Galaxy Cluster Cosmology: Enhancing Upcoming Surveys

Adam Mantz (KIPAC)

Cosmic Visions Dark Energy

November 13, 2015

Outline

- 1. Cluster cosmology overview
- 2. Where things stand
- 3. Upcoming surveys
- 4. Data that can magnify the impact of upcoming surveys

What are clusters of galaxies?

Galaxy cluster: a very massive, bound collection of dark matter, ionized gas, and galaxies ($M \gtrsim 10^{14} M_{\odot}$, $kT \gtrsim 1 \text{ keV}$).

What do clusters do for cosmology?

- Mass function \leftarrow growth of structure, expansion, neutrino mass
- Gas-mass fractions (standard quantity) \leftarrow cosmic expansion and Ω_{m}
- Clustering of clusters \leftarrow growth of structure, expansion
- ► X-ray and mm pressure measurements ← cosmic expansion
- Bulk flows \leftarrow growth of structure, expansion
- Merger statistics \leftarrow dark matter cross section
- ► Internal structure ← dark matter, gravity

•

What do clusters do for cosmology?

- Mass function \leftarrow growth of structure, expansion, neutrino mass
- Gas-mass fractions (standard quantity) \leftarrow cosmic expansion and Ω_{m}
- Clustering of clusters \leftarrow growth of structure, expansion
- ► X-ray and mm pressure measurements ← cosmic expansion
- Bulk flows \leftarrow growth of structure, expansion
- ► Merger statistics ← dark matter cross section
- ► Internal structure ← dark matter, gravity

•

How it works

Three preferred survey strategies (increasing wavelength order):

- X-ray: emission from hot intracluster medium (ICM)
- optical/IR: cluster galaxies and lensed background galaxies
- mm: SZ effect (CMB spectral distortion) due to ICM

How it works

Three preferred survey strategies (increasing wavelength order):

- ► X-ray: emission from hot intracluster medium (ICM)
 - \rightarrow Most massive clusters to high $z{\rm ,}$ groups at lower z
- ▶ optical/IR: cluster galaxies and lensed background galaxies → High completeness to low masses
- mm: SZ effect (CMB spectral distortion) due to ICM
 Massive clusters at any redshift

Ingredients

- 1. Predicted halo mass function from simulations
- 2. Observed number of clusters as a function of z and survey signal
- 3. Stochastic relation between mass and observable signal(s)
 - More astrophysics-dependent than mass function
 - Data driven modeling need to measure masses
 - No mass proxy is simultaneously accurate and precise!

Ingredients

- 1. Predicted halo mass function from simulations
- 2. Observed number of clusters as a function of z and survey signal
- 3. Stochastic relation between mass and observable signal(s)
 - More astrophysics-dependent than mass function
 - Data driven modeling need to measure masses
 - No mass proxy is simultaneously accurate and precise!

Current status

(from your local Stanford group)

Combining:

- 1. ROSAT All-Sky X-ray survey
- 2. Weighing the Giants weak lensing
- 3. Chandra X-ray mass proxies
- 4. $f_{\rm gas}$ expansion data

Current status

- Ω_{m} 0.261 ± 0.031
 - 0.831 ± 0.036 σ_8 =
 - $= -0.98 \pm 0.15$ w

Clusters alone:

- $= 0.257 \pm 0.030$ $\Omega_{\rm m}$
 - 0.833 ± 0.048 σ_8 =
- $\gamma 0.55 = -0.07 \pm 0.19$

Current status

Improvement has been rapid

 Significant gains to be had from both improving absolute mass calibration (accuracy) and obtaining precise relative masses (precision).

The road ahead for big cluster surveys

	2016	2017	2018	2019	2020	2021	2022	2023
DES								
AdvACT								
SPT-3G								
eROSITA								
Euclid			р. 					
CMB-S4								
LSST								

	2024	2025	2026	2027	2028	2029	2030	2031
Euclid								
CMB-S4								
LSST								

What other data would we like?

- (Simulations for mass function and lensing systematics)
- Confirmation and photo-z's at high redshifts
- Absolute mass calibration at high redshifts
- Relative mass calibration (mass proxies for new detections)
- Even more surveys?

What other data would we like?

- (Simulations for mass function and lensing systematics)
- Confirmation and photo-z's at high redshifts
- Absolute mass calibration at high redshifts
- Relative mass calibration (mass proxies for new detections)
- Even more surveys?

Proper forecasts of their impacts are high on the to do list...

NIR imaging

- Confirmation and photo-z's at high redshifts
- Galaxy-cluster lensing (absolute masses) at high redshifts?

Need continuing access to large ground-based and space-based facilities (e.g. VLT, Magellan, Keck, TMT/GMT, Spitzer, Hershel, WFIRST, \dots)

Spectroscopy

- Photo-z training sets for faint galaxies behind and in clusters
- Impacts cluster finding and (especially) mass calibration

Need continuing access to ground- and space-based facilities, plus future projects like DESI, HSC-PFS (, SPHEREx?)

X-ray imaging spectroscopy

- Provides precise relative mass calibration
- Constrains mis-centering/projection systematics (lensing and optical cluster-finding)

Current facilities: Chandra, XMM-Newton Upcoming missions:

- eROSITA (2016 launch; 4 yr survey followed by pointed observations)
- ATHENA (2028 launch; 30 Ms survey + pointed observations)

mm observations

- Best survey for finding clusters at the highest redshifts
- CMB-cluster lensing (high-z absolute mass calibration)

Upcoming project:

CMB Stage-4: survey combining multiple ground-based sites

CMB-cluster lensing

- Recent $\sim 3\sigma$ stacked detections by ACT and SPT.
- Potentially a great resource for absolute mass calibration at high z, but more work needed to understand systematics.

ACT: stacked on 12,000 galaxies Madhavacheril+ 2015

SPT: stacked on 500 clusters Baxter+ 2015

CMB-cluster lensing

- Long-term, polarization signals are more sensitive due to being less contaminated by primary CMB and the SZ effect
- Even so, the Stage 4 survey is not quite as deep as one would like
- Case for a dedicated camera and deep cluster observations? TBD

Hu+ 2007

Summary

- Clusters provide tight cosmological constraints, and are one of the main probes enabled by large stage 4 surveys.
- Targeted investment in supporting observations can significantly enhance the science return of these new cluster catalogs.
- Much of what we'd like to do is completely straightforward, but there are also some exciting new avenues.