

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Mu2e Project & Delivery Ring RF Overview

Steve Werkema – Mu2e Accelerator Systems L2 Manager Delivery Ring RF Review November 19, 2015

Outline

- 1. The Mu2e Experiment
- 2. The Muon Campus
- 3. The Mu2e Project Accelerator Systems
- 4. Mu2e Longitudinal Phase Space
 - Recycler RF Manipulations
 - Delivery Ring RF
- 5. Construction Progress
- 6. Schedule Overview

1. The Mu2e Experiment

Charged Lepton Flavor Violation

- The Mu2e experiment will attempt to detect <u>Charged Lepton Flavor Violation</u> (CLFV)
- CLFV is a process involving charged leptons (e[±], μ[±], τ[±]) that violates the conservation of the number of leptons of each flavor

Ordinary muon decay is not CLFV

$$\mu^{-} \rightarrow e^{-} \ \overline{V}_{e} \ V_{\mu}$$

$$L_{\mu}: 1 \qquad 0 \qquad 0 \qquad 1$$

$$L_{e}: 0 \qquad 1 \qquad -1 \qquad 0$$

If this is observed, it is evidence physics beyond the Standard Model

Experimental Signature of $\mu^- N \rightarrow e N$

- When captured by a nucleus, a muon will have an enhanced probability of exchanging a virtual particle with the nucleus.
- This reaction recoils against the entire nucleus, producing a *mono-energetic* electron carrying most of the muon rest energy

~105 MeV *e*⁻

$$E_{e} = m_{\mu}c^{2} - \frac{\left(m_{e}c^{2}\right)^{2}}{2m_{N}c^{2}}$$

What We (Plan to) Measure

 We will measure the rate of μ to e conversion...

...relative to that of ordinary μ capture

• This is quantified in the ratio $R_{\mu e}$ – which is defined as:

$$R_{\mu e} \equiv \frac{\Gamma\left(\mu^{-}N(A,Z) \to e^{-}N(A,Z)\right)}{\Gamma\left(\mu^{-}N(A,Z) \to \nu_{\mu}N'(A,Z-1)\right)} \longleftarrow Rate of \ CLFV \ \mu \to e \ \text{conversion}$$

6

🗲 Fermilab

Results of Previous CLFV Searches

- Single event sensitivity = 2.87×10^{-17} (i.e. one observed event yields $R_{\mu e} = 2.87 \times 10^{-17}$)
- 90% CL $R_{\mu e}$ Limit < 6.0×10⁻¹⁷

🛟 Fermilab

Mu2e Apparatus

The Mu2e apparatus consists of three superconducting solenoids joined together to make a continuous whole

Nov. 19, 2015

8

Stopping Muons

- A muon that is stopped in the Mu2e target is captured into an atomic • orbital state of an aluminum nucleus
- The muon quickly (\leq psec) transitions to the 1S state where its wave-• function overlaps the nucleus *

*A stopping target monitor measures detects the photons emitted during these atomic transitions – measuring the denominator of R_{ue}

- 17 Al foil disks (200 μm thick)
- Disk radii decrease from 83 mm to 65 mm in downstream direction

2. The Muon Campus

Mu2e Proton Delivery

- Two Booster "batches" are injected into the Recycler (8 GeV storage ring). Each batch is:
 - 4×10¹² protons
 - Batch Length = 1.7 µsec
- These are re-bunched into 8 bunches of 10¹² protons each
- The bunches are extracted one at a time to the Delivery Ring
 - DR Period = 1.7 µsec
- As the bunch circulates, it is resonantly extracted to produce the desired beam structure.
 - Pulses of $\sim 4 \times 10^7$ protons each
 - Separated by 1.7 µsec

Nov. 19, 2015

Accelerator Timeline for Mu2e Proton Beam Delivery

Macro Time Structure of the Beam

- Spill duration: 43.1 ms
- Interval between spills 48.1 ms
- Beam on for 380 ms
- Beam off for 953 ms
- Duty Factor: 28%
 (Total Spill Time/Length of Cycle)
- Peak Delivery Ring proton intensity: 1.0 ×10¹²

