Adaptive Integrand Deconposition $\begin{aligned} & \text { LoopFest XV } \\ & \text { University at Buffalo, }\end{aligned}$ North Campus, Amherst, NY
of multiloop scattering amplitudes
August 17, 2016

Amedeo Primo

Based on arXiv:1605.03157
and on work in collaboration with P. Mastrolia and T. Peraro and W. J. Torres-Bobadilla

Motivation

- The long way towards multi-loop multiscale processes
- In the last decade automation boosted NLO calculations
- Computation of virtual amplitudes allowed by new techniques :

- Generalised unitarity (see W. Torres' talk)
- Integrand decomposition method

Ossola, Papadopoulos, Pittau (07), Ellis, Giele Kunszt (08), Giele, Kunszt, Melnikov (08), Mastrolia Ossola, Papadopoulos, Pittau (08), Pittau, del Aguila (04), Mastrolia, Ossola, Reiter, Tramontano (10), Mastrolia, Mirabella, Peraro (12), ...

- Extension to NNLO and beyond has been under intense investigation

Outline

- Integrand Decomposition in $d=4-2 \epsilon$
- Feynman integrals in $d=4-2 \epsilon$
- Multivariate Polynomial Division and Maximum-cut Theorem
- Adaptive Integrand Decomposition in $d=d_{\|}+d_{\perp}$
- Feynman integrals in $d=d_{\|}+d_{\perp}$
- Transverse space and spurious directions
- Divide and Integrate and Divide algorithm
- 1-Loop decomposition revisited
- 2-Loop decomposition
- Examples
- Summary and Conclusions

Integrand decomposition

- Goal : decompose Feynman amplitudes in a minimal set of integrals e.g. Passarino-Veltman decomposition of one-loop amplitudes

$$
\int d^{4} q \frac{\mathcal{N}(q)}{D_{1} \cdots D_{n}}=\sum_{i \ll l} c_{i j k l} \int d^{4} q \frac{1}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i \ll k} c_{i j k} \int d^{4} q \frac{1}{D_{i} D_{j} D_{k}}+\sum_{i \ll k} c_{i j} \int d^{4} q \frac{1}{D_{i} D_{j}}+\sum_{i} c_{i} \int d^{4} q \frac{1}{D_{i}}
$$

- Idea : find a decomposition of the integrand first

$$
\frac{\mathcal{N}(q)}{D_{1} \cdots D_{n}}=\sum_{i \ll l} \widetilde{c}_{i j k l} \frac{\Delta_{i j k l}(q)}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i \ll k} \widetilde{c}_{i j k} \frac{\Delta_{i j k}(q)}{D_{i} D_{j} D_{k}}+\sum_{i \ll k} \widetilde{c}_{i j} \frac{\Delta_{i j}(q)}{D_{i} D_{j}}+\sum_{i} \widetilde{c}_{i} \frac{\Delta_{i}(q)}{D_{i}}
$$

The residues $\Delta_{i \cdots k}(q)$ are polynomials in q

- Monomials in $\Delta_{i \ldots k}(q)$ which do not vanish upon integration, give a representation of the amplitude in terms of a (non-minimal) set of integrals
- If the parametric expression of the residue is known, coefficients can be fixed by sampling the numerator on cuts
- Is there a general way to obtain the residues? Does this hold in d dimensions?

Feynman Integrals in $d=4-2 \epsilon$

- Arbitrary ℓ-loop integral with n external legs

$$
I_{n}^{d(\ell)}[\mathcal{N}]=\int\left(\prod_{i=1}^{\ell} \frac{d^{d} q_{i}}{\pi^{d / 2}}\right) \frac{\mathcal{N}\left(q_{i}\right)}{\prod_{j} D_{j}\left(q_{i}\right)},
$$

$$
\begin{gathered}
D_{j}=l_{j}^{2}+m_{j}^{2} \\
l_{j}^{\alpha}=\sum_{i} \alpha_{i j} q_{i}^{\alpha}+\sum_{i} \beta_{i j} p_{i}^{\alpha},
\end{gathered}
$$

- If external states are in four dimensions, split d-dimensional loop momenta as

$$
\begin{gathered}
\stackrel{d}{\stackrel{+}{q_{i}^{\alpha}}}=\stackrel{4}{q_{[4] i}^{\alpha}}+\stackrel{-2 \epsilon}{\mu_{i}^{\alpha}} \\
q_{i} \cdot q_{j}=q_{[4] i} \cdot q_{[4] j}+\mu_{i j}
\end{gathered}
$$

- Parametrise the integral as

$$
I_{n}^{d(\ell)}[\mathcal{N}]=\Omega_{d}^{(l)} \int \prod_{i=1}^{\ell} d^{4} q_{[4] i} \int \prod_{1 \leq i \leq j \leq \ell} d \mu_{i j}\left[G\left(\mu_{i j}\right)\right]^{\frac{d-5-\ell}{2}} \frac{\mathcal{N}\left(q_{[4] i}, \mu_{i j}\right)}{\prod_{m} D_{m}\left(q_{[4] i}, \mu_{i j}\right)}
$$

Gram determinants

$$
\begin{gathered}
G^{(1)}\left[\mu^{2}\right]=\mu^{2} \\
G^{(2)}\left[\mu_{i j}\right]=\mu_{11} \mu_{22}-\mu_{12}^{2}
\end{gathered}
$$

- Introduce a four-dimensional basis $\mathcal{E}=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$

$$
\mathbf{z}=\left\{x_{1 i}, x_{2 i}, x_{3 i}, x_{4 i}, \mu_{i j}\right\}
$$

$$
q_{[4] i}^{\alpha}=p_{0 i}^{\alpha}+x_{1 i} e_{1}^{\alpha}+x_{2 i} e_{2}^{\alpha}+x_{3 i} e_{3}^{\alpha}+x_{4 i} e_{4}^{\alpha}
$$

$$
[\mathbf{z}]=\frac{\ell(\ell+9)}{2}
$$

Multivariate Polynomial Division

- Given an integrand, consider the ideal generated by the set of denominators

$$
\mathcal{I}_{1 \cdots n}(\mathbf{z})=\frac{\mathcal{N}_{1 \cdots n}(\mathbf{z})}{D_{1}(\mathbf{z}) \cdots D_{k}(\mathbf{z}) \cdots D_{n}(\mathbf{z})}
$$

$$
\mathcal{J}_{1 \cdots n} \equiv\left\langle D_{1}, \cdots, D_{n}\right\rangle=\left\{\sum_{k=1}^{n} h_{k}(\mathbf{z}) D_{k}(\mathbf{z}): h_{k}(\mathbf{z}) \in P[\mathbf{z}]\right\}
$$

- Choose a monomial order and build a Gröbner basis $\mathcal{G}_{1 \cdots n}(\mathbf{z})=\left\{g_{1}(\mathbf{z}), \ldots, g_{m}(\mathbf{z})\right\}$

$$
D_{1}(\mathbf{z})=\cdots=D_{n}(\mathbf{z})=0 \Longleftrightarrow g_{1}(\mathbf{z})=\cdots=g_{m}(\mathbf{z})=0
$$

- Perform the multivariate polynomial division of $\mathcal{N}_{1 \ldots n}(\mathbf{z})$ modulo $\mathcal{G}_{1 \ldots n}(\mathbf{z})$
- Iterate and read off the decomposition

$$
\mathcal{I}_{1 \cdots n}(\mathbf{z})=\sum_{k=0}^{n} \sum_{\left\{i_{1} \cdots i_{k}\right\}} \frac{\Delta_{i_{1} \cdots i_{k}}(\mathbf{z})}{D_{i_{1}}(\mathbf{z}) \cdots D_{i_{k}}(\mathbf{z})} \Rightarrow \int d \mathbf{z} \mathcal{I}_{1 \cdots n}(\mathbf{z})=\sum_{k=0}^{n} \sum_{\left\{i_{1} \cdots i_{k}\right\}} \int d \mathbf{z} \frac{\Delta_{i_{1} \cdots i_{k}}(\mathbf{z})}{D_{i_{1}}(\mathbf{z}) \cdots D_{i_{k}}(\mathbf{z})}
$$

$$
\Delta_{i_{1} \cdots i_{k}}=\Delta_{i_{1} \cdots i_{k}}+\Delta_{i_{1} \cdots i_{k}}^{\text {spurious }}
$$

