Muons in FGT

Xinchun Tian, Sanjib R. Mishra, Roberto Petti

• Pressurized Ar-target ($\simeq x5$ FD-Stat) \Longrightarrow LAr-FD

High-Resolution Fine Grain Tracker: **Reference ND of DUNE**

μ Detector

Dipole-B

 $\implies e^{+/-} ID \Rightarrow \gamma$ Transition Radiation \implies Proton, $\pi^{+/-}$, K^{+/−} dE/dx Magnet/Muon Detector $\Rightarrow \mu^{+/-} e^{+/-}$ $(\Rightarrow$ Absolute Flux measurement) $1X_0 \sim 600 \text{ cm} / 1 \lambda \sim 1200 \text{ cm}$

<u>Muon Measurement in FGT</u>

 $*\nu_{\mu} \leftrightarrow \mu$ -; anti- $\nu_{\mu} \leftrightarrow \mu$ +;

* μ -Momentum Measurement:

Track-reconstruction in STT: Curvature $\Rightarrow |\mathbf{p}| \& "-" \text{ or } "+"$ Direction-cosines \Rightarrow STT Track-fit extrapolated to the vertex including dE/dx

* μ -ID Measurement:

Track-reconstruction in the μ -Detector (RPC) μ -ID Detector (RPC) will have a 4π -coverage $\Rightarrow \mu^+$.vs. μ^- separation & Large-angle μ Match the RPC-Track with the STT-Track

A ν_{μ} CC candidate in NOMAD

Observation →

- (1) Hadrons are tracks, enabling the momentum vector measurement
- (2) μ is kinematically separated from Hardon-vector \Rightarrow Miss-PT Measurement

FGT offers ~x5 higher tracking-points for hadronic tracks

In FGT × x3 higher track-points in μ ×~x10 higher track-points in p/pi

THE MUON DETECTOR

- ♦ Glo-Sci-51 measure absolute and relative ν_{μ} and $\bar{\nu}_{\mu}$ spectra separately.
 Glo-Sci-52 measure NC and CC cross-sections separately vs. hadronic energy
 - \implies identify muons exiting the tracking volume NDC-L2-34,35 $\implies 4\pi$ muon detector with < 1 mm space resolution
- Instrument magnet yoke (3 planes), and downstream (5 planes) and upstream (3 planes) stations
- ◆ Bakelite RPC chambers 2m × 1m (432 in total) with
 7.65 (7.5) mm X (Y) strips in avalanche or streamer mode

* 166k Channels

Full-scale RPC Prototype @ VECC (Subhsish, Zybayer)

• Built $2.4m \times 1.2m \times 2cm$ prototype (full scale) at VECC in India

• Operated in streamer mode, $\varepsilon \sim 95\%$, noise < 1 Hz/cm²

THE DIPOLE MAGNET *Design by BARC: Sanjay Malhotra & team*

- ✦ Design based on established UA1/NOMAD/T2K magnet
- Magnetic volume $4.5m \times 4.5m \times 8.1m$, nominal B=0.4 T
- Return yoke with 8+8 "C" sections:
 6 × 100 mm steel plates, 50 mm gaps (960 tons)
- ♦ 4 vertical Cu coils (150 tons) made of 8 double pancake
- Power requirement for nominal field 2.43 MW, water flow for coil cooling 20 l/s

Muon Momentum Reconstruction using Gurvature in the B-Field

*Need a uniform B-Field with

Good design uniformity ($\sim 1\%$ variation over the volume of 3.5m x 3.5m x 6.5m)

* Detailed B-Field map-variations measured with $\leq 10\%$ precision \Rightarrow B-Field known to $\sim 0.1\%$ precision

★ Continual monitoring of the B-Field during operation
⇒ Built in instrumentation in the field volume, especially the edges & yokes