Nov. 19, 2015

Fermilab

Beam Micro-structure

- The proton beam on target consists of a train of ~25,000 narrow pulses separated by 1.695 μsec
- Extinction = No. of out-of-time protons / No. of in-time protons
- Inter-pulse extinction provides time for prompt backgrounds to decay before the Mu2e detectors go live for events from the current pulse
 Eermilab

The Muon Campus

DOE Projects, AIPs, GPPs

Building the Muon Campus requires the following projects:

- 1. DOE Projects
 - Muon g-2
 - Mu2e
- 2. AIPs (Accelerator Improvement Projects)
 - Recycler RF
 - Beam Transport
 - MC Cryo Plant
 - Delivery Ring
- 3. GPPs (General Plant Projects)
 - MC-1 Building
 - Beamline Enclosure
 - MC Infrastructure Upgrade

Muon Campus Upgrades Required for the Mu2e Experiment but not on the Mu2e Project

Accelerator Upgrade	Project
MI-8 beamline to Recycler Ring Injection	NOvA Project
Recycler Ring 2.5 MHz RF system	Recycler RF AIP
Delivery Ring 2.4 MHz RF Cavities and HL Amps & Cooling	Recycler RF AIP
Single bunch extraction from Recycler Ring	Beam Transport AIP
Beamline aperture upgrades	Beam Transport AIP
AP1, AP2, AP3 to M1, M2, M3 conversion & upgrade	Beam Transport AIP
Beam transport instrumentation & infrastructure	Beam Transport AIP
Beam transport controls	Delivery Ring AIP
Delivery Ring Injection	Delivery Ring AIP
Delivery Ring Abort	Delivery Ring AIP
Delivery Ring infrastructure	Delivery Ring AIP
Delivery Ring Controls and Instrumentation	Delivery Ring AIP
D30 straight section reconfiguration	g-2 Project
Delivery Ring Extraction (except ESS)	g-2 Project
Extraction line (M4) to M5 split	g-2 Project
M4 beamline enclosure	MC Beamline Enclosure GPP

3. The Mu2e Project Accelerator Systems

Mu2e Proton Beam Requirements

 \bigcirc

		Parameter	Design Value	Requirement	Unit
3-4 year run		Total protons on target	3.6×10 ²⁰	3.6×10 ²⁰	protons
ſ		Time between beam pulses	1695	> 864	nsec
ē		Maximum variation in pulse separation	< 1	10	nsec
uctr		Spill duration	43	> 20	msec
e Sti		Beamline Transmission Window	230	250	nsec
Lig		Transmission Window Jitter (rms)	5	<10	nsec
		Out-of-time extinction factor	10-10	\leq 10 ⁻¹⁰	
lsity		Average proton intensity per pulse	3.9×10 ⁷	< 5.0×10 ⁷	protons/ pulse
lnter		Maximum Pulse to Pulse intensity variation	50	50	%
e a		Target rms spot size	1	0.5 – 1.5	mm
Siz Siz		Target rms beam divergence	0.5	< 4.0	mrad

External (M4) Beamline Layout

Nov. 19, 2015

The Mu2e Building

Mu2e Proton Target Station

Target Station Components:

- Target located inside the **Production Solenoid (PS)**
- Heat & Radiation Shield (HRS)
- **Target Handling**
- **Proton Absorber**
- **Protection Collimator**

4. Mu2e Longitudinal Phase Space

- Recycler RF Manipulations
- Delivery Ring RF

Proton Beam Requirements (Revisited)

The 2.5 MHz RF manipulations in the Recycler and Delivery Ring achieve two goals:

- 1. FW bunch length \leq 250 ns
- Extinction of beam extracted from DR < 10⁻⁴ (beamline extinction insert provides additional factor of 10⁻⁷)

The bunch length requirement is primarily accomplished by the Recycler 2.5 MHz RF system.

The function of the Delivery Ring 2.4 MHz RF system is to preserve the narrow bunch width received from the Recycler.

The g-2 experiment uses the same Recycler 2.5 MHz system for their bunch formation.

Since the g-2 requirements are more severe than those of Mu2e, the system will meet the needs of Mu2e.

