v-electron scattering: the MINERvA experience

S. Manly

University of Rochester

The bulk of the numbers and plots shown here come from Dr. Jaewon Park (Ph.D, University of Rochester, 2013)

Dec. 20, 2013 FNAL Wine and Cheese and thesis (Dec. 2013)

Some important work done since then ... making this a Frankenstein-ish hodgepodge of numbers, not advertised as a consistent approved set

Use with care and not for anything official

Publication coming soon

Very forward single electron final state

• Standard electroweak theory. No hadronic messiness.

- Distinctive EM, forward, no vertex activity
- Very small cross section (~1/2000 of v-nucleon scattering)
 - Low center of mass energy due to light electron
- Good angular resolution is important to isolate the signal
- Intrinsic v_e CC and v_{μ} NC+EM (think π^0) give primary backgrounds

- E > 0.8 GeV
 - High background rate and tough reconstruction at low energy
- Predict 147 signal events for 3.43×10^{20} Protons On Target (POT)
 - ~100 events when you fold in (reconstruction + selection) efficiency of ~ 70%

- Signal is mixture of $v_{\mu}e^{-}$, $\overline{v}_{\mu}e^{-}$, $v_{e}e^{-}$, and $\overline{v}_{e}e^{-}$ in LE-FHC (neutrino beam)
- ~100 signal events for 3.43E20 POT after folding in (reconstruction + selection) efficiency of ~ 70%
- Can't distinguish neutrino type

$$v_{\mu}e^{-}$$
 and $\overline{v}_{\mu}e^{-}:91\%$
 $v_{e}e^{-}$ and $\overline{v}_{e}e^{-}:9\%$

- Still useful to constrain the flux
 - Total events: Constraint for integrated flux
 - Electron spectrum: Constraint for flux shape

MINERvA Detector

MINERvA

Data and Simulation Samples

- All Low Energy neutrino data is used for the analysis: more than previous analyses shown to date $(3.43 \times 10^{20} \text{ Protons on Target})$
 - Time-dependent effects (calibrations, accidental activity) included in the simulation

Track-like part (beginning of electron shower) gives good direction

10

Track-like part (beginning of electron shower) gives good direction 11

Initial Background Rejection

• v-e scattering is very rare, even for v interactions:

- Simple cuts can eliminate most background events while keeping high fraction of signal events
 - Obvious muon-like event rejection
 - Upstream energy rejection
 - Removes neutrino interactions upstream of detector that make $\boldsymbol{\mu}$

Background Events

Kinematic Limit on $E\theta^2$

Mandelstam variables Inelasticity $AB \rightarrow CD$ $s = (p_A + p_B)^2$ $y = \frac{p_B \cdot q}{p_B \cdot p_A}$ $t = (p_A + p_C)^2$ $u = (p_A + p_D)^2$ $s + t + u = m_A^2 + m_B^2 + m_C^2 + m_D^2$

$$we \rightarrow we \qquad t = \frac{s}{2} (1 - \cos \theta^*) \qquad y = -\frac{1}{2} (1 - \cos \theta^*) \text{ in CM frame} \implies t = -sy$$
$$u = -2E_v E_e (1 - \cos \theta) \text{ in lab frame}$$
$$s + t = -u$$
$$s(1 - y) = 2E_v E_e (1 - \cos \theta)$$
$$2m_e (1 - y) = E_e \theta^2$$
Since $0 < y < 1$, $E_e \theta^2 < 2m_e$

14

Critical for Signal

- Electron Identification
 - Must discriminate from photons
- Electron Energy Measurement
- Electron Angular Measurement

Example: Neighborhood Energy

- Neighborhood energy = energy around shower cone
- Small neighborhood energy means isolated shower

Electron Photon Discrimination using dE/dx

Electron-induced electromagnetic shower

- Electromagnetic shower process is stochastic
 - Electron and photon showers look very similar
- Photon shower has twice energy loss per length (dE/dx) at the beginning of shower than electron shower
 - Photon shower starts with electron and positron

Validation of e/y separation

Energy and Angle Reconstruction

- Energy resolution ~ 5%
- Projected angle resolution ~ 0.3 degree (2 sigma truncated RMS)
- Precise angle reconstruction is critical to separate *v e* elastic scattering from background
 - Lower energy angular resolution is worse due to multiple scattering

Event Selection

Backgrounds after all Cuts

- Background prediction is affected by the flux and physics model
- Cross-section of various neutrino reactions are uncertain
- Use data-driven background tuning

4 Background Processes,

4 Sidebands (will be slightly simplified for final publication)

- Sideband = Outside of major $E\theta^2$ and dE/dx cuts
- (b) region is not used because there are not many events for tuning
- Further, cut is slightly loosened on sideband so it gets some v_{μ} CC for tuning purpose