Design by BARC: Sanjay Malhotra & team

- ♦ B uniformity in 3.5m × 3.5m × 7m tracking volume better than 2% (field simulations)
- Maximal deformation of C yoke 1.16 mm, maximal buckling of bobbin 1 mm
- Glo-Sci-51,23 measure absolute and relative ν_{μ}, ν_{e} and $\bar{\nu}_{\mu}, \bar{\nu}_{e}$ spectra separately.
 - \implies Low- ν technique for relative fluxes requires muon energy scale to < 0.2% \implies B field mapping to better than 1% matches the requirement

Muon Momentum Resolution in FGT

Muon Angular (θ) Resolution in FGT

*Resolution depend on "p"

 $<\Delta\theta > \sim 1$ mad for the LBNF-spectrum [Fig. will be updated]

Measurement of Muons, $\mu^+ \& \mu^-$, at Large Angles

* Need to measure muons emitted at large angles

* At the 1st oscillation maximum (2-3 GeV):

θ -Cut	% <i>ν</i> μ-CC
>600	~11%

* At the 2nd oscillation maximum (0.5—1 GeV):

θ -Cut	% <i>ν</i> μ-CC
>600	~37%

⇒ Imperative to measure muons at large angles

* With $4\pi \mu$ -*ID* coverage, FGT will measure large-angle muons without any discernible loss of efficiency compared to, say, $\theta < 60^{\circ}$

Muon Efficiency in FGT (Prelim.)

Efficiencies from Fast-MC; cross-checked against NOMAD Purity, in P<1 GeV, estimated from Fast-MC (prelim.)

* P > 1 GeV: Efficiency ~ $\sim 95\%$; Purity $\geq 99\%$

* $P \in [0.6, 1]$ GeV: Efficiency ~ ~80%; Purity ~80%

* $P \in [0.3, 0.6]$ GeV: Efficiency ~ ~60%; Purity ~70%

in situ Constraint on the Eµ-scale

* Measure K^{0}_{s} produced in the ν -interactions Expect > 750,000 reconstructed K^{0}_{s}

* Constrain the error on the |p|-from-curvature

Expect an error <0.1% on the momentum energy scale

- * Measurement of the Mass- $K^{0}_{s} \Rightarrow$ in situ constraint on the *Energy-scale*
- * NOMAD, $32k K^0 s \Rightarrow$ error on the |p|-scale < 0.2%

in situ Constraint on the Eµ-efficiency

* Measure the beam Muons

(1) Using the Up-stream Mu-ID module & Up-Stream ECAL module with Barrel, or Down-stream ECAL -&- RPC-in-Yoke or RPC-in-Down-stream \Rightarrow Define the muon entering the detector (Denominator)

(2) Reconstruct these muons using STT and mu-ID (Numerator)

(3) Compute the Efficiency = Numerator/Denominator as a function of E_{μ}

(4) Repeat this with the corresponding MC-Simulation

(5) Compare (3) with (4) : Check on the absolute E_{μ} -efficiency

Checking the E_{μ} -efficiency in NOMAD using the "Flattop" Muons

18

A final separation of $V\mu \Rightarrow \mu$ from the non-prompt $\pi^{+-}/K^{+-} \Rightarrow \mu$

* Use the Lepton-Hadron isolation to reduce the remaining impurity (later)

Outlook

(1) Measure E_{μ} with ~ 3.5% resolution

(2) 100% distinction between μ^{-1} .vs. μ^{+1} in ~0.3 - 50 GeV

(3) B-field design allows the $|E\mu|$ -scale to be measured to ~ 0.1% precision

(4) in situ measurement of 0.75M K⁰s checks the $|E\mu|$ -scale to ~ 0.1% precision

- (5) Absolute efficiency of the μ -reconstruction will be checked using the Beam- μ using the built-in redundancy offered by the 4π coverage by ECAL & RPC with < 0.1% precision
- (6) Measure large-angle muons, e.g. $\theta > 60^{\circ}$, without loss of efficiency/bias compared to low-angle muons \leftarrow Important for the 2nd oscillation maximum

Backup

Checking the E_{μ} -efficiency in NOMAD using the "Flattop" Muons