Maximum-cut Theorem

- Maximum-cut theorem: if the cut-conditions have n_{s} solutions, the residue is parametrised by n_{s} coefficients and admits a univariate representation of degree ($n_{s}-1$)

Integrand decomposition @1Loop

$$
\varlimsup^{n}=\int d^{d} q \frac{\mathcal{N}_{1 \cdots n}(\mathbf{z})}{D_{1}(\mathbf{z}) \cdots D_{k}(\mathbf{z}) \cdots D_{n}(\mathbf{z})}
$$

$$
\begin{gathered}
\mathbf{z}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, \mu^{2}\right\} \\
\mathcal{N}_{1} \ldots n(\mathbf{z})=\sum_{\vec{j} \in J_{5}(n)} \alpha_{\vec{j}} z_{1}^{j_{1}} z_{2}^{j_{2}} z_{3}^{j_{3}} z_{4}^{j_{4}} z_{5}^{j_{5}}
\end{gathered}
$$

- Integrands with $n \geq 6$ are reducible. For $n \leq 5$ the universal residues are

$$
\begin{aligned}
\Delta_{i j k l m} & =c_{0} \mu^{2} \\
\Delta_{i j k l} & =c_{0}+c_{1} x_{4}+c_{2} \mu^{2}+c_{3} x_{4} \mu^{2}+c_{4} \mu^{4} \\
\Delta_{i j k} & =c_{0}+c_{1} x_{4}+c_{2} x_{4}^{2}+c_{3} x_{4}^{3}+c_{4} x_{3}+c_{5} x_{3}^{2}+c_{6} x_{3}^{3}+c_{7} \mu^{2}+c_{8} x_{4} \mu^{2}+c_{9} x_{3} \mu^{2} \\
\Delta_{i j} & =c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2}+c_{3} x_{4}+c_{4} x_{4}^{2}+c_{5} x_{3}+c_{6} x_{3}^{3}+c_{7} x_{1} x_{4}+c_{8} x_{1} x_{3}+c_{9} \mu^{2} \\
\Delta i & =c_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}
\end{aligned}
$$

Ossola, Papadopoulos, Pittau (07)
Ellis, Giele, Kunszt, Melnikov(08),
Mirabella, Ossola, Peraro, Mastrolia (12)

Integrand decomposition @1Loop

$\sum_{i \ll m} c_{i j k m}$

- Integrands with $n \geq 6$ are reducible. For $n \leq 5$ the universal residues are

$$
\begin{aligned}
\Delta_{i j k l m} & =c_{0} \mu^{2} \\
\Delta_{i j k l} & =c_{0}+c_{1} x_{4}+c_{2} \mu^{2}+c_{3} x_{4} \mu^{2}+c_{4} \mu^{4} \\
\Delta_{i j k} & =c_{0}+c_{1} x_{4}+c_{2} x_{4}^{2}+c_{3} x_{4}^{3}+c_{4} x_{3}+c_{5} x_{3}^{2}+c_{6} x_{3}^{3}+c_{7} \mu^{2}+c_{8} x_{4} \mu^{2}+c_{9} x_{3} \mu^{2} \\
\Delta_{i j} & =c_{0}+c_{1} x_{1}+c_{2} x_{1}^{2}+c_{3} x_{4}+c_{4} x_{4}^{2}+c_{5} x_{3}+c_{6} x_{3}^{2}+c_{7} x_{1} x_{4}+c_{8} x_{1} x_{3}+c_{9} \mu^{2} \\
\Delta i & =c_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}
\end{aligned}
$$

Ossola, Papadopoulos, Pittau (07)
Ellis, Giele, Kunszt, Melnikov(08),
Mirabella, Ossola, Peraro, Mastrolia (12)

$$
\Delta_{i_{1} \cdots i_{k}}=\Delta_{i_{1} \cdots i_{k}}+\Delta_{i_{1} \cdots i_{k}}^{\text {spurious }}
$$

- The set of integrals in the decomposition is not minimal due to integral relations

$$
\begin{aligned}
I_{n}^{(1) d}\left[\mu^{2}\right] & =-\epsilon I_{n}^{(1) d+2}[1] \\
\left.I_{n}^{(1) d} d \mu^{4}\right] & =-\epsilon(1-\epsilon) I_{n}^{(1) d+4}[1]
\end{aligned}
$$

$$
I_{n}^{(1) d+2}=\frac{1}{(n-d-1) c_{0}}\left[I_{n}^{(1) d}-\sum_{i=1}^{n} c_{i} I_{n-1, i}^{(1) d}\right]
$$

- Pentagon residue fixed by the maximum-cut theorem. What about lower-point residues?
- Is there any symmetry? How to find spurious terms at higher loops?
see M. Jaquier's talk

Feynman Integrals in $d=d_{\|}+d_{\perp}$

- In an arbitrary ℓ-loop integral with $n \leq 4$ legs external momenta span a reduced space

$$
I_{n}^{d(\ell)}[\mathcal{N}]=\int\left(\prod_{i=1}^{\ell} \frac{d^{d} q_{i}}{\pi^{d / 2}}\right) \frac{\mathcal{N}\left(q_{i}\right)}{\prod_{j} D_{j}\left(q_{i}\right)}
$$

- Split space-time in parallel $d_{\|}=n-1$ and orthogonal $d_{\perp}=5-n-2 \epsilon$ space

Collins(84), van Neerven and

$$
\begin{gathered}
\mathcal{E}=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\} \\
e_{i} \cdot p_{j}=0, \quad i>d_{\|} \\
e_{i} \cdot e_{j}=\delta_{i j}, \quad i, j>d_{\|}
\end{gathered}
$$

Vermaseren (84), Kreimer (92)

- The numerator and the denominators depend on different variables

$$
\lambda_{i}^{\alpha}=\mu_{i}^{\alpha}+\sum_{j=d_{\|+1}}^{4} x_{j i} e_{j}^{\alpha}
$$

Feynman Integrals in $d=d_{\|}+d_{\perp}$

- Recursively define orthonormal basis for the transverse space of each loop momentum

$$
\lambda_{i}:\left\{e_{d_{\|}+1}, \ldots, e_{4}, \hat{\mu}_{i}\right\}
$$

Gram-Schmidt

- Any ℓ-loop integral with $n \leq 4$ can be parametrised as

λ_{1}	$:$	$\left\{e_{d_{\\|}+1}, \ldots, e_{4}, \hat{\mu}_{i}\right\}$
λ_{2}	$:$	$\left\{e_{d_{\\|}}^{\prime}+1, \ldots, e_{4}^{\prime}, \hat{\mu}_{i}^{\prime}\right\}$
λ_{3}	$:$	$\left\{e_{d_{\\|}+1}^{\prime \prime}, \ldots, e_{4}^{\prime \prime}, \hat{\mu}_{i}^{\prime \prime}\right\}$
\ldots	\ldots	

$$
I_{n}^{d(\ell)}[\mathcal{N}]=\Omega_{d}^{(\ell)} \int \prod_{i=1}^{\ell} d^{n-1} q_{\| i} \int d^{\frac{\ell(\ell+1)}{2}} \boldsymbol{\Lambda} \int d^{\left(4-d_{\|}\right) \ell} \boldsymbol{\Theta}_{\perp} \frac{\mathcal{N}\left(q_{i \|}, \boldsymbol{\Lambda}, \boldsymbol{\Theta}_{\perp}\right)}{\prod_{j} D_{j}\left(q_{\| i}, \boldsymbol{\Lambda}\right)}
$$

Feynman Integrals in $d=d_{\|}+d_{\perp}$

- Recursively define orthonormal bases for the transverse space of each loop momentum

$$
\lambda_{i}:\left\{e_{d_{\|}+1}, \ldots, e_{4}, \hat{\mu}_{i}\right\}
$$

Gram-Schmidt

$$
\begin{array}{lll}
\lambda_{1} & : & \left\{e_{d_{\|}+1}, \ldots, e_{4}, \hat{\mu}_{i}\right\} \\
\lambda_{2} & : & \left\{e_{d_{\|}+1}^{\prime}, \ldots, e_{4}^{\prime}, \hat{\mu}_{i}^{\prime}\right\} \\
\lambda_{3} & : & \left\{e_{d_{\|}+1}^{\prime \prime}, \ldots, e_{4}^{\prime \prime}, \hat{\mu}_{i}^{\prime \prime}\right\}
\end{array}
$$