FW Bunch Length Requirements						
Mu2e	g-2					
250 nsec	149 nsec					

Nov. 19, 2015

Recycler and Delivery Ring RF Parameters

Recycler Ring 2.5 MHz Bunch Formation RF SystemHarmonic Number28Frequency2.515MHzPeak Total Voltage80kVNumber of Cavities6Duty Factor33%Bunch Formation time90msecDelivery Ring 2.4 MHz RF System4Harmonic Number4Frequency2.360MHzPeak Total Voltage10kVNumber of Cavities1Duty Factor27%Both Systems8R/Q400ΩQ125Beam loading Comp. feedback gain4	Parameter	Value	Units
Harmonic Number28Frequency2.515MHzPeak Total Voltage80kVNumber of Cavities6Duty Factor33%Bunch Formation time90msecDelivery Ring 2.4 MHz RF System4Harmonic Number4Frequency2.360MHzPeak Total Voltage10kVNumber of Cavities1Duty Factor27%Both SystemsR/Q400ΩQ125Beam loading Comp. feedback gain4	Recycler Ring 2.5 MHz Bunch Formation	RF System	
Frequency2.515MHzPeak Total Voltage80kVNumber of Cavities6Duty Factor33%Bunch Formation time90msecDelivery Ring 2.4 MHz RF SystemHarmonic Number4Frequency2.360MHzPeak Total Voltage10kVNumber of Cavities1Duty Factor27%Both SystemsR/Q400ΩQ125Beam loading Comp. feedback gain4	Harmonic Number	28	
Peak Total Voltage80kVNumber of Cavities6Duty Factor33%Bunch Formation time90msecDelivery Ring 2.4 MHz RF System4Harmonic Number4Frequency2.360MHzPeak Total Voltage10kVNumber of Cavities1Duty Factor27%Both Systems27%R/Q400ΩQ125Beam loading Comp. feedback gain4	Frequency	2.515	MHz
Number of Cavities6Duty Factor33%Bunch Formation time90msecDelivery Ring 2.4 MHz RF System4Harmonic Number4Frequency2.360MHzPeak Total Voltage10kVNumber of Cavities1Duty Factor27%Both Systems400ΩQ125Beam loading Comp. feedback gain4	Peak Total Voltage	80	kV
Duty Factor33%Bunch Formation time90msecDelivery Ring 2.4 MHz RF System4Harmonic Number4Frequency2.360MHzPeak Total Voltage10kVNumber of Cavities1Duty Factor27%Both Systems400ΩQ125Beam loading Comp. feedback gain4	Number of Cavities	6	
Bunch Formation time90msecDelivery Ring 2.4 MHz RF SystemHarmonic Number4Frequency2.360MHzPeak Total Voltage10kVNumber of Cavities1Duty Factor27%Both Systems400ΩQ125Beam loading Comp. feedback gain4	Duty Factor	33	%
Delivery Ring 2.4 MHz RF SystemHarmonic Number4Frequency2.360Peak Total Voltage10kV10Number of Cavities1Duty Factor27Both Systems27R/Q400Q125Beam loading Comp. feedback gain4	Bunch Formation time	90	msec
Harmonic Number4Frequency2.360MHzPeak Total Voltage10kVNumber of Cavities1Duty Factor27%Both Systems400ΩQ125Beam loading Comp. feedback gain4	Delivery Ring 2.4 MHz RF System		
Frequency2.360MHzPeak Total Voltage10kVNumber of Cavities1Duty Factor27%Both Systems400ΩQ125Beam loading Comp. feedback gain4	Harmonic Number	4	
Peak Total Voltage10kVNumber of Cavities1Duty Factor27Both Systems400ΩQ125Beam loading Comp. feedback gain4	Frequency	2.360	MHz
Number of Cavities1Duty Factor27Both SystemsR/Q400Q125Beam loading Comp. feedback gain4	Peak Total Voltage	10	kV
Duty Factor27%Both Systems400ΩQ125Beam loading Comp. feedback gain4	Number of Cavities	1	
Both SystemsR/Q400Q125Beam loading Comp. feedback gain4	Duty Factor	27	%
R/Q400ΩQ125Beam loading Comp. feedback gain4	Both Systems		
Q 125 Beam loading Comp. feedback gain 4	R/Q	400	Ω
Beam loading Comp. feedback gain 4	Q	125	
	Beam loading Comp. feedback gain	4	