Sideband Populations

Parameter	Tuned value
ν_e	0.89 ± 0.03
COH π^0	0.92 ± 0.03
ν_{μ} NC	0.97 ± 0.01
ν_{μ} CC	0.79 ± 0.06

dE/dx and $E\theta^2$ in Sidebands after tuning

dE/dx (MeV/1.7cm)

24

dE/dx Cut

$E\theta^2 Cut$

Electron Spectrum after all cuts

Systematic Uncertainties

 $\Phi = \frac{N - B}{\varepsilon A \sigma}$

- N: events in data
- B: Background
- ε: Efficiency
- A: Acceptance
- σ : signal cross section
- Error in background contribution
 - Flux uncertainties
 - Cross Section Uncertainties
- Error in efficiency and Acceptance

Uncertainty in v_e CCQE extrapolation from sideband

- Previous MINERvA results on v_{μ} Quasi-elastic process shows that momentum transfer squared (Q^2_{QE}) distribution is not what GENIE predicts *Phys. Rev. Lett. 111, 022502 (2013), Phys. Rev. Lett. 111, 022501 (2013).*
- Q^2_{QE} and $E\theta^2$ are highly correlated
- Compare v_e background prediction $E\theta^2$ extrapolation with two different models: one is GENIE, the other is one inspired by MINERvA v_u data: systematic uncertainty: 3.3%

Flux and Cross Section Systematic Uncertainties on MC Background From JP W&C

Final numbers going to be something more

Uncortainty Sources	MC background u	like these	
Uncertainty Sources	Before tuning	After tuning	
MC background events	38.9	32.9	29
MC bkg statistical	6.2	5.3	2.2
Total systematic	10.3	5.7	3.3
Flux_BeamFocus	1.1	0.2	0.9
Flux_NA49	1.8	0.3	0.14
Flux_Tertiary	7.0	1.1	0.15
GENIE	6.3	4.5	2
CCQE Shape	3.7	3.3	2.6
Total	12.1	7.8	4

- Sideband tuning reduced systematic uncertainty on predicted background ٠
 - Predicted background (before tuning): 38.9 ± 6.2 (stat) ± 10.3 (sys)
 - Predicted background (after tuning): 32.9 ± 5.3 (stat) ± 5.7 (sys)
- +2.2+3.3The tuning didn't eliminate systematic uncertainty but it gives confidence on background prediction

Reconstruction Systematic Uncertainties

- Electromagnetic Energy Scale: look at electrons from stopped µ decays (Michel): see agreement at 4.2% level, add as systematic uncertainty
- Angular Alignment: look at datasimulation differences in μ angles for ν_μ CC events with low hadron energy
 - 3 (1) mrad correction in y (x)
 - uncertainty is ±1mrad

Reconstruction Uncertainties (JP,W&C)

Source	Uncertainty on Source	Systematic Uncertainty			
Beam angle uncertainty	θ_x and $\theta_y : \pm 1$ mrad	1.1% and 1.3%			
Energy scale	4.2%	1.9%			
EM calorimeter energy smearing	Additional energy smearing	0.0%			
Absolute Electron Reconstruction Efficiency	2% based on muon studies	2.8%			
All Reconstruction Uncertainties	Some	what dated. See next slide. 5.4%			
Simulation statistics (Bckgd)		6.0%			
Flux (Bkgd)	Beam focusing, Beam tuning	1.3%			
Cross Section (Bkgd)	GENIE, CCQE Shape	6.3%			

Calculation of Radiative Correction

- The radiative correction to $d\sigma/dy (y=T_e/E_v)$ was done in the early 1980s and is easy to find in the literature
- KSM Updated this calculation with recent EWK couplings with latest precision data

http://inspirehep.net/record/180251 : "Radiative Corrections to Neutrino-Lepton Scattering in the SU(2)-L x U(1) Theory", S. Sarantakos, A. Sirlinand W.J. Marciano, Nucl.Phys. B217 (1983) 84, DOI: 10.1016/0550-3213(83)90079-2

http://inspirehep.net/record/392527 : "Solar neutrinos: Radiative corrections in neutrino - electron scattering experiments", John N. Bahcall, Marc Kamionkowski and Alberto Sirlin, Phys.Rev. D51 (1995) 6146-6158, DOI: 10.1103/PhysRevD.51.6146

http://inspirehep.net/record/1225117 : "The Weak Neutral Current", Jens Erler, Shufang Su, Prog.Part.Nucl.Phys. 71 (2013) 119-149, DOI: 10.1016/j.ppnp.2013.03.004

An Important Detail: You can't always get what you want $(d^3\sigma/dy/d\theta_e/dE_\gamma)$

- In principle, the radiative corrections we have are not what we want because any real photon will get added into electron energy if colinear
 - Most should be strongly colinear if energetic
- Or could veto event as a "second EM shower" if not colinear
- Is okay?
- Best study KSM can think of is to look at average energy shift of electrons. It is small compared to our energy scale uncertainty of 2% for energies with acceptance.