- Any ℓ-loop integral with $n \leq 4$ can be parametrised as

Mastrolia, Peraro, A.P. (16)

$$
I_{n}^{d(\ell)}[\mathcal{N}]=\Omega_{d}^{(\ell)} \int \prod_{i=1}^{\ell} d^{n-1} q_{\| i} \int d^{\frac{\ell(\ell+1)}{2}} \boldsymbol{\Lambda} \int^{d_{\perp}-\text {-space }} d^{\left(4-d_{\|}\right) \ell^{\prime}} \Theta_{\perp} \frac{\mathcal{N}\left(q_{i \|}, \boldsymbol{\Lambda}, \Theta_{\perp}\right)}{\prod_{j} D_{j}\left(q_{\| i}, \boldsymbol{\Lambda}\right)}
$$

- Transverse space parametrised in terms of radial variables and transverse angles

$$
\int d^{\frac{\ell(\ell+1)}{2}} \Lambda=\int_{0}^{\infty} \prod_{i=1}^{\ell} d \lambda_{i i}\left(\lambda_{i i}\right)^{\frac{d_{\perp}-2}{2}} \int_{-1}^{1} \prod_{1 \leq i<j \leq \ell}^{\ell} d \cos \theta_{i j}\left(\sin \theta_{i j}\right)^{d_{\perp}-2-i}
$$

$$
\int d^{\left(4-d_{\|}\right) \ell} \Theta_{\perp}=\int_{-1}^{1} \prod_{i=1}^{4-d_{\|}} \prod_{j=1}^{\ell} d \cos \theta_{i+j-1} j\left(\sin \theta_{i+j-1 j}\right)^{d_{\perp}-i-j-1}
$$

$$
\begin{aligned}
\lambda_{i j} & \rightarrow P\left[\lambda_{k k}, \sin \left[\boldsymbol{\Theta}_{\Lambda}\right], \cos \left[\boldsymbol{\Theta}_{\Lambda}\right]\right] \\
x_{d_{\|}+j i} & \rightarrow P\left[\lambda_{k k}, \sin \left[\boldsymbol{\Theta}_{\perp, \Lambda}\right], \cos \left[\boldsymbol{\Theta}_{\perp, \Lambda}\right]\right]
\end{aligned}
$$

- All Θ_{\perp} integrals reduced to orthogonality relations for Gegenbauer polynomials

$$
\int_{-1}^{1} d \cos \theta(\sin \theta)^{2 \alpha-1} C_{n}^{(\alpha)}(\cos \theta) C_{m}^{(\alpha)}(\cos \theta)=\delta_{m n} \frac{2^{1-2 \alpha} \pi \Gamma(n+2 \alpha)}{n!(n+\alpha) \Gamma^{2}(\alpha)}
$$

Examples

- Four-point integrals : $d_{\|}=3$

$$
\begin{gathered}
q_{i}^{\alpha}=q_{[3] i}^{\alpha}+\lambda_{i}^{\alpha} \\
q_{[3] i}^{\alpha}=\sum_{j=1}^{3} x_{j i} e_{j}^{\alpha} \quad \lambda_{i}^{\alpha}=x_{4 i} e_{4}^{\alpha}+\mu_{i}^{\alpha}
\end{gathered}
$$

$$
\begin{array}{rlr}
I_{4}^{d(1)}[\mathcal{N}] & =\frac{1}{\pi^{2} \Gamma\left(\frac{d-4}{2}\right)} \int d^{3} q_{[3] 1} \int_{0}^{\infty} d \lambda_{11}\left(\lambda_{11}\right)^{\frac{d-5}{2}} \int_{-1}^{1} d \cos \theta_{11}\left(\sin \theta_{11}\right)^{d-6} & \frac{\mathcal{N}\left(q_{[3] 1}, \lambda_{11}, \cos \theta_{1}\right)}{\prod_{m=0}^{3} D_{m}\left(q_{[3] 1}, \lambda_{11}\right)} \\
I_{4}^{d(1)}[1]=\frac{1}{\pi^{3 / 2} \Gamma\left(\frac{d-3}{2}\right)} \int d^{3} q_{[3] 1} \int_{0}^{\infty} d \lambda_{11}\left(\lambda_{11}\right)^{\frac{d-5}{2}} \frac{1}{\prod_{m=0}^{3} D_{m}\left(q_{[3] 1}, \lambda_{11}\right)} & \text { scalar integral }
\end{array}
$$

Transverse variable :

$$
\begin{aligned}
x_{41} & =\sqrt{\lambda_{11}} \cos \theta_{11} \\
\cos \theta_{11} & =\frac{1}{(d-5)} C_{0}^{\left(\frac{d-5}{2}\right)}\left(\cos \theta_{11}\right) C_{1}^{\left(\frac{d-5}{2}\right)}\left(\cos \theta_{11}\right) \\
\cos \theta_{11}^{2} & =\frac{1}{(d-5)^{2}}\left[C_{1}^{\left(\frac{d-5}{2}\right)}\left(\cos \theta_{11}\right)\right]^{2}
\end{aligned}
$$

Tensor integrals :

$$
\begin{aligned}
& I_{4}^{d(1)}\left[x_{41}\right]=I_{4}^{d(1)}\left[x_{41}^{3}\right]=0 \\
& I_{4}^{d(1)}\left[x_{41}^{2}\right]=\frac{1}{d-3} I_{4}^{d(1)}\left[\lambda_{11}\right]=\frac{1}{2} I_{4}^{d+2(1)}[1] \\
& I_{4}^{d(1)}\left[x_{41}^{4}\right]=\frac{3}{(d-3)(d-1)} I_{4}^{d(1)}\left[\lambda_{11}^{2}\right]=\frac{3}{4} I_{4}^{d+4(1)}[1]
\end{aligned}
$$

Examples

- Four-point integrals : $d_{\|}=3$

$$
\begin{gathered}
q_{i}^{\alpha}=q_{[3] i}^{\alpha}+\lambda_{i}^{\alpha} \\
q_{[3] i}^{\alpha}=\sum_{j=1}^{3} x_{j i} e_{j}^{\alpha} \quad \lambda_{i}^{\alpha}=x_{4 i} e_{4}^{\alpha}+\mu_{i}^{\alpha}
\end{gathered}
$$

$$
\begin{aligned}
I_{4}^{d(3)}[\mathcal{N}]=\frac{2^{d-7}}{\pi^{8} \Gamma(d-6) \Gamma\left(\frac{d-4}{2}\right)} \int \prod_{i=1}^{3} d^{3} q_{[3]} i & \int_{0}^{\infty} \prod_{i=1}^{3} d \lambda_{i i}\left(\lambda_{i i}\right)^{\frac{d-5}{2}} \int_{-1}^{1} \prod_{1 \leq i<j \leq 3}^{3} d \cos \theta_{i j}\left(\sin \theta_{i j}\right)^{d-5-i} \\
& \int_{-1}^{1} \prod_{j=1}^{3} d \cos \theta_{j}\left(\sin \theta_{j}\right)^{d-5 j} \frac{\mathcal{N}\left(q_{[3] i}, \lambda_{i i}, \cos \theta_{i j}, \sin \theta_{i j}\right)}{\prod_{m=0}^{9} D_{m}\left(q_{[3], i}, \lambda_{i i}, \cos \theta_{12}, \cos \theta_{13}, \cos \theta_{23}\right)}
\end{aligned}
$$

Transverse variables :

$$
\left\{\begin{aligned}
\lambda_{12}= & \sqrt{\lambda_{11} \lambda_{22}} \cos \theta_{12} \\
\lambda_{23}= & \sqrt{\lambda_{22} \lambda_{33}} \cos \theta_{13} \\
\lambda_{13}= & \sqrt{\lambda_{11} \lambda_{33}}\left(\cos \theta_{12} \cos \theta_{13}+\sin \theta_{12} \sin \theta_{13} \cos \theta_{23}\right) \\
x_{41}= & \sqrt{\lambda_{11}} \cos \theta_{11} \\
x_{42}= & \sqrt{\lambda_{22}}\left(\cos \theta_{11} \cos \theta_{12}+\sin \theta_{11} \sin \theta_{12} \cos \theta_{22}\right) \\
x_{43}= & \sqrt{\lambda_{33}}\left(\cos \theta_{11} \cos \theta_{12} \cos \theta_{13}+\sin \theta_{11} \sin \theta_{12} \cos \theta_{22} \cos \theta_{13}\right. \\
& -\sin \theta_{11} \sin \theta_{13} \cos \theta_{12} \cos \theta_{22} \cos \theta_{23}+\sin \theta_{12} \sin \theta_{13} \cos \theta_{11} \cos \theta_{23} \\
& \left.+\sin \theta_{11} \sin \theta_{13} \sin \theta_{22} \sin \theta_{23} \cos \theta_{33}\right)
\end{aligned}\right.
$$

$$
\begin{aligned}
I_{4}^{d(3)}\left[x_{41}^{\alpha_{4}} x_{42}^{\beta_{4}} x_{43}^{\gamma_{4}}\right] & =0, \quad \alpha_{4}+\beta_{4}+\gamma_{4}=2 n+1 \\
I_{4}^{d(3)}\left[x_{4 i} x_{4 j}\right] & =\frac{1}{d-3} I_{4}^{d(3)}\left[\lambda_{i j}\right]
\end{aligned}
$$