25 S. Werkema | Mu2e Project & Delivery Ring RF Overview Nov. 19, 2015

‡Fermilab

Two Stage ESME Model

- 1. Recycler Ring Model
 - 10,752,000 protons generated in twenty one (21) 53 MHz buckets. This is done in ten separate runs of 1,752,000 proton each.
 - Initial longitudinal emittance of each bunch is 0.10 eV-sec
 - Tracked using ESME through Recycler RF manipulations until time of extraction
 - Final phase coordinate of each proton is converted to Delivery Ring phase
 - Resulting energy and phase of each proton written to disk for use as input to the Delivery Ring Model

2. Delivery Ring Model

- Input = Energy/phase output from Recycler model
- Cavity impedance and space charge effects simulated
- Beam loading compensation simulated by reducing cavity shunt impedance and Q by the beam loading compensation feedback gain (4) and applying an accelerating phase to compensate for energy lost
- Beam is tracked using ESME to various spill times

Recycler RF Voltage Ramps

Each 2.5 MHz bunch is synchronously transferred to the Delivery Ring into a stationary 2.4 MHz bucket

- Synchronous transfer from Booster to Recycler into
 53 MHz RF buckets at t = 0
- 53 MHz RF voltage linearly ramped to zero in 5 msec
- When 53 MHz is off, the 2.5 MHz voltage is adiabatically ramped to 80 kV in 85 msec
- The purpose of the 2.5 MHz
 re-bunching is to produce
 narrow (FW < 250 nsec)
 bunches
- Note: Muon g-2 uses this system before Mu2e and requires FW < 150 nsec</p>

Recycler RF Model – Time Distribution Waterfall during 2.5 MHz Bunch Formation

Recycler Longitudinal Phase Space at Extraction Time for Bunch 2

Nov. 19, 2015

Recycler Proton Time Distributions at Extraction Time

Nov. 19, 2015

Recycler to Delivery Ring Synchronous Transfers

- A bunch containing 1×10¹² protons is transferred from the Recycler to the Delivery Ring every 48.1 msec
- The circumferences of the Delivery Ring and the Recycler are not harmonically related. $\frac{f_{DR}}{f_{RR}} = \frac{590.0 \text{ kHz}}{89.8 \text{ kHz}} = 6.57 \neq \text{integer}$
- Recycler 2.5 MHz RF operates at h = 28 ($f_{RF} = 2.515$ MHz)
- Delivery Ring RF system operates at h = 4 ($f_{RF} = 2.360$ MHz)
- Synchronous transfer is accomplished by a phase resynchronization in the digitally synchronized Low Level RF system that ensures exact phase alignment at Delivery Ring injection time
- The Delivery Ring RF system maintains a 10 kV stationary bucket throughout the spill

Delivery Ring RF

Delivery Ring longitudinal distribution vs. θ for 45 msec of spill time. Trace separation: 664 turns = 1.125 msec. $\theta = 2\pi f_{rev} \Delta t$, 1° = 4.71 nsec

Nov. 19, 2015

‡ Fermilab

Delivery Ring Proton Time Distribution During Spill Animation

Nov. 19, 2015

Proton Time Distribution 5 msec after Start of Spill

Variation of RMS Energy and Time Width

RMS widths oscillate at twice the synchrotron frequency as expected.

<u>Note</u>: the T_{synch} given here is the small amplitude synchrotron frequency.

Variation of the Out-of-Time Fraction Over a 45 msec Spill

Not particularly well correlated with synchrotron period.

Note: the T_{synch} shown here is that of a proton 125 nsec from the center of the RF bucket. This is larger than the small amplitude synchrotron period.

The Average Beam Pulse at Extraction from the Delivery Ring – Time

Average Proton Time Distribution

36 S. Werkema | Mu2e Project & Delivery Ring RF Overview

Fraction of Beam per 2 nsec bin

Nov. 19, 2015

The Average Beam Pulse at Extraction from the Delivery Ring – Energy

Average Proton Energy Distribution

Nov. 19, 2015

Extinction Performance

 \bigcirc

5. Construction Progress

Pouring Mu2e building floor slab

• Looking east toward g-2 Building

Framing the walls in the proton target station area of the Mu2e building

Concrete floor complete Framing and pouring the walls

42 S. Werkema | Mu2e Project & Delivery Ring RF Overview

Target Proton Beam Absorber Air Manifold

Saturday, 17 October 2015

Why Start Building Construction before Design is Complete?

