Neutron-antineutron oscillation MC generation

Jeremy Hewes
DUNE atmos & nucleon decay WG meeting
Monday 9th November 2015

Introduction

- Neutron-antineutron oscillation (nnbar) is a beyond Standard
 Model process which violates Baryon number conservation.
- Neutron spontaneously oscillates into antineutron.
- Bound neutron search = oscillation of neutron inside nucleus.
- Antineutron annihilates with nucleon inside nucleus.

$\overline{n+p}$		\bar{n} + n	
$\pi^+\pi^0$	1%	$\pi^+\pi^-$	2%
$\pi^+2\pi^0$	8%	$2\pi^0$	1.5%
$\pi^{+}3\pi^{0}$	10%	$\pi^{+}\pi^{-}\pi^{0}$	6.5%
$2\pi^+\pi^-\pi^0$	22%	$\pi^{+}\pi^{-}2\pi^{0}$	11%
$2\pi^{+}\pi^{-}2\pi^{0}$	36%	$\pi^{+}\pi^{-}3\pi^{0}$	28%
$2\pi^+\pi^-2\omega$		$2\pi^{+}2\pi^{-}$	7%
$3\pi^{+}2\pi^{-}\pi^{0}$	7%	$2\pi^{+}2\pi^{-}\pi^{0}$	24%
		$\pi^+\pi^-\omega$	10%
		$2\pi^{+}2\pi^{-}2\pi^{0}$	10%

Event generator

- Module written in GENIE event generator for neutronantineutron oscillation, based on GENIE's nucleon decay module.
- Currently available in private version of GENIE 2.9.0, linked here.
- Module is still in active development, but currently able to simulate events and propagate them to LArSoft.
- The following slides will run through how the GENIE generator works, and how these events are propagated into LArSoft.

• Initial state: ⁴⁰Ar nucleus.

• Initial state: ⁴⁰Ar nucleus.

• Initial state: ⁴⁰Ar nucleus.

Neutron oscillates into antineutron.

- Initial state: ⁴⁰ Ar nucleus.
- Neutron oscillates into antineutron.
- Antineutron annihilates with proton or neutron.

- Initial state: ⁴⁰ Ar nucleus.
- Neutron oscillates into antineutron.
- Antineutron annihilates with proton or neutron.
 - 21 neutrons, 18 protons.

- Initial state: ⁴⁰ Ar nucleus.
- Neutron oscillates into antineutron.
- Antineutron annihilates with proton or neutron.
 - 21 neutrons, 18 protons.
 - Randomly select annihilation mode according to branching ratios.

$\overline{ar{n}+p}$		\bar{n} + n	
$\pi^{+}\pi^{0}$	1%	$\pi^+\pi^-$	2%
$\pi^{+}2\pi^{0}$	8%	$2\pi^0$	1.5%
$\pi^{+}3\pi^{0}$		$\pi^{+}\pi^{-}\pi^{0}$	6.5%
$2\pi^{+}\pi^{-}\pi^{0}$	22%	$\pi^{+}\pi^{-}2\pi^{0}$	11%
$2\pi^{+}\pi^{-}2\pi^{0}$	36%	$\pi^{+}\pi^{-}3\pi^{0}$	28%
$2\pi^+\pi^-2\omega$		$2\pi^{+}2\pi^{-}$	7%
$3\pi^{+}2\pi^{-}\pi^{0}$	7%	$2\pi^{+}2\pi^{-}\pi^{0}$	24%
		$\pi^+\pi^-\omega$	10%
		$2\pi^+2\pi^-2\pi^0$	10%

Table from Super-Kamiokande paper (arXiv:1109.4227v2)

- Initial state: ⁴⁰ Ar nucleus.
- Neutron oscillates into antineutron.
- Antineutron annihilates with proton or neutron.
 - 21 neutrons, 18 protons.
 - Randomly select annihilation mode according to branching ratios.
- Assign Fermi momentum & binding energy to antineutron & nucleon.

 Lorentz boost into CM frame of two-nucleon system.

