FALKO DULAT

ITERATED INTEGRALS IN MULTIREGGE KINEMAICS

IN COLLABORATION WITH

VITTORIO DEL DUCA, STEFAN DRUC, JAMES DRUMMOND, CLAUDE DUHR, ROBIN MARZUCCA, GEORGIOS PAPATHANASIOU, BRAM VERBEEK

- Amazing progress in studying / computing multi loop amplitudes
- On the formal side ($\mathrm{N}=4 \mathrm{SYM}$):

6-point at 4-loop, 7-point cluster bootstrap

- On real-world side (OCD):
virtually all $2 \rightarrow 2$ at NNLO processes, gluon fusion at N3LO

MANY CALCULATIONS BENEFITED FROM IMPROVED UNDERSTANDING OF ITERATED INTEGRALS

- Many different physical systems can be understood using iterated integrals (e.g. polylogarithms)
- Intense mathematical studies of iterated integrals
- Current knowledge runs out of steam at some point!
- How far can we go with our current technology
- Can we slowly approach the cases that do not work anymore
- Ideal playground: special / restricted kinematics \rightarrow MRK

- Classical example in QCD: Mueller-Navelet jets

$y_{1} \gg y_{2} \quad$ or $\quad s \gg|t|$
- Cross section in this limit is described by the BFKL equation

$$
\frac{d \hat{\sigma}}{d p_{1 \perp}^{2} d p_{2 \perp}^{2} d \phi} \propto \sum_{n=-\infty}^{+\infty} e^{i n \phi} \int_{-\infty}^{\infty} d \nu\left(\frac{p_{1 \perp}^{2}}{p_{2 \perp}^{2}}\right)^{i \nu} e^{\log \left(y_{1}-y_{2}\right) \omega\left(\nu, n, \alpha_{s}\right)}
$$

- Resums large logarithms of the rapidity gap to any order
- MRK: Generalization of Regge Kinematics, more resolved jets with rapidity gaps between them
$p_{A^{\prime}}^{+} \gg k_{1}^{+} \gg k_{2}^{+} \gg \ldots>k_{N-4}^{+} \gg p_{B^{\prime}}^{+}$

$$
\left|\mathbf{k}_{1}^{\perp}\right| \simeq\left|\mathbf{k}_{2}^{\perp}\right| \simeq \ldots \simeq\left|\mathbf{k}_{N-4}^{\perp}\right|
$$

- Non-trivial kinematics only in 2d transverse subspace
- No collinear divergences, only soft
- To leading logarithmic accuracy at any loop order:

$$
\mathcal{R}_{h_{1}, \ldots, h_{N-4}}=1+a i \pi(1-\text { loop })+a i \pi(-1)^{N-5}\left[\prod_{k=1}^{N-5} \sum_{n_{k}=-\infty}^{+\infty}\left(\frac{z_{k}}{\bar{z}_{k}}\right)^{n_{k} / 2} \int_{-\infty}^{\infty} \frac{d \nu_{k}}{2 \pi}\left|z_{k}\right|^{2 i \nu_{k}}\right]
$$

$$
\times\left[-1+\prod_{k=1}^{N-5} \tau_{k}^{a E_{\nu_{k}, n_{k}}}\right] \chi^{h_{1}}\left(\nu_{1}, n_{1}\right)\left[\prod_{k=1}^{N-6} C^{h_{k+1}}\left(\nu_{k}, n_{k}, \nu_{k+1}, n_{k+1}\right)\right] \chi^{-h_{N-4}\left(\nu_{N-5}, n_{N-5}\right)}
$$

$=1+\operatorname{ai} \pi(1$-loop $)+2 \pi i \sum_{i=2}^{\infty} \sum_{i_{1}+\cdots+i_{N-5}=i-1} a^{i}\left(\prod_{k=1}^{N-5} \frac{1}{i_{k}!} \log ^{i_{k}} \tau_{k}\right) g_{h_{1}, \ldots, h_{N-4}}^{\left(i_{1}, \ldots, i_{N-5}\right)}$.

