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MOTIVATION

>
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Amazing progress in studying / computing multi loop amplitudes

.

On the formal side (N=4 SYM):

6-point at 4-loop, 7-point cluster bootstrap!

On real-world side (QCD):

virtually all 2—2 at NNLO processes, gluon fusion at N3LO
MANY CALCULATIONS BENEFITED FROM IMPROVED UNDERSTANDING OF ITERATED INTEGRALS

Many different physical systems can be understood using iterated
integrals (e.g. polylogarithms)

Intense mathematical studies of iterated integrals

Current knowledge runs out of steam at some point!




MOTIVATION

» How far can we go with our current technology

» Can we slowly approach the cases that do not work
anymore

» Ideal playground: special / restricted kinematics = MRK

ELLIPTIC INTEGRALS 2 _>/\<r 3.




REGGE KINEMATICS 4

» Classical example in QCD: Mueller-Navelet jets

» Cross section in thls limit is descrlbed by the BFKL equation
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» Resums large logarithms of the rapidity gap to any order



MULTI-REGGE KINEMATICS

» MRK: Generalization of Regge Kinematics, more resolved
jets with rapidity gaps between them
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» Non-trivial kinematics only in 2d
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transverse subspace !
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» No collinear divergences, only soft



BFKL

» To leading logarithmic accuracy at any loop order:
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» Perturbatively we have:
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ITERATED INTEGRALS IN MRK

» MRK is defined in 2-dimensional transverse space, can be

expressed as complex space using ki = X2 — Xin1
_ T
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» N-2 points in complexspace
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ITERATED INTEGRALS IN MRK 8

» This space has been studied extensively by
mathematicians

» Natural iterated integrals on this space are a particular set

of multiple polylogarithms
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» Highly constrained set of p055|b|e integrands

{dlog(ti), dlog(1 —t;), dlog(t; —t;)}
(X1,...,Xn) = (0,1,00,t1,...,tp_3)



ITERATED INTEGRALS IN MRK

» Simplest function in this space ]()g X;

» Physics: Only branch cuts when ki = Xit2 — Xiq1
Mandelstam invariants vanish i = Xi42 — X1
. . . . q0 o X2
» Build linear combinations of our
. ki
functions so that the branch cuts cancel
dq1 e X3
Y .
Single Valued Multiple Polylogs "
X]_ o
log x; — log |xz-|2 = log x; + log X; kn-—s
Lig(xi) — LiQ(Xi) — Liz()_(i) — log(xi) log(l — 3_(7,) — log(ii) log(l — Xi) qN—5 o XN_3
Kn_4
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X = oy +ix;, o ____L____




ITERATED INTEGRALS IN MRK

log x; — log |x;|* = logx; + log X;
Lig(Xz‘) — LiQ(X«L‘) — Lig(}_(i) — log(xi) log(l — )_(z) — log(iq;) 10g(1 — Xi)
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SOLVING THE BFKL EQUATION 11
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» Knowledge of function space can be exploited by making an ansatz
and -ﬁxing the Coefﬁcients [Li!?atov, Prygarin; Dixon, Drumr.n.oer, I—!enn; Dixon, D.uhr, Penn.ington; P.ennington;

Brodel, Sprenger; Bartels, Kormilitzin, Lipatov, Prygarin; Prygarin, Spradlin, Vergu,
Volovich, Bargheer, Schomerus, Papathanasiou; Bargheer]

» Successfully used at 6-point and for some 7-point amplitudes

» Interesting QCD result: Dijet cross section in Regge kinematics at
1 2 Ioops [Del Duca, Duhr, Dixon, Pennington]
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» We can do something more powerful




SOLVING THE BFKL EQUATION 12
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» Fourier-Mellin integral factorizes convolutions

FlF(v,n)] = f (g)n/z /_:)O v 2| F(v,n)
FIF -Gl = FIF|« 61 = frg = + [ T8 5(w) o (2)

» What does this mean at e.g. 6 point?

