Beam window in Geant4: Update

Matt Kramer (UC Berkeley) 2015 Nov 20

Update of slides shown on Nov 10

Fixed "X-ray" plots Fixed "electron" momentum/angle plots that mistakenly showed gammas

Outline

- Latest geometry, materials
- Radiation length calculation
- "X-ray" validation
- Dead layer studies
 - Basic summary plots
 - Momentum distributions
- Summary
- Backup
 - Angle distributions (dead layer studies)

Window design

This is not necessarily the final design

Radiation length

Material	X ₀ (cm)	Amount (mm)	Result	Total
SS (primary membrane)	1.7	1.2	0.07 X ₀	
G10	17	5	0.03 X ₀	
Korex	430	85	0.02 X ₀	
SP-1	22*	4	0.02 X ₀	
Window total				0.14 X ₀
+ LAr	14	10	0.07 X ₀	0.21 X ₀
+ LAr	14	30	0.21 X ₀	0.35 X ₀
+ LAr	14	50	0.35 X ₀	0.49 X ₀

* SP-1 X_0 unknown; estimated from G10 by scaling per density

"X-ray" plots

- Goal: See where (and how often) interactions are occurring, to compare with expectations
- For each tracking step of primary particle, record position and (ionization) energy deposit
 - Ignore energy that goes into secondaries; good enough for our goal of simply peering into the window
 - Geant4 max step size was set to 0.1 mm
 - Allows resolving thin layers
- At end of run:
 - Sum up total deposited energy for each position bin, normalize by # events, plot
- Compare to window design

"X-ray" zoomed

Beam

Deposited energy (500 MeV/c π +)

"X-ray" zoomed and integrated

Beam

Dead layer studies (500 MeV/c, 10k events)

FWHM of peak

Similar plots, showing probability of (non)-interaction, next time!

Dead layer studies: Momentum dists (w/ win)

Momentum, 500 MeV/c K+ (10,000 events)

Dead layer studies: Momentum dists (no win)

400

400

450

500

MeV/c

450

MeV/c

Summary

- SS membrane dominates window materials (in terms of rad. length, energy loss)
 - Might be a good reason to replace it with an aluminum cutout?
- Window + membrane equivalent to 2-3 cm LAr
- LAr dead layer dominates total, if not displaced
 - Displace it all!
- Next time: Plots showing probability of interaction

Backup

Dead layer studies: Angular dists (w/ win)

Dead layer studies: Angular dists (no win)