Feynman Integrals in $d=d_{\|}+d_{\perp}$

- Any ℓ-loop integral with $n \leq 4$ can be parametrised as

$$
I_{n}^{d(\ell)}[\mathcal{N}]=\Omega_{d}^{(\ell)} \int \prod_{i=1}^{\stackrel{d_{\|} \text {-space }}{\ell} d^{n-1} q_{\| i}} \frac{d_{\perp} \text {-space }}{\int d^{\frac{\ell(\ell+1)}{2}} \boldsymbol{\Lambda} \int d^{\left(4-d_{\|}\right) \ell} \boldsymbol{\Theta}_{\perp}} \frac{\mathcal{N}\left(q_{i \|}, \boldsymbol{\Lambda}, \Theta_{\perp}\right)}{\prod_{j} D_{j}\left(q_{\| i}, \boldsymbol{\Lambda}\right)}
$$

- Polynomial dependence on transverse directions is exposed
- Integration over transverse directions through Gegenbauer polynomials
- All spurious contributions detected
- Alternative to Passarino-Veltman reduction
- Holds for all variables not appearing in the denominators (e.g. in factorised and ladder
 integrals)
- What happens if combined with integrand decomposition?

Adaptive Integrand Decomposition

- In $d=d_{\|}+d_{\perp}$ denominators depend on a reduced set of variables

$$
\begin{array}{cc}
d=4-2 \epsilon & d=d_{\|}+d_{\perp} \\
\hline \mathcal{I}_{i_{1} \ldots i_{r}}(\mathbf{z}) \equiv \frac{\mathcal{N}_{i_{1} \ldots i_{r}}(\mathbf{z})}{D_{i_{1}}(\mathbf{z}) \cdots D_{i_{r}}(\mathbf{z})} \\
\mathbf{z}=\left\{\mathbf{x}, \mu_{i j}\right\} & \begin{array}{c}
\mathcal{I}_{i_{1} \ldots i_{r}}\left(\boldsymbol{\tau}, \mathbf{x}_{\perp}\right) \equiv \frac{\mathcal{N}_{i_{1} \ldots i_{r}}\left(\boldsymbol{\tau}, \mathbf{x}_{\perp}\right)}{D_{i_{1}}(\boldsymbol{\tau}) \cdots D_{i_{r}}(\boldsymbol{\tau})} \\
\boldsymbol{\tau}=\left\{\mathbf{x}_{\|}, \lambda_{i j}\right\}
\end{array}
\end{array}
$$

- Cuts are adaptive, the dimension of the cut-solution space depends on d_{\perp}
- In $d=d_{\|}+d_{\perp}$ on-shell conditions \Leftrightarrow linear equations for the (reducible) variables
E.g. 1-loop :
$D_{i}(\boldsymbol{\tau})=\left(q_{\|}+\sum_{j=0}^{i} p_{j}\right)^{2}+\lambda^{2}+m_{i}^{2}$
$i=1, \ldots, n$$\Leftrightarrow$

$$
D_{1}=\cdots=D_{n}=0
$$

$$
\left\{\begin{array}{c}
D_{i}(\boldsymbol{\tau})-D_{1}(\boldsymbol{\tau})=q_{\|} \cdot v_{i}+c_{i} \\
D_{1}(\boldsymbol{\tau})=q_{\|}^{2}+\lambda^{2}+m_{1}^{2} \\
i=2, \ldots, n
\end{array}\right\}\left\{\begin{array}{l}
\boldsymbol{\tau}_{1}=\kappa_{1} \\
\cdots \\
\boldsymbol{\tau}_{n}=\kappa_{n}
\end{array}\right.
$$

- Polynomial division reduced to a substitution rule (of reducible variables in terms of denominators and physical ISP)

Divide and Integrate and Divide

- Residues are determined in three steps:

1) Divide

$$
\mathcal{N}_{i_{1} \ldots i_{r}}\left(\boldsymbol{\tau}, \mathrm{x}_{\perp}\right)=\sum_{k=1 \downharpoonright}^{r} \mathcal{N}_{i_{1} \ldots i_{k-1} i_{k+1} \ldots i_{r}}\left(\boldsymbol{\tau}, \mathrm{x}_{\perp}\right) D_{i_{k}}(\boldsymbol{\tau})+\Delta_{i_{1} \ldots i_{r}}\left(\mathrm{x}_{\|}, \mathrm{x}_{\perp}\right)
$$

Monomial order $\lambda_{i j} \prec \mathbf{x}_{\|}$ $\lambda_{i j}$ are reducible
2) Integrate

$$
\begin{aligned}
\int \prod_{1=j}^{\ell} \frac{d^{d} q_{j}}{\pi^{d / 2}} \frac{\Delta_{i_{1} \ldots i_{r}}\left(\mathbf{x}_{\|}, \mathbf{x}_{\perp}\right)}{D_{i_{1}}(\boldsymbol{\tau}) \ldots D_{i_{r}}(\boldsymbol{\tau})} & =\Omega_{d}^{(\ell)} \int \prod_{i=1}^{\ell} d^{n-1} q_{\| i} \int d^{\frac{\ell(\ell+1)}{2}} \boldsymbol{\Lambda} \frac{\Delta_{i_{1} \ldots i_{n}}^{\mathrm{int}}(\boldsymbol{\tau})}{D_{i_{1}}(\boldsymbol{\tau}) \ldots D_{i_{r}}(\boldsymbol{\tau})} \\
\Delta_{i_{1} \ldots i_{r}}^{\mathrm{int}}(\boldsymbol{\tau}) & =\int d^{\left(4-d_{\|}\right) \ell} \boldsymbol{\Theta}_{\perp} \Delta_{i_{1} \ldots i_{r}}\left(\boldsymbol{\tau}, \Theta_{\perp}\right)
\end{aligned}
$$

$$
\mathbf{x}_{\perp i} \rightarrow P\left[\boldsymbol{\tau}, \sin \left[\mathbf{\Theta}_{\perp}\right], \cos \left[\mathbf{\Theta}_{\perp}\right]\right]
$$

Integrate over Θ_{\perp}

3) Divide

$$
\Delta_{i_{1} \ldots i_{r}}^{\mathrm{int}}(\boldsymbol{\tau})=\sum_{k=1}^{r} \mathcal{N}_{\substack{\text { int...ik-1 } \\ \text { Subtopology } \\ \text { in } \\ \text { in }}}^{i_{k+1}}(\boldsymbol{\tau}) D_{i_{k}}(\boldsymbol{\tau})+\Delta_{i_{1} \ldots i_{r}}^{\prime}\left(\mathbf{x}_{\|}\right)
$$

monomials only

- The final residue is free from spurious terms and suitable for integral reduction