- Generally, this is a very bad thing to do
 - Removes the flexibility to accommodate unforeseen design issues that might be alleviated by building changes
 - Once an A&E firm is retained, building design changes are expensive.
 Once a construction contract is awarded changes become even more costly
 - The building becomes a design constraint as soon as concrete is poured
- The Muon Campus and Mu2e projects did this because:
 - Allows early start on projects necessary for g-2 early g-2 running simplifies accelerator commissioning for Mu2e
 - Construction costs were relatively low and projected to trend up when this decision was made

petivity D	Activity Name	Start	Finish				<u> </u>									
		7				Dec Jan Feb	Mar	Apr May Ju	2018 In Jul	Aug Ser		Nov Dec	Jan Feb	Mar An	or Mav	Jun Jul I
= 475.02S.06.01 L	ov <mark>y Level RF System</mark>	03-Oct-16	05-Sep-19				mar	Hor May Co					0011 100	mai mp	or maj	
47502.06.01.00050	T5 - Start Low Level RF System Procurements	03-Oct-16		- 1												
47502.06.01.00100	Vendor analysis and bid review for Delivery Ring Low Level RF Sys	02-Oct-17	04-Dec-17			04-Dec-17, Vendor a	nalysis é	and bid review for De	elivery Ring	Low Level RF	System					
47502.06.01.001160	Stripline Detector	05-Dec-17	05-Feb-18		05-Dec-17	05-F	eb-18, S	tripline Detector								
47502.06.01.00108	VXI Crate Interface	05-Dec-17	05-Feb-18		05-Dec-17	05-F	eb-18, V	XI Crate Interface								
47502.06.01.00102	VXI Crate Populated with LLRF Cards (obligation)	05-Dec-17	05-Dec-17		05-Dec-17	05-Dec-17, VXI Crate	e Populat	ed with LLRF Cards	(obligation)							
47502.06.01.00100	9 VXI Crate Populated with LLRF Cards Fabricate	06-Dec-17	02-Mar-18		06-Dec-17		02-Ma	r-18, VXI Crate Popu	lated with l	LLRF Cards Fa	bricate					
47502.06.01.001170	Stripline Detector Engineering	06-Feb-18	02-Apr-18			06-Feb-18		02-Apr-18, Striplin	e Détector	Engineering						
47502.06.01.00109	VXI CPU and Interface Assembly	06-Feb-18	02-Apr-18			06-Feb-18		02-Apr-18, VXI CF	PU and Inter	face Assembly	Y					
47502.06.01.00101	VXI Crate Populated with LLRF Cards Deliver	05-Mar-18	05-Mar-18			05-Mar-18	I 05-M	ar-18, VXICrate Pop	ulated with	LLRF Cards D	eliver					
47502.06.01.00103	VXI Hardware Card Layout	06-Mar-18	30-Apr-18			06-Mar-18		30-Apr-18	, VXI Hardv	vare Card Lay	out					
47502.06.01.001180	Stripline Detector Assembly	03-Apr-18	29-May-18			03-/	Apr-18	29-	-May-18, St	ripline Detecto	r Assembly					
47502.06.01.001100	VXI Timing and Digital Controls Board Assembly	03-Apr-18	29-May-18			03-/	Apr-18	29-	-Maγ-18, ∀)	XI Timing and D	igital Control	s Board Asse	embly			_
47502.06.01.00104	VXI Recycler to Debuncher Transfer Embedded Code	01-May-18	26-Jun-18				01-Ma	ay-18	🔲 26-Jun	-18, VXI Recy	cler to Debur	icher Transfe	er Embedded Code			
47502.06.01.001110	VXI RF Amplitude and Phase Board Assembly	30-May-18	25-Jul-18					30-May-18 💻		25-Jul-18, VX	(I RF Amplitud	le and Phase	Board Assembly			
47502.06.01.00105	VXI HLRF Amplitude and Phase Control Embed Code	27-Jun-18	22-Aug-18			1		27-Jun-18	1	22-Au	ig-18, VXI HL	RF Amplitude	e and Phase Contro	ol Embed Co	de	
47502.06.01.001120	VXI Recycler to Debuncher Transfer Low Level Programing	26-Jul-18	20-Sep-18					20	6-Jul-18 🛛		20-Sep-18	, VXI Recycle	r to Debuncher Tr	ansfer Low	Level Progra	ming
47502.06.01.00106	VXI HLRF Timing and Digital Controls Embed Code	23-Aug-18	18-Oct-18						23-Aug	g-18 💻	18-	Oct-18, VXI H	HLRF Timing and Di	igital Control	ls Embed Cod	le
47502.06.01.001130	VXI HLRF Amplitude and Phase Control Low Level Programing	21-Sep-18	15-Nov-18							21-Sep-18		15-Nov-1	18, VXI HLRF Ampl	litude and Ph	nase Control L	ow Level Progr
47502.06.01.00107	VXI Stripline Detector Embedded Code	19-Oct-18	17-Dec-18							19-00	at-18 💻		17-Dec-18, VXI Str	ripline Detect	tor Embedded	d Code
47502.06.01.001140	VXI HLRF Timing and Digital Controls Low Level Programing	16-Nov-18	18-Jan-19								16-Nov-18		—— 18-Jan-19), VXI HLRF 1	Timing and Di	gital Controls Lo
47502.06.01.001150	VXI Stripline Detector Code Low Level Programming	22-Jan-19	18-Mar-19									22-Ja	n-19	🔲 18-Ma	ar-19, VXI Stri	ipline Detector C
47502.06.01.001190	Console Application Programming	19-Mar-19	14-May-19	-									19-Mar-1	9 📫	14-1	May-19, Console
				ſ	•											