- Lorentz boost into CM frame of two-nucleon system.
- Generate decay products.

- Lorentz boost into CM frame of two-nucleon system.
- Generate decay products.
- Assign momentum & energy using phase-space decay.
- Lorentz boost back into original frame.

- Lorentz boost into CM frame of two-nucleon system.
- Generate decay products.
- Assign momentum & energy using phase-space decay.
- Lorentz boost back into original frame.
- Propagate final state particles through nucleus.

INTRANUKE/hN cascade model

- GENIE's hadron transport package.
- Full cascade model, propagates hadrons through the nucleus.
- Cross-generator comparisons of pion multiplicities on a later slide.

GENIE-LArSoft interface

- GENIE output is a root ntuple in gntp format.
- Conversion to flat GENIE tree format gst still in progress.
- Use gevdump to export the output into a text file.
- LArSoft nucleon decay module in larsim module is actually just a GENIE parser, which can be used for importing any GENIE event.
 - Just edit the path in the .fcl file to point to your inputs.
 - Please get in contact if you want to try doing this!

Event generator outputs

Works for any atomic nucleus.

- Compare with quoted SK values for generator cross-check.
- Disagreement likely due to use of GENIE hA model (full cascade model).
- Studies involving hN (data-driven effective model) currently underway.

Metric	Super-K (¹⁶ O)	GENIE (^{16}O)	GENIE (40 Ar)
Total π multiplicity	3.5	5.0	4.4
Charged π multiplicity	2.2	3.3	3.0
Average charged π momentum (MeV/c)	310	280	270
Charged π momentum RMS (MeV/c)	190	180	180

Lifetime limit calculation

Lifetime limit set on nnbar using a Poisson distribution as a function of the **width** Γ :

$$P(\Gamma|n_{obs}) = A \int \int \int \frac{e^{-(\Gamma\lambda\epsilon + b)}(\Gamma\lambda\epsilon + b)^{n_{obs}}}{n_{obs}!} P(\lambda)P(\epsilon)P(b)d\lambda d\epsilon db$$

$$\int_0^{\Gamma_{90\%}} P(\Gamma|n_{obs}) d\Gamma = 0.9 \qquad \begin{array}{ll} \Gamma = \text{Oscillation width} & \lambda = \text{Exposure} \\ n_{\text{obs}} = \text{No. events observed} & \epsilon = \text{Selection efficiency} \\ \text{A = Normalisation constant} & \text{b = Background rate} \end{array}$$

- Crucial inputs are **value** and **uncertainty** of:
 - Background rate **b**
 - Signal selection efficiency **£**
- Evaluating these will allow us to estimate sensitivity in a large-scale LArTPC.

Prospects for LArTPCs

Inputs	ϵ (%)	σ_{ϵ} (%)	$\lambda \text{ (kT.yrs)}$	$\sigma_{\lambda} \text{ (kT.yrs)}$	b	σ_b	n_{obs}
Super-Kamiokande	19.1	2.771	204	6.2	24.1	5 719	24
LArTPC 1	50	3	163.2	6.3	20	5	20
LArTPC 2	70	3	163.2	6.3	10	3	10
LArTPC 3	90	3	163.2	6.3	5	2	5

Assumed

- Sensitivity calculated for a range of assumed inputs.
- Next step is to generate sensitivity surface, identify which parameters we need to optimise towards.
- Long-term goal is to use MC/data and event reconstruction to determine these inputs, & therefore DUNE's sensitivity to nnbar.

Inputs	90% CL limit (yrs)
Super-Kamiokande	1.9×10^{32}
LArTPC 1	8.7×10^{32}
LArTPC 2	18.2×10^{32}
LArTPC 3	28.6×10^{32}

Cumulative probability distribution

Summary

- Events generated using GENIE/LArSoft.
 - Custom GENIE module.
 - GENIE output > text file > LArSoft inputs.
- Carrying out generator cross-checks / different models.
- Investigating sensitivity as a function of inputs.
- Developing reconstruction to determine the value of these inputs.
- Final goal: sensitivity estimation for DUNE.