Adaptive Integrand Decomposition @1Loop

- @1Loop : $[\boldsymbol{\tau}]=n \Rightarrow D_{i_{1}}(\boldsymbol{\tau})=\cdots=D_{i_{n}}(\boldsymbol{\tau})=0$ all cuts are zero-dimensional (No ISP) 1) Divide

$$
\begin{aligned}
\Delta_{i j k l m} & =c_{0} \mu^{2} \\
\Delta_{i j k l} & =c_{0}+c_{1} x_{4}+c_{2} x_{4}^{2}+c_{3} x_{4}^{3}+c_{4} x_{4}^{4} \\
\Delta_{i j k} & =c_{0}+c_{1} x_{3}+c_{2} x_{4}+c_{3} x_{3}^{2}+c_{4} x_{3} x_{4}+c_{5} x_{4}^{2}+c_{6} x_{3}^{3}+c_{7} x_{3}^{2} x_{4}+c_{8} x_{3} x_{4}^{2}+c_{9} x_{4}^{3} \\
\Delta_{i j} & =c_{0}+c_{1} x_{2}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{2}^{2}+c_{5} x_{2} x_{3}+c_{6} x_{2} x_{4}+c_{7} x_{3}^{2}+c_{8} x_{3} x_{4}+c_{9} x_{4}^{2} \\
\left.\Delta_{i j}\right|_{p^{2}} & =0 \\
\Delta i & =c_{0}+c_{1} x_{1}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{1}^{2}+c_{5} x_{1} x_{3}+c_{6} x_{1} x_{4}+c_{7} x_{3}^{2}+c_{8} x_{3} x_{4}+c_{9} x_{4}^{2} \\
\Delta i & =c_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}
\end{aligned}
$$

All residues fixed by the Maximum-cut theorem

Adaptive Integrand Decomposition @1Loop

- @1Loop : $[\boldsymbol{\tau}]=n \Rightarrow D_{i_{1}}(\boldsymbol{\tau})=\cdots=D_{i_{n}}(\boldsymbol{\tau})=0$ all cuts are zero-dimensional (No ISP) 1) Divide

$$
\begin{aligned}
\Delta_{i j k l m} & =c_{0} \mu^{2} \\
\Delta_{i j k l} & =c_{0}+c_{1} x_{4}+c_{2} x_{4}^{2}+c_{3} x_{4}^{3}+c_{4} x_{4}^{4} \\
\Delta_{i j k} & =c_{0}+c_{1} x_{3}+c_{2} x_{4}+c_{3} x_{3}^{2}+c_{4} x_{3} x_{4}+c_{5} x_{4}^{2}+c_{6} x_{3}^{3}+c_{7} x_{3}^{2} x_{4}+c_{8} x_{3} x_{4}^{2}+c_{9} x_{4}^{3} \\
\Delta_{i j} & =c_{0}+c_{1} x_{2}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{2}^{2}+c_{5} x_{2} x_{3}+c_{6} x_{2} x_{4}+c_{7} x_{3}^{2}+c_{8} x_{3} x_{4}+c_{9} x_{4}^{2}
\end{aligned}
$$

All residues fixed by the Maximum-cut theorem

2) Integrate

$$
\begin{aligned}
\Delta_{i j k l m}^{\mathrm{int}} & =c_{0} \mu^{2} \\
\Delta_{i j k l}^{\mathrm{int}} & =c_{0}+\frac{1}{d-3} c_{2} \lambda^{2}+c_{4} \frac{1}{(d-1)(d-3)} \lambda^{4} \\
\Delta_{i j k}^{\mathrm{int}} & =c_{0}+\frac{1}{d-2}\left(c_{3}+c_{4}\right) \lambda^{2} \\
\Delta_{i j}^{\mathrm{int}} & =c_{0}+\frac{1}{d-1}\left(c_{4}+c_{7}+c_{9}\right) \lambda^{2} \\
\left.\Delta_{i j}^{\mathrm{int}}\right|_{p^{2}}=0 & =c_{0}+c_{1} x_{1}+c_{4} x_{1}^{2}+\frac{1}{d-2}\left(c_{7}+c_{9}\right) \lambda^{2} \\
\Delta i^{\mathrm{int}} & =c_{0}
\end{aligned}
$$

Spurious terms drop out
Dim-shifted integrals (but λ^{2} reducible)

Adaptive Integrand Decomposition @1Loop

- @1Loop : $[\boldsymbol{\tau}]=n \Rightarrow D_{i_{1}}(\boldsymbol{\tau})=\cdots=D_{i_{n}}(\boldsymbol{\tau})=0$ all cuts are zero-dimensional (No ISP) 1) Divide

$$
\begin{aligned}
\Delta_{i j k l m} & =c_{0} \mu^{2} \\
\Delta_{i j k l} & =c_{0}+c_{1} x_{4}+c_{2} x_{4}^{2}+c_{3} x_{4}^{3}+c_{4} x_{4}^{4} \\
\Delta_{i j k} & =c_{0}+c_{1} x_{3}+c_{2} x_{4}+c_{3} x_{3}^{2}+c_{4} x_{3} x_{4}+c_{5} x_{4}^{2}+c_{6} x_{3}^{3}+c_{7} x_{3}^{2} x_{4}+c_{8} x_{3} x_{4}^{2}+c_{9} x_{4}^{3} \\
\Delta_{i j} & =c_{0}+c_{1} x_{2}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{2}^{2}+c_{5} x_{2} x_{3}+c_{6} x_{2} x_{4}+c_{7} x_{3}^{2}+c_{8} x_{3} x_{4}+c_{9} x_{4}^{2} \\
\left.\Delta_{i j}\right|_{p^{2}} & =0=c_{0}+c_{1} x_{1}+c_{2} x_{3}+c_{3} x_{4}+c_{4} x_{1}^{2}+c_{5} x_{1} x_{3}+c_{6} x_{1} x_{4}+c_{7} x_{3}^{2}+c_{8} x_{3} x_{4}+c_{9} x_{4}^{2} \\
\Delta i & =c_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}
\end{aligned}
$$

All residues fixed by the Maximum-cut theorem
2) Integrate

$$
\begin{aligned}
\Delta_{i j k l m}^{\mathrm{int}} & =c_{0} \mu^{2} \\
\Delta_{i j k l}^{\mathrm{int}} & =c_{0}+\frac{1}{d-3} c_{2} \lambda^{2}+c_{4} \frac{1}{(d-1)(d-3)} \lambda^{4} \\
\Delta_{i j k}^{\mathrm{int}} & =c_{0}+\frac{1}{d-2}\left(c_{3}+c_{4}\right) \lambda^{2} \\
\Delta_{i j}^{\mathrm{int}} & =c_{0}+\frac{1}{d-1}\left(c_{4}+c_{7}+c_{9}\right) \lambda^{2} \\
\left.\Delta_{i j}^{\mathrm{int}}\right|_{p^{2}}=0 & =c_{0}+c_{1} x_{1}+c_{4} x_{1}^{2}+\frac{1}{d-2}\left(c_{7}+c_{9}\right) \lambda^{2} \\
\Delta^{\mathrm{int}} & =c_{0}
\end{aligned}
$$

3) Divide

$$
\begin{aligned}
\Delta_{i j k l m}^{\prime} & =c_{0} \mu^{2} \\
\Delta_{i j k l}^{\prime} & =c_{0}(d) \\
\Delta_{i j k}^{\prime} & =c_{0}(d) \\
\Delta_{i j}^{\prime} & =c_{0}(d) \\
\left.\Delta_{i j}^{\prime}\right|_{p^{2}} & =0=c_{0}(d)+c_{1} x_{1}+c_{4} x_{1}^{2} \\
\Delta_{i}^{\prime} & =c_{0}
\end{aligned}
$$

Spurious terms drop out
Dim-shifted integrals (but λ^{2} reducible)

Dim-recurrence
@integrand level

Adaptive Integrand Decomposition @1Loop

- @1Loop : $[\boldsymbol{\tau}]=n \Rightarrow D_{i_{1}}(\boldsymbol{\tau})=\cdots=D_{i_{n}}(\boldsymbol{\tau})=0$ all cuts are zero-dimensional (No ISP) 1) Divide

$$
\begin{aligned}
\Delta_{i j k l m} & =c_{0} \mu^{2} \\
\Delta_{i j k l} & =c_{0}+c_{1} x_{4}+c_{2} x_{4}^{2}+c_{3} x_{4}^{3}+c_{4} x_{4}^{4} \\
\Delta_{i j k} & =c_{0}+c_{1} x_{3}+c_{2} x_{4}+c_{3} x_{3}^{2}+c_{4} x_{3} x_{4}+c_{5} x_{4}^{2}+c_{6} x_{3}^{3}+c_{7} x_{3}^{2} x_{4}+c_{8} x_{3} x_{4}^{2}+c_{9} x_{4}^{3}
\end{aligned}
$$