One bin and Electron Spectrum (Without Radiative Correction)

• All these plots include sideband tuning (which changes almost not at all because radiative correction only affects signal)

One bin and Electron Spectrum (With Radiative Correction)

- Muon neutrino prediction: 94.3/97=0.972
- Electron neutrino prediction: 10.4/10.5=0.99

Preliminary for now. Is final or very close to final. Showing here because of relevance for this dune discussion.

Systematic Summary with New Energy Scale Uncertainty

- "CCQE shape" is from the difference between MINERvA's measured CCQE $d\sigma/dQ^2$ and GENIE
- Interaction model is the rest of the standard GENIE suite of uncertainties, after constraints from sidebands

Preliminary for now. Is final or very close to final. Showing here because of relevance for this dune discussion.

Systematic Summary with New Energy Scale Uncertainty

- "CCQE shape" is from the difference between MINERvA's measured CCQE $d\sigma/dQ^2$ and GENIE
- Interaction model is the rest of the standard GENIE suite of uncertainties, after constraints from sidebands

Result (shown in W&C)

- Found: 121 events before background subtraction
- v-e scattering events after background subtraction and efficiency correction:

 $123.8 \pm 17.0 \text{ (stat)} \pm 9.1 \text{ (sys)}$ total uncertainty: 15%

- Prediction from Simulation: 147.5 ± 22.9 (flux)
 - Flux uncertainty: 15.5%

Observed v-e scattering events give a constraint on flux with similar uncertainty as current flux uncertainty, consistent with prediction

Flux constraint (JP)

- Take either the one bin or the spectrum result
- Form a weight based on consistency of a given flux universe with the neutrino-electron scattering result
- Central value and uncertainties are then estimated by the ensemble of weighted universes

Flux constraint (JP)

Take a simple toy example of a single measurement with a Gaussian *a priori* probability which seeds multi-universes

- For this toy, assumed a priori prediction was 141.2±20.1 and the measurement 120±20.2
- Preferred value shifts and uncertainty is reduced

Flux constraint

- The effect of the nu-e flux constraint is analysis dependent
 - Analysis dependence on variable being constrained
 - > Suppose analysis makes an E_v cut
 - \succ Cross-section might be a function of E_v

Preliminary for now. Is final or very close to final. Showing here because of relevance for this dune discussion.

Flux constraint

cussion.		Tuning method	Flux or Flux * Ev		Flux	Error		Frac err	
			before	after	ratio	before	after	before	after
	Flux (Ev > 2 GeV)	Total evts	30.8	29.2	0.948	2.8	1.8	0.091	0.062
		Spectrum	30.8	28.2	0.916	2.8	1.7	0.091	0.060
	Flux (2 < Ev < 10 GeV)	Total evts	28.5	27.1	0.951	2.5	1.7	0.088	0.063
		Spectrum	28.5	26.2	0.919	2.5	1.5	0.088	0.057
	Flux * Ev	Total evts	145.3	136	0.936	15.5	9.4	0.107	0.069
	(Ev > 2 GeV)	Spectrum	145.3	131.8	0.907	15.5	8.7	0.107	0.066
	Flux * Ev (2 < Ev < 20 GeV)	Total evts	129.7	122.5	0.944	12.4	8.1	0.096	0.066
		Spectrum	129.7	118.3	0.912	12.4	7.5	0.096	0.063

- Effect on flux
 - Flux (Ev>2GeV) ~ Flux (2<Ev<10GeV)
 - CV change: 0.95 (0.92 w/ spectrum tuning), error: 9% \rightarrow 6%

Some lessons for DUNE

• This technique to constrain the flux works

≻Premiums on

- Statistics
- \circ electron-photons separation
- \circ electron energy reconstruction
- \circ angular resolution

Effect of B field gives effect on electron reconstruction that is different from that on muons

Constraint on the flux is analysis dependent

EM energy scale is very important, biggest MINERvA error outside of statistics

 \circ test beam with electrons helpful?

➤ MINERvA achieves approx. 70% efficiency with approx. 80% purity

- > At 3-4% level, neutrino modeling and reconst efficiency errors kick in.
- Improvements in model are important ... expect it to be better by DUNE time. (CCQE shape error for example)

➢ Radiative correction issue needs to be cleaned up (probably okay on DUNE time scale, but ...)

Some lessons for DUNE

Electrons ain't muons

➢ In both T2K and MINERvA, big effort on reconstruction of muons early in experiments while EM shower reconstruction languished somewhat (SM opinion)

➢ Not arguing against priorities. Main mission of ND is muon neutrino flux constraint at start. BUT ... early pressure to produce while focus on "simple" case of muon tracking caused rather muon-centric bias in the reconstruction choices that caused headaches and delays in generating good EM reconstruction

➤ Unavoidable?