2-loop	$\log ^{1}(\tau) \times$ weight 2
3-loop	$\log ^{2}(\tau) \times$ weight 3
4-loop	$\log ^{3}(\tau) \times$ weight 4

- MRK is defined in 2-dimensional transverse space, can be expressed as complex space using $\mathbf{k}_{i}=\mathbf{x}_{i+2}-\mathbf{x}_{i+1}$

$$
\mathbf{x}_{k}=x_{k}^{x}+i x_{k}^{y}
$$

- N-2 points in complex space
- Particular space: space of configurations of n points on a Riemann sphere

- Soft divergences when two points collid

$$
\mathbf{k}_{i}=\mathbf{x}_{i+2}-\mathbf{x}_{i+1}
$$

- This space has been studied extensively by mathematicians
- Natural iterated integrals on this space are a particular set of multiple polylogarithms

$$
\begin{gathered}
G\left(a_{1}, \ldots, a_{n} ; z\right)=\int_{0}^{z} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right) \\
\operatorname{Li}_{n}(z)=\int_{0}^{z} \frac{d t}{t} \operatorname{Li}_{n-1}(t) \\
G(a ; z)=\log \left(1-\frac{z}{a}\right) \quad G(0 ; z)=\log z \quad G(0,1 ; z)=-\operatorname{Li}_{2}(z)
\end{gathered}
$$

- Highly constrained set of possible integrands

$$
\begin{array}{r}
\left\{d \log \left(t_{i}\right), d \log \left(1-t_{i}\right), d \log \left(t_{i}-t_{j}\right)\right\} \\
\quad\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\left(0,1, \infty, t_{1}, \ldots, t_{n-3}\right)
\end{array}
$$

- Simplest function in this space $\log \mathbf{x}_{i}$
- Physics: Only branch cuts when
$\mathbf{k}_{i}=\mathbf{x}_{i+2}-\mathbf{x}_{i+1}$
$\mathbf{q}_{i}=\mathbf{x}_{i+2}-\mathbf{x}_{1}$
$\mathbf{q}_{0}\left[\begin{array}{c}\bullet-\mathbf{x}_{2} \\ \mathbf{q}_{1} \mathbf{k}_{1} \\ \bullet \mathbf{x}_{3} \\ \mathbf{k}_{2}\end{array}\right.$

$$
\begin{aligned}
\log \mathbf{x}_{i} & \rightarrow \log \left|\mathbf{x}_{i}\right|^{2}=\log \mathbf{x}_{i}+\log \overline{\mathbf{x}}_{i} \\
\operatorname{Li}_{2}\left(\mathbf{x}_{i}\right) & \rightarrow \operatorname{Li}_{2}\left(\mathbf{x}_{i}\right)-\operatorname{Li}_{2}\left(\overline{\mathbf{x}}_{i}\right)-\log \left(\mathbf{x}_{i}\right) \log \left(1-\overline{\mathbf{x}}_{i}\right)-\log \left(\overline{\mathbf{x}}_{i}\right) \log \left(1-\mathbf{x}_{i}\right)
\end{aligned}
$$

$$
\log \mathbf{x}_{i} \rightarrow \log \left|\mathbf{x}_{i}\right|^{2}=\log \mathbf{x}_{i}+\log \overline{\mathbf{x}}_{i}
$$

$$
\operatorname{Li}_{2}\left(\mathbf{x}_{i}\right) \rightarrow \operatorname{Li}_{2}\left(\mathbf{x}_{i}\right)-\operatorname{Li}_{2}\left(\overline{\mathbf{x}}_{i}\right)-\log \left(\mathbf{x}_{i}\right) \log \left(1-\overline{\mathbf{x}}_{i}\right)-\log \left(\overline{\mathbf{x}}_{i}\right) \log \left(1-\mathbf{x}_{i}\right)
$$