All residues fixed by the

$$
\begin{aligned}
\Delta_{i j k}^{\mathrm{int}} & =c_{0}+\frac{1}{d-2}\left(c_{3}+c_{4}\right) \lambda^{2} \\
\Delta_{i j}^{\mathrm{int}} & =c_{0}+\frac{1}{d-1}\left(c_{4}+c_{7}+c_{9}\right) \lambda^{2} \\
\left.\Delta_{i j}^{\mathrm{int}}\right|_{p^{2}}=0 & =c_{0}+c_{1} x_{1}+c_{4} x_{1}^{2}+\frac{1}{d-2}\left(c_{7}+c_{9}\right) \lambda^{2} \\
\Delta i^{\mathrm{int}} & =c_{0}
\end{aligned}
$$

$$
\begin{aligned}
\Delta_{i j k l} & =c_{0}(d) \\
\Delta_{i j k}^{\prime} & =c_{0}(d) \\
\Delta_{i j}^{\prime} & =c_{0}(d) \\
\left.\Delta_{i j}^{\prime}\right|_{p^{2}}=0 & =c_{0}(d)+c_{1} x_{1}+c_{4} x_{1}^{2} \\
\Delta i^{\prime} & =c_{0}
\end{aligned}
$$

Spurious terms drop out
Dim-shifted integrals (but λ^{2} reducible)

Dim-recurrence
@integrand level

Adaptive Integrand Decomposition @2Loops

(a) $\mathcal{I}_{1234567891011}^{\mathrm{P}}$

(b) $\mathcal{I}_{12345678910} \mathrm{NP} 11$

(c) $\mathcal{I}_{12345}^{\mathrm{NP} 2}$

- Three maximum-cut topologies $[\mathbf{z}]=\frac{2(2+9)}{2}=11$, in arbitrary kinematics
- Universal parametrisation of the residues in renormalisable theories

$$
\mathcal{N}_{i_{1} \cdots i_{r}}(\mathbf{z})=\sum_{\vec{j} \in J_{11}\left(s_{1}, s_{2}, s_{\mathrm{tot}}\right)} \alpha_{\vec{j}} z_{1}^{j_{1}} z_{2}^{j_{2}} \ldots z_{11}^{j_{11}}
$$

$$
\begin{cases}\sum_{i=1}^{4} j_{i}+2 j_{9}+j_{11} \leq s_{1}, & s_{1}=r_{1}+r_{12} \\ \sum_{i=5}^{8} j_{i}+2 j_{10}+j_{11} \leq s_{2}, & s_{2}=r_{2}+r_{12} \\ \sum_{i=1}^{8} j_{i}+2\left(j_{9}+j_{10}+j_{11}\right) \leq s_{12}, & s_{\mathrm{tot}}=r_{1}+r_{2}+r_{12}-1\end{cases}
$$

Adaptive Integrand Decomposition @2Loops

$\mathcal{I}_{i_{1} \cdots i_{n}}$	$\Delta_{i_{1} \cdots i_{r}}$
	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{12345678910}^{\mathrm{NP} 1}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{1234}^{\mathrm{NP} 2}$ 45678910	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{234567891011}^{\mathrm{P}}$	$\begin{gathered} 6 \\ \left\{1, x_{41}\right\} \end{gathered}$
$\mathcal{I}_{234567891011}^{\mathrm{NP} 1}$	$\begin{gathered} 10 \\ \left\{1, x_{42}\right\} \end{gathered}$
($\begin{gathered} 6 \\ \left\{1, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{123467891011}^{\text {NP2 }}$	$\begin{gathered} 10 \\ \left\{1, x_{42}\right\} \end{gathered}$
$\sim_{23467891011}^{\mathrm{P}}$	$\begin{gathered} 15 \\ \left\{1, x_{31}, x_{41}\right\} \end{gathered}$
$\mathcal{I}_{23457891011}^{\mathrm{P}}$	$\begin{gathered} 33 \\ \left\{1, x_{41}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{23457891011}^{\mathrm{NP} 1}$	$\begin{gathered} 39 \\ \left\{1, x_{41}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{12345691011}^{\mathrm{NP} 1}$	$\begin{gathered} 15 \\ \left\{1, x_{32}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{23467891011}^{\mathrm{NP} 2}$	$\begin{gathered} 45 \\ \left\{1, x_{41}, x_{42}\right\} \end{gathered}$

$\mathcal{I}_{i_{1} \ldots i_{r}}$	$\Delta_{i_{1} \cdots i_{r}}$
$\mathcal{I}_{124567891011}^{\mathrm{P}}$	$\begin{gathered} 6 \\ \left\{1, x_{41}\right\} \end{gathered}$
	$\begin{gathered} 10 \\ \left\{1, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{123}^{\mathrm{NPI}}$	$\begin{gathered} 6 \\ \left\{1, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{124567891011}^{\mathrm{NP} 2}$ 焉	$\begin{gathered} 10 \\ \left\{1, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{24567891011}^{\mathrm{P}}$	$\begin{gathered} 15 \\ \left\{1, x_{31}, x_{41}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{12347891011}^{\mathrm{p}}$	$\begin{gathered} 33 \\ \left\{1, x_{41}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{12456891011}^{\mathrm{NP} 1} \xrightarrow{\text { N/ }}$	$\begin{gathered} 39 \\ \left\{1, x_{41}, x_{42}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{12345681011}^{\mathrm{NP} 1}$	$\begin{gathered} 15 \\ \left\{1, x_{32}, x_{42}\right\} \\ \hline \end{gathered}$
($\mathcal{I}_{12468899111}^{\text {NP2 }}$	$\begin{gathered} 45 \\ \left\{1, x_{41}, x_{42}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{247891011}^{\mathrm{NP} 1}$	$\begin{gathered} 20 \\ \left\{1, x_{21}, x_{31}, x_{41}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{2341891011}^{\mathrm{NP} 1} \xrightarrow{\square}$	$\begin{gathered} 76 \\ \left\{1, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{2457891011}^{\mathrm{NP} 1}$	$\begin{gathered} 116 \\ \left\{1, x_{41}, x_{32}, x_{42}\right\} \\ \hline \end{gathered}$
$I_{1245781011}^{\mathrm{NP} 1}$	$\begin{gathered} 80 \\ \left\{1, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$

$\mathcal{I}_{i_{1} \cdots i_{r}}$	$\Delta_{i_{1} \cdots i_{r}}$
$\mathcal{I}_{13567891011}^{\mathrm{p}}$	$\begin{gathered} 15 \\ \left\{1, x_{31}, x_{41}\right\} \end{gathered}$
Clor	$\begin{gathered} 62 \\ \left\{1, x_{41}, x_{42}\right\} \end{gathered}$
$\tau_{235689011}^{\mathrm{NP} 1}$	$\begin{gathered} 39 \\ \left\{1, x_{41}, x_{42}\right\} \end{gathered}$
$\sim_{\text {I23456910 } 11}^{\mathrm{NP} 1}$	$\begin{gathered} 15 \\ \left\{1, x_{32}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{13567891011}^{\text {NP2 }}$	$\begin{gathered} 45 \\ \left\{1, x_{41}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{25678910}{ }^{\mathrm{p}}$	$\begin{gathered} 20 \\ \left\{1, x_{21}, x_{31}, x_{41}\right\} \end{gathered}$
$\mathcal{I}_{2356891011}^{\mathrm{p}} \text { দு }$	$\begin{gathered} 76 \\ \left\{1, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{2567891011}^{\mathrm{NP} 1}$	$\begin{gathered} 80 \\ \left\{1, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{2456891011}^{\mathrm{NP} 1}$	$\begin{gathered} 116 \\ \left\{1, x_{41}, x_{32}, x_{42}\right\} \end{gathered}$
	$\left\{1, x_{11}, x_{21}, x_{31}, x_{41}\right\}$
$\mathcal{I}_{257891011}^{\mathrm{P}}$ ¢	$\begin{gathered} 94 \\ \left\{1, x_{21}, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{235791011}^{\mathrm{p}} \quad \square$	$\begin{gathered} 160 \\ \left\{1, x_{31}, x_{41}, x_{32}, x_{42}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{245991011}^{\mathrm{NP} 1}$	$\begin{gathered} 185 \\ \left\{1, x_{31}, x_{41}, x_{32}, x_{42}\right\} \end{gathered}$

