · Reconstruction, analysis and simulation
 - Systematics and constraints
 - Beam particle identification including electron, muon, hadron, pizerd, ote taker
 - · Track, shower, vertex identification

Topic 3. Overarching Analysis strategies (largescale to individual events) DOGUMENT EQUITO LIVE OF OVER LEGITORS

(cosmic ray taggers etc.)

Potentially includes:

- Dataset management
- Meta-data management
- Analysis techniques
- Analysis toolkits
- · Analysis workflows
- Real-time/ \(\Gamma^----\)
- "Anything Topic 4. Human interactions, computing systems, software and interfaces
 - Visualization
 - Scientific and development workflows including human components
 - Regression and validation software/processes
 - · New computer hardware architectures short, medium, long term, multi-threading
 - Software frameworks and interfaces
 - Organization of common/shared components, including policies

Roles assigned:

Leader

Scribe

My Impression

- The session allowed extremely useful brain storming...
- Very positive and cooperative environment across experiments.
- We need to understand the roles and responsibilities of experiments, LArSoft, and other resources.
 - e.g. Understand the model of algorithm development in an experiment, passing ownership to LArSoft (?), and then supported for all experiments.
- Awareness of Analysis and User requirements was very encouraging (LArSoft vs LArLite).
- We have a huge number of: physics goals, tasks, required capabilities, requirements, use cases.
- The topic organization wasn't necessarily ideal... nonetheless the WS was very effective.
 - Rather difficult to overview the requirements...
- Attempting to organize now... Erica is restructuring the document...
- I'll try to present an overview of the requirements, once I can wrap my head around how to organize them....

Starting document... new document on the way.

Contents

4.2

4.3

1	Introduction	3			
1.1	Process	3			
1.2	Organization	4			
1.3	Roles	5	4.4	General requirements for data objects and filling them?	10
1.4	Stakeholders	5	4.5	Hit finding	1'
2	Overarching Analysis strategies	6	4.6	Find Clusters	1'
2.1	Description	6	4.7	Locate Tracks	18
2.2	Monte Carlo interoperability	6	4.8	Shower Reconstruction	18
2.3	Non-TPC, Non-Light-Collection Detectors	7	4.9	PFParticles	18
2.4	Development tools ecosystem	7	4.10	Vertex finding	19
2.5	Heterogenous work-flow environment or framework	8	4.11	Particle identification	19
2.6	Detector Data Collection	8	4.12	Distinguish and Identify Muons	19
2.7	Calibration	9	4.13	Verification	19
2.8	Purity analysis	10	4.14	Others	19
2.9	Design studies	10	4.15	Beam simulation	20
2.10	Analysis Strategy	10	4.16	Reducing flux systematic	20
2.11	Monitoring	11	4.17	Analyses	20
2.12	Verification	11	5	Human interactions, computing systems, software and interfaces	2
2.13	Dataset Management	11	5.1	Description	2
2.14	Metadata Management	12	5.2	Use case lists?	2
3	Non-beam reconstruction and analysis	12	5.3	HPC + parallel'ization use case	23
3.1	Description	12	5.4	Visualization	23
3.2	Use case lists	12	5.5	Event-picker	23
3.3	Requirements	13	5.6	Preservation of Test Beam Experiment Data	2
3.4	Cosmic Ray Identification and Removal			Documentation of shared components	2
3.5	Removing Radon	14	5.8	Verification	2!
3.6	Stuff	15			
3.7	Validation	15			
3.8	Use Case Story	15			
4	Ream reconstruction and analysis	15			

Next Steps

- Currently working on the workshop report...
 - Aim for end of November.
- Next step is very difficult:
 - assess what requirements are already met.
 - work out the details of how to meet the requirement
 - establish a workplan...