6. Schedule

Mu2e Accelerator Schedule

47 S. Werkema | Mu2e Project & Delivery Ring RF Overview

Milestone	Date
Diagnostic Absorber Installation Complete	March 2015
M4 Beamline Enclosure Beneficial Occupancy	Nov 2015
DOE CD-3c Approval	July 2016
2.5 MHz RF Cavity Installed in Delivery Ring	Sep 2016
Start of Muon g-2 Run	May 2017
Delivery Ring RF System Complete	Dec 2019
Ready to run beam to diagnostic absorber	June 2020
DOE CD-4 Approval	May 2021

Muon Campus Program Cost

Project	Total Project Cost (\$M)	Accelerator Costs (\$M)
Muon g-2 Project	46.4	22.2
Mu2e Project	271.0	50.2
Recycler RF AIP	9.7	9.7
Beam Transport AIP	6.2	6.2
Delivery Ring AIP	9.3	9.3
Cryo AIP	9.7	9.7
MC-1 Building GPP	9.0	
Beam Enclosure GPP	9.7	
MC Infrastructure GPP	1.0	1.0
Total	372.0	108.3

Delivery Ring RF total cost: ~\$2.2M ~4% of Mu2e Accelerator

All costs are base cost + estimate uncertainty (contingency) (These costs compiled November 2014)

6. Conclusions

Conclusion

- Thank you for your helping us by participating in this review
- The Mu2e project is in the final stages of completing its final design
 We expect to begin our CD-3c reviews in ~March of next year
- We would very much appreciate your advice on how we should best focus our attention in preparation for these reviews

Backup Slides

Mu2e / NOvA Accelerator Timeline Model

Fourier Components of Delivery Ring Beam at Injection

1×10¹² protons Single Bunch ESME Simulation

 $a_b(k)$ = cosine amplitudes $b_b(k)$ = sine amplitudes $c_b(k)$ = overall magnitude

Fourier Components of the Beam Current

Beam Loading Compensation

Detect and feed back the beam current into the cavity drive

Nov. 19, 2015

Application of Beam Loading Compensation

Nov. 19, 2015

Delivery Ring Synchrotron Period as a Function of Δt

Synchrotron Period vs. Time from Bucket Center