$\mathcal{I}_{i_{1} \ldots i_{r}}$	$\Delta_{i_{1} \cdots i_{r}}$
$\mathcal{I}_{15678910}{ }_{11}$	$\begin{gathered} 20 \\ \left\{1, x_{21}, x_{31}, x_{41}\right\} \end{gathered}$
$\mathcal{I}_{1356791011}^{\mathrm{P}} \xrightarrow{\square}$	$\begin{gathered} 76 \\ \left\{1, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{1567891011}^{\mathrm{NP} 1}$	$\begin{gathered} 80 \\ \left\{1, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{167891011}^{\mathrm{P}}$	$\begin{gathered} 15 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{1356891011}^{\text {NP }}$	$\begin{gathered} 116 \\ \left\{1, x_{31}, x_{32}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{146791011}^{\mathrm{P}} \prec$	$\begin{gathered} \hline 94 \\ \left\{1, x_{21}, x_{31}, x_{41}, x_{42}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{1678911}^{\mathrm{P}}$	$\begin{gathered} 66 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{1256910}^{\mathrm{P}}{ }_{11}$	$\begin{gathered} 160 \\ \left\{1, x_{31}, x_{41}, y_{32}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{135791011}^{\mathrm{NP}}$	$\begin{gathered} 185 \\ \left\{1, x_{31}, x_{41}, x_{32}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{1256911}^{\mathrm{P}}$	$\begin{gathered} 180 \\ \left\{1, x_{11}, x_{31}, x_{41}, x_{32}, x_{42}\right\} \end{gathered}$
$\mathcal{I}_{24691011}^{\mathrm{NP} 1}$	$\begin{gathered} 246 \\ \left\{1, x_{31}, x_{41}, x_{22}, x_{32}, x_{42}\right\} \end{gathered}$

Adaptive Integrand Decomposition @2Loops

$\mathcal{I}_{i_{11} \cdots i_{r}}$	$\Delta_{i_{1} \cdots i_{r}}$	$\Delta_{i_{1} \ldots i_{r}}^{\text {int }}$	$\Delta_{i_{1} \ldots i_{r}}^{\prime}$
$\mathcal{I}_{156791011}^{\mathrm{p}} \sim$	$\begin{gathered} 94 \\ \left\{1, x_{21}, x_{31}, x_{41}, x_{42}\right\} \\ \hline \end{gathered}$	$\begin{gathered} 53 \\ \left\{1, x_{21}, x_{31}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ \left\{1, x_{21}, x_{31}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{1225691011}^{\mathrm{p}} \quad \square$	$\begin{gathered} 160 \\ \left\{1, x_{31}, x_{41}, x_{32}, x_{42}\right\} \\ \hline \end{gathered}$	$\begin{gathered} 93 \\ \left\{1, x_{31}, x_{32}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 22 \\ \left\{1, x_{31}, x_{32}\right\} \\ \hline \end{gathered}$
$\left.\mathcal{I}_{135691011}^{\mathrm{NP} 1}\right) \checkmark$	$\begin{gathered} 184 \\ \left\{1, x_{31}, x_{42}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 105 \\ \left\{1, x_{31}, x_{32}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 25 \\ \left\{1, x_{31}, x_{32}\right\} \end{gathered}$
$\mathcal{I}_{1356811}^{\mathrm{p}} \quad \square$	$\begin{gathered} 180 \\ \left\{1, x_{31}, x_{41}, x_{22}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} \hline 101 \\ \left\{1, x_{31}, x_{22}, x_{32}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 39 \\ \left\{1, x_{31}, x_{22}, y_{32}\right\} \end{gathered}$
$\mathcal{I}_{16891011}^{\mathrm{p}} \quad \longmapsto$	$\begin{gathered} 66 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 35 \\ \left\{1, x_{11}, x_{21}, x_{31}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 10 \\ \left\{1, x_{11}, x_{21}, x_{31}\right\} \end{gathered}$
$\tau_{24691011}^{\mathrm{NP} 1} \quad \searrow$	$\begin{gathered} 245 \\ \left\{1, x_{31}, x_{41}, x_{21}, x_{32}, x_{42}\right\} \\ \hline \end{gathered}$	$\begin{gathered} 137 \\ \left\{1, x_{31}, x_{22}, x_{32}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 55 \\ \left\{1, x_{31}, x_{22}, y_{32}\right\} \end{gathered}$
$\mathcal{I}_{3681011}^{\mathrm{P}} \quad \square$	$\begin{gathered} \hline 115 \\ \left\{1, x_{31}, x_{41}, x_{12}, x_{22}, x_{32}, x_{42}\right\} \\ \hline \end{gathered}$	$\left\{1, x_{31}, x_{12}, x_{22}, x_{32}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\}$	$\begin{gathered} 35 \\ \left\{1, x_{31}, x_{12}, x_{22}, x_{32}\right\} \end{gathered}$
I_{136811}^{P}	$\begin{gathered} \hline 180 \\ \left\{1, x_{11}, x_{31}, x_{41}, x_{22}, x_{32}, x_{42}\right\} \\ \hline \end{gathered}$	$\begin{gathered} 103 \\ \left\{1, x_{11}, x_{31}, x_{22}, x_{32}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 60 \\ \left\{1, x_{11}, x_{31}, x_{22}, x_{32}\right\} \end{gathered}$

$\mathcal{I}_{i_{1} \ldots i_{r}}$	$\Delta_{i_{1} \cdots i_{r}}$	$\Delta_{i_{1} \ldots i_{r}}^{\text {int }}$	$\Delta_{i_{1} \ldots i_{r}}^{\prime}$
$\mathcal{I}_{1356911}^{\mathrm{P}}$	$\begin{gathered} 180 \\ \left\{1, x_{31}, x_{41}, x_{22}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 22 \\ \left\{1, x_{22}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 4 \\ \left\{1, x_{22}\right\} \end{gathered}$
$\mathcal{I}_{15691011}^{\mathrm{NP} 1} \bigcirc$	$\begin{gathered} 240 \\ \left\{1, x_{31}, x_{41}, x_{22}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 30 \\ \left\{1, x_{22}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 6 \\ \left\{1, x_{22}\right\} \end{gathered}$
$\mathcal{I}_{1571011}^{\mathrm{p}}>$	$\begin{gathered} 180 \\ \left\{1, x_{21}, x_{31}, x_{41}, x_{12}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 33 \\ \left\{1, x_{21}, x_{12}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 13 \\ \left\{1, x_{21}, x_{12}\right\} \end{gathered}$
$\mathcal{I}_{1691011}^{\mathrm{P}}$	$\begin{gathered} 115 \\ \left\{1, x_{31}, x_{41}, x_{12}, x_{22}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 20 \\ \left\{1, x_{11}, x_{22} \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 6 \\ \left\{1, x_{12}, x_{22}\right\} \end{gathered}$
$\mathcal{I}_{361011}^{\mathrm{P}}$	$\begin{gathered} 100 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{22}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 26 \\ \left\{1, x_{11}, x_{21}, x_{22}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 16 \\ \left\{x_{11}, x_{21}, x_{22}\right\} \end{gathered}$

$\mathcal{I}_{i_{1} \ldots i_{r}}$	$\Delta_{i_{1} \cdots i_{r}}$	$\Delta_{i_{1} \cdots i_{r}}^{\text {int }}$	$\Delta_{i_{1} \cdots i_{r}}^{\prime}$
$\mathcal{I}_{1561011}^{\mathrm{P}} \bigcirc \bigcirc$	$\begin{gathered} 180 \\ \left\{1, x_{21}, x_{31}, x_{41}, x_{22}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 8 \\ \left\{1, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{161011}^{\mathrm{P}} \bigodot$	$\begin{gathered} 100 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{4}, x_{22}, y_{3}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 8 \\ \left\{1, x_{11}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 3 \\ \left\{1, x_{11}\right\} \end{gathered}$
$\mathcal{I}_{131011}^{\mathrm{p}} \mathrm{m}$	$\begin{gathered} 100 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{12}, x_{32}, x_{42}\right\} \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ \left\{1, x_{11}, x_{21}, x_{12}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ \left\{1, x_{11}, x_{21}, x_{12}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{21011}^{\mathrm{p}} \bigcirc$	45 $\left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{12}, x_{22}, x_{32}, x_{42}\right\}$	$\begin{gathered} 9 \\ \left\{1, x_{11}, x_{12}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 6 \\ \left\{1, x_{11}, x_{12}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{21011}^{\mathrm{P}} m \bigcirc$	$\begin{gathered} 45 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{12}, x_{22}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 18 \\ \left\{1, x_{11}, x_{21}, x_{12}, x_{22}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\} \end{gathered}$	$\begin{gathered} 15 \\ \left\{1, x_{11}, x_{22}, x_{21}, x_{22}\right\} \end{gathered}$