$$
\begin{aligned}
& g_{h_{1}, \ldots, h_{N-4}}^{\left(i_{1}, \ldots, i_{N-5}\right)}\left(z_{1}, \ldots, z_{N-5}\right)=\frac{(-1)^{N+1}}{2}\left[\prod_{k=1}^{N-5} \sum_{n_{k}=-\infty}^{+\infty}\left(\frac{z_{k}}{\bar{z}_{k}}\right)^{n_{k} / 2} \int_{-\infty}^{+\infty} \frac{d \nu_{k}}{2 \pi}\left|z_{k}\right|^{2 i \nu_{k}} E_{\nu_{k} n_{k}}^{i_{k}}\right] \\
& \quad \times \chi^{h_{1}}\left(\nu_{1}, n_{1}\right)\left[\prod_{j=1}^{N-6} C^{h_{j}}\left(\nu_{j}, n_{j}, \nu_{j+1}, n_{j+1}\right)\right] \chi^{-h_{N-5}\left(\nu_{N-5}, n_{N-5}\right)} .
\end{aligned}
$$

- Knowledge of function space can be exploited by making an ansatz and fixing the coefficients [Lipatov, Prygarin; Dixon, Drummond, Henn; Dixon, Duhr, Pennington; Pennington; Brödel, Sprenger; Bartels, Kormilitzin, Lipatov, Prygarin; Prygarin, Spradlin, Vergu, Volovich, Bargheer, Schomerus, Papathanasiou; Bargheer]
- Successfully used at 6-point and for some 7-point amplitudes
- Interesting OCD result: Dijet cross section in Regge kinematics at

12 loops

- We can ao sobmetnıng more powerful

$$
\begin{aligned}
& g_{h_{1}, \ldots, h_{N-4}}^{\left(i_{1}, \ldots, i_{N-5}\right)}\left(z_{1}, \ldots, z_{N-5}\right)=\frac{(-1)^{N+1}}{2}\left[\prod_{k=1}^{N-5} \sum_{n_{k}=-\infty}^{+\infty}\left(\frac{z_{k}}{\bar{z}_{k}}\right)^{n_{k} / 2} \int_{-\infty}^{+\infty} \frac{d \nu_{k}}{2 \pi}\left|z_{k}\right|^{2 i \nu_{k}} E_{\nu_{k} n_{k}}^{i_{k}}\right] \\
& \quad \times \chi^{h_{1}}\left(\nu_{1}, n_{1}\right)\left[\prod_{j=1}^{N-6} C^{h_{j}}\left(\nu_{j}, n_{j}, \nu_{j+1}, n_{j+1}\right)\right] \chi^{-h_{N-5}\left(\nu_{N-5}, n_{N-5}\right)} .
\end{aligned}
$$

- Fourier-Mellin integral factorizes convolutions

$$
\begin{gathered}
\mathcal{F}[F(\nu, n)]=\sum_{n=-\infty}^{+\infty}\left(\frac{z}{\bar{z}}\right)^{n / 2} \int_{-\infty}^{+\infty} \frac{d \nu}{2 \pi}|z|^{2 i \nu} F(\nu, n) \\
\mathcal{F}[F \cdot G]=\mathcal{F}[F] * \mathcal{F}[G]=f * g=\frac{1}{\pi} \int \frac{d^{2} w}{|w|^{2}} f(w) g\left(\frac{z}{w}\right)
\end{gathered}
$$

- What does this mean at e.g. 6 point?

2-loop	$g^{(1)} \propto \mathcal{F}\left[\chi^{+} \chi^{-}\right]$	
3-loop	$g^{(2)} \propto \mathcal{F}\left[\chi^{+} E \chi^{-}\right]$	$g^{(1)} * \mathcal{E}$
4-loop	$g^{(3)} \propto \mathcal{F}\left[\chi^{+} E^{2} \chi^{-}\right]$	$g^{(2)} * \mathcal{E}=g^{(1)} * \mathcal{E} * \mathcal{E}$

$$
\mathcal{E}(z)=\mathcal{F}\left[E_{\nu n}\right]=-\frac{z+\bar{z}}{2|1-z|^{2}}
$$

- In general not possible to compute these convolutions
- But: We know the function space: Single Valued Multiple Polylogarithms \rightarrow here it is possible!

$$
\mathcal{E}(z)=\mathcal{F}\left[E_{\nu n}\right]=-\frac{z+\bar{z}}{2|1-z|^{2}}
$$