2-loop | ¢ o Flxtx7] _

3-loop | ¢® x FlxTEx] g x € E(z) = F By, = _2|i j_L Z|2
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SOLVING THE BFKL EQUATION 13

» In general not possible to compute these convolutions

» But: We know the function space: Single Valued Multiple

[Schnetz]

Polylogarithms — here it is possible!
g(z) — F[El/n] -

» Start from two-
loop amplitude
and iterate
convolutions




MRK FACTORIZATION 14

» At higher loops and legs new building blocks appear

» Butin a systematic way — factorization structure for any
number of loops and legs

R (o1) = 9@ ()
R (p1, p2) = 9P (p1) + 9P (p2) + 95V o1, p2)
R (01, p2, p3) = 92 (p1)+9@ (p2)+9@ (p3)+ g8 (o1, p2)+Hg S (o1, pa)-Hg BV (pa, p3)




BEYOND MHV

15

» Results so far: MHV, all outgoing particles have the same

helicity

» Non-MHV amplitudes also possible

Z

» Helicity flip kernel: #(z) = -7

Py O

» Correctly produces the rational prefactors

» Factorization holds beyond MHV but infinitely many

building blocks required to account for the different__

helicity structures

RP. =logri g™ (o) + Y log7; g% (b1, p))
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CONCLUSIONS
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» General formalism for describing amplitudes in MRK at any
loop order and for any number of legs

» Successful application of new mathematical results to
physics

» Potential to apply modified versions to less symmetric
problems like QCD

» Interesting questions beyond leading log: Central emission
block, overlap with pentagon OPE

» Single valued multiple polylogarithms useful for other
calculations






BACKUP



MULTI-REGGE KINEMATICS 19

» Parametrize transverse space

» Highly symmetric space qi = Xit12 — X1
» Dual conformal symmetry ~ ~7°77°°[7777
q0 o X2
Conformal symmetry of the x variables ks
a1 o X3
» Target-projectile symmetry Ky
.X]_ ]
» Describe amplitudes in terms of cross ratios .
N—-5
(%1 = x3) (Xi2 — Xiq1) AN=sf e NS
ZZ — kn_4

(X1 — Xi+1) (Xit2 — Xit3)




MOTIVATION 20

» Why study restricted kinematics?

» Simplifications and maybe new structures in restricted
kinematics

» Collinear kinematics in N=4:
Integrability, Pentagon OPE

» Multi-Regge Kinematics: Integrable structures, BFKL
resummation, N=4 and QCD!

» QCD and N=4 more similar in restricted kinematics than in
general
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» Building blocks have perturbative expansions and/or all
order expressions, for LLA BFKL the leading term in the

expansion suffices

» Goal is to perform the Fourier-Mellin integral to determine
the remainder function at a given loop order in MRK

» At six point MHV and NMHV amplitudes known to any loop
order in terms of single-valued harmonic polylogarithms

[Lipatov, Prygarin; Dixon, Drummond, Henn; Dixon, Duhr, Pennington;
Pennington; Brodel, Sprenger; Bartels, Kormilitzin, Lipatov, Prygarin]

» Attwo loop MHYV factorizes into six point amplitudes

[Prygarin, Spradlin, Vergu, Volovich; Bartels, Prygarin, Lipatov]

» Our result: Arbitrary loop order for any number of legs



SOLVING THE BFKL EQUATION 22

» How to use these functions to solve the BFKL equation?
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» Treat it like any Mellin integral

J(v)

(Just like e.g. in N3LO Higgs)

» lake residues and sum

» Tedious, does not use knowledge of the function space, difficult
at higher loops but provides a check



MRK FACTORIZATION 23

» Possibly many functions when going to many legs and
loops

» Fortunately, the convolutions imply further factorization
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‘ R (p1, p2) = 910 (p1, p2) + 9O (o1, p2) = RE (p1) + R (2)

et T RO nes) = RO (01) + R (02) + Re? (03)
Pp O . — h N
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o | RE ({pi}) = DR (pn)

n=1

‘ [Prygarin, Spradlin, Vergu, Volovich;
-_———— == Bartels, Prygarin, Lipatov]