$\mathcal{I}_{i_{1} \cdots i_{r}}$		$\Delta_{i_{1} \cdots i_{r}}$	$\Delta_{i_{1} \cdots i_{r}}^{\mathrm{int}}$	$\Delta_{i_{1} \cdots i_{r}}^{\prime}$
$\mathcal{I}_{11011}^{\mathrm{P}}$	\square	45	4	1
		$\left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{12}, x_{22}, x_{32}, x_{42}\right\}$	$\left\{1, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\}$	$\{1\}$

Adaptive Integrand Decomposition @2Loops

$\mathcal{I}_{i_{1} \cdots i_{r}}$	$\Delta_{i_{1} \cdots i_{r}}$	$\Delta_{i_{1} \ldots i_{r}}^{\mathrm{int}}$	$\Delta_{i_{1} \cdots i_{r}}^{\prime}$
$\mathcal{I}_{12345678910}^{\mathrm{P}}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$
$\mathcal{I}_{1245678910}^{\mathrm{P}}$	$\begin{gathered} 5 \\ \left\{1, x_{41}\right\} \end{gathered}$	$\begin{gathered} 3 \\ \left\{1, \lambda_{11}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{125678910}^{\mathrm{P}}$	$\begin{gathered} 10 \\ \left\{1, x_{31}, x_{41}\right\} \end{gathered}$	$\begin{gathered} 2 \\ \left\{1, \lambda_{11}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{15678910}^{\mathrm{P}}$	$\begin{gathered} 10 \\ \left\{1, x_{21}, x_{31}, x_{41}\right\} \end{gathered}$	$\begin{gathered} 2 \\ \left\{1, \lambda_{11}\right\} \end{gathered}$	$\begin{gathered} \hline 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{12678910}^{\mathrm{P}}$	$\begin{gathered} 10 \\ \left\{1, x_{11}, x_{31}, x_{41}\right\} \end{gathered}$	$\begin{gathered} 4 \\ \left\{1, x_{11}, \lambda_{11}\right\} \end{gathered}$	$\begin{gathered} 3 \\ \left\{1, x_{11}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{1678910}^{\mathrm{P}}$	$\begin{gathered} 5 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$	$\begin{aligned} & \text { - } \end{aligned}$
$\mathcal{I}_{23456789}^{\mathrm{P}}$	$\begin{gathered} 25 \\ \left\{1, x_{41}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 9 \\ \left\{1, \lambda_{11}, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{2356789}^{\mathrm{P}}$	$\begin{gathered} 50 \\ \left\{1, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 6 \\ \left\{1, \lambda_{11}, \lambda_{22}\right\} \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{256789}^{\mathrm{p}}$	$\begin{gathered} 50 \\ \left\{1, x_{21}, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 6 \\ \left\{1, \lambda_{11}, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{236789}^{\mathrm{P}}$	$\begin{gathered} 50 \\ \left\{1, x_{11}, x_{31}, x_{41}, x_{42}\right\} \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ \left\{1, x_{11}, \lambda_{11}, \lambda_{22}\right\} \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \left\{1, x_{11}\right\} \\ \hline \end{gathered}$
$\mathcal{I}_{26789}^{\mathrm{P}}$	$\begin{gathered} 25 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 3 \\ \left\{1, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$

$\mathcal{I}_{i_{1} \cdots i_{r}}$	$\Delta_{i_{1} \cdots i_{r}}$	$\Delta_{i_{1} \ldots i_{r}}^{\text {int }}$	$\Delta_{i_{1} \ldots i_{r}}^{\prime}$
$\mathcal{I}_{245689}^{\mathrm{P}} \quad \perp$	$\begin{gathered} 100 \\ \left\{1, x_{31}, x_{42}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 4 \\ \left\{1, \lambda_{11}, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{24689}^{\mathrm{P}} \quad-\bigcirc$	$\begin{gathered} 100 \\ \left\{1, x_{21}, x_{31}, x_{41}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 4 \\ \left\{1, \lambda_{11}, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{45689}^{\mathrm{p}} \mathrm{~m} \mathrm{~S}_{\mathrm{s}}$	$\begin{gathered} 100 \\ \left\{1, x_{11}, x_{31}, x_{41}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 8 \\ \left\{1, x_{11}, \lambda_{11}, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 3 \\ \left\{1, x_{11}\right\} \end{gathered}$
$\mathcal{I}_{2689}^{\mathrm{P}}$	$\begin{gathered} 50 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 2 \\ \left\{1, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{2569}^{\mathrm{P}} \quad \bigcirc-$	$\begin{gathered} 100 \\ \left\{1, x_{11}, x_{31}, x_{41}, x_{22}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 4 \\ \left\{1, \lambda_{11}, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{4569}^{\mathrm{P}} \quad \mathrm{~m} \bigcirc-$	$\begin{gathered} 100 \\ \left\{1, x_{11}, x_{31}, x_{41}, x_{12}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 8 \\ \left\{1, x_{11}, \lambda_{11}, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 3 \\ \left\{1, x_{11}\right\} \end{gathered}$
$\mathcal{I}_{4568}^{\mathrm{P}} \quad \cdots$	$\begin{gathered} 100 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 16 \\ \left\{1, x_{11}, x_{12}, \lambda_{11}, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 9 \\ \left\{1, x_{11}, x_{12}\right\} \end{gathered}$
$\mathcal{I}_{269}^{\mathrm{P}} \quad-\bigcirc$	$\begin{gathered} 50 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{22}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 2 \\ \left\{1, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 1 \\ \{1\} \end{gathered}$
$\mathcal{I}_{268}^{\mathrm{p}} \quad m \bigcirc \Omega$	$\begin{gathered} 50 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{12}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} 4 \\ \left\{1, x_{12}, \lambda_{22}\right\} \end{gathered}$	$\begin{gathered} 3 \\ \left\{x_{12}\right\} \end{gathered}$
$\mathcal{I}_{29}^{\mathrm{p}}$	$\begin{gathered} 25 \\ \left\{1, x_{11}, x_{21}, x_{31}, x_{41}, x_{12}, x_{22}, x_{32}, x_{42}\right\} \end{gathered}$	$\begin{gathered} \hline 1 \\ \{1\} \end{gathered}$	-

$\mathrm{D} \& \mathrm{I} \& \mathrm{D}: \quad A^{2-\mathrm{loop}}\left(p_{1}^{+}, p_{2}^{-}, p_{3}^{+}, p_{4}^{-}\right)$

- Four-point kinematics : $d_{\|}=3$

$$
\begin{gathered}
\mathbf{x}_{\perp}=\left\{x_{41}, x_{42}\right\} \\
\mathbf{x}_{\|}=\left\{x_{11}, x_{21}, x_{31}, x_{12}, x_{32}, x_{42}\right\}
\end{gathered}
$$

- Rank-six numerator with 2025 terms in

$$
\mathbf{z}=\left\{\mathbf{x}_{\|}, \mathbf{x}_{\perp} \lambda_{11}, \lambda_{22}, \lambda_{12}\right\},[\mathbf{z}]=11
$$

(c)

(b)

(d)

$$
\boldsymbol{\tau}=\left\{\mathbf{x}_{\|}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right\}, \quad[\boldsymbol{\tau}]=9
$$

1) Divide :

$$
\Delta_{1 \ldots 7}\left(x_{31}, x_{32}, x_{41}, x_{42}\right)
$$

contains 70 terms
2) Integrate :
3) Divide :

$$
\Delta_{1 \ldots 7}^{\mathrm{int}}\left(x_{31}, x_{32}, \lambda_{11}, \lambda_{22}, \lambda_{12}\right)
$$

contains 39 terms

$$
\Delta_{1 \ldots 7}^{\prime}\left(x_{31}, x_{32}\right)
$$

contains 15 terms

$\mathrm{D} \& \mathrm{I} \& \mathrm{D}: \quad A^{2-\mathrm{loop}}\left(p_{1}^{+}, p_{2}^{-}, p_{3}^{+}, p_{4}^{-}\right)$

$$
\left.A^{2-\mathrm{loop}}\left(p_{1}^{+}, p_{2}^{-}, p_{3}^{+}, p_{4}^{-}\right)\right|_{c u t}=i \frac{\langle 24\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 41\rangle}\left(\sum_{\alpha, \beta} c_{\alpha, \beta} I_{4}^{d(2)}\left[\left(q_{1} \cdot p