- Start from twoloop amplitude and iterate convolutions

- $g^{(1)}(z)$
- $g^{(2)}(z)$
$-g^{(3)}(z)$
$-g^{(4)}(z)$
- At higher loops and legs new building blocks appear
- But in a systematic way \rightarrow factorization structure for any number of loops and legs

$$
\begin{gathered}
\mathcal{R}_{6}^{(3)}\left(\rho_{1}\right)=g^{(2)}\left(\rho_{1}\right) \\
\mathcal{R}_{7}^{(3)}\left(\rho_{1}, \rho_{2}\right)=g^{(2)}\left(\rho_{1}\right)+g^{(2)}\left(\rho_{2}\right)+g^{(1,1)}\left(\rho_{1}, \rho_{2}\right)
\end{gathered}
$$

$$
\mathcal{R}_{8}^{(3)}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)=g^{(2)}\left(\rho_{1}\right)+g^{(2)}\left(\rho_{2}\right)+g^{(2)}\left(\rho_{3}\right)+g^{(1,1)}\left(\rho_{1}, \rho_{2}\right)+g^{(1,1)}\left(\rho_{1}, \rho_{3}\right)+g^{(1,1)}\left(\rho_{2}, \rho_{3}\right)
$$

- Results so far: MHV, all outgoing particles have the same helicity
- Non-MHV amplitudes also possible
- Helicity flip kernel: $\mathcal{H}(z)=-\frac{z}{(1-z)^{2}}$

$\rho_{a} i_{a}$
$\rho_{b} 0$
$\rho_{c} i_{c}$

- Correctly produces the rational prefactors
- Factorization holds beyond MHV but infinitely many building blocks required to account for the different helicity structures
$\mathcal{R}_{-+\ldots}^{(2)}=\log \tau_{1} g_{-+}^{(1)}\left(\rho_{1}\right)+\sum_{j=2}^{N-5} \log \tau_{j} g_{-++}^{(0,1)}\left(\rho_{1}, \rho_{j}\right)$
$\mathcal{R}_{+-+\ldots}^{(2)}=\log \tau_{1} g_{+-+}^{(1,0)}\left(\rho_{1}, \rho_{2}\right)+\log \tau_{2} g_{+-+}^{(0,1)}\left(\rho_{1}, \rho_{2}\right)+\sum_{j=3}^{N-5} \log \tau_{j} g_{+-++}^{(0,0,1)}\left(\rho_{1}, \rho_{2}, \rho_{j}\right)$
- General formalism for describing amplitudes in MRK at any loop order and for any number of legs
- Successful application of new mathematical results to physics
- Potential to apply modified versions to less symmetric problems like OCD
- Interesting questions beyond leading log: Central emission block, overlap with pentagon OPE
- Single valued multiple polylogarithms useful for other calculations

BACKUP

- Parametrize transverse space
- Highly symmetric space

$$
\begin{aligned}
& \mathbf{k}_{i}=\mathbf{x}_{i+2}-\mathbf{x}_{i+1} \\
& \mathbf{q}_{i}=\mathbf{x}_{i+2}-\mathbf{x}_{1}
\end{aligned}
$$

- Dual conformal symmetry

Conformal symmetry of the x variables

- Target-projectile symmetry

- Describe amplitudes in terms of cross ratios ${ }^{\mathrm{x}_{1}}$.

$$
z_{i}=\frac{\left(\mathbf{x}_{1}-\mathbf{x}_{i+3}\right)\left(\mathbf{x}_{i+2}-\mathbf{x}_{i+1}\right)}{\left(\mathbf{x}_{1}-\mathbf{x}_{i+1}\right)\left(\mathbf{x}_{i+2}-\mathbf{x}_{i+3}\right)}
$$

- Why study restricted kinematics?
- Simplifications and maybe new structures in restricted kinematics
- Collinear kinematics in $\mathrm{N}=4$: Integrability, Pentagon OPE

- Multi-Regge Kinematics: Integrable structures, BFKL resummation, $\mathrm{N}=4$ and QCD !
- QCD and $N=4$ more similar in restricted kinematics than in general
- Building blocks have perturbative expansions and/or all order expressions, for LLA BFKL the leading term in the expansion suffices
- Goal is to perform the Fourier-Mellin integral to determine the remainder function at a given loop order in MRK
- At six point MHV and NMHV amplitudes known to any loop order in terms of single-valued harmonic polylogarithms
[Lipatov, Prygarin; Dixon, Drummond, Henn; Dixon, Duhr, Pennington;
Pennington; Brödel, Sprenger; Bartels, Kormilitzin, Lipatov, Prygarin]
- At two loop MHV factorizes into six point amplitudes
[Prygarin, Spradlin, Vergu, Volovich; Bartels, Prygarin, Lipatov]
- Our result: Arbitrary loop order for any number of legs
- How to use these functions to solve the BFKL equation?

$$
\begin{aligned}
& \quad=1+a i \pi(1 \text { loop })+2 \pi i \sum_{i=2}^{\infty} \sum_{i_{1}+\ldots+i_{N-5}=i-1} a^{i}\left(\prod_{k=1}^{N-5} \frac{1}{i_{k}!} \log ^{i_{k}} \tau_{k}\right) g_{h_{1}, \ldots, h_{N-4}}^{\left(i_{1}, \ldots, i_{N-5}\right)} \\
& g_{h_{1}, \ldots, h_{N-4}}^{\left(i_{1}, \ldots, i_{N-5}\right)}\left(z_{1}, \ldots, z_{N-5}\right)=\frac{(-1)^{N+1}}{2}\left[\prod_{k=1}^{N-5} \sum_{n_{k}=-\infty}^{+\infty}\left(\frac{z_{k}}{\bar{z}_{k}}\right)^{n_{k} / 2} \int_{-\infty}^{+\infty} \frac{d \nu_{k}}{2 \pi}\left|z_{k}\right|^{2 i \nu_{k}} E_{\nu_{k} n_{k}}^{i_{k}}\right] \\
& \times \chi^{h_{1}}\left(\nu_{1}, n_{1}\right)\left[\prod_{j=1}^{N-6} C^{h_{j}}\left(\nu_{j}, n_{j}, \nu_{j+1}, n_{j+1}\right)\right] \chi^{-h_{N-5}\left(\nu_{N-5}, n_{N-5}\right) .}
\end{aligned}
$$

- Treat it like any Mellin integral (Just like e.g. in N3LO Higgs)
- Take residues and sum

- Tedious, does not use knowledge of the function space, difficult at higher loops but provides a check
- Possibly many functions when going to many legs and loops
- Fortunately, the convolutions imply further factorization

$$
\begin{aligned}
& g_{h_{1} \ldots h_{N-4}}^{\left(i_{1}, \ldots, i_{N-5}\right)}\left(\rho_{1}, \ldots, \rho_{N-5}\right)=\quad 1 \\
& z_{i}=\frac{\left(\rho_{i}-\rho_{i-1}\right)\left(\rho_{i+1}-1\right)}{\left(\rho_{i}-\rho_{i+1}\right)\left(\rho_{i-1}-1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{R}_{7}^{(2)}\left(\rho_{1}, \rho_{2}\right)=g^{(1,0)}\left(\rho_{1}, \rho_{2}\right)+g^{(0,1)}\left(\rho_{1}, \rho_{2}\right)=\mathcal{R}_{6}^{(2)}\left(\rho_{1}\right)+\mathcal{R}_{6}^{(2)}\left(\rho_{2}\right) \\
& \mathcal{R}_{8}^{(2)}\left(\rho_{1}, \rho_{2}, \rho_{3}\right)=\mathcal{R}_{6}^{(2)}\left(\rho_{1}\right)+\mathcal{R}_{6}^{(2)}\left(\rho_{2}\right)+\mathcal{R}_{6}^{(2)}\left(\rho_{3}\right) \\
& \mathcal{R}_{N}^{(2)}\left(\left\{\rho_{i}\right\}\right)=\sum_{n=1}^{N} \mathcal{R}_{6}^{(2)}\left(\rho_{n}\right)
\end{aligned}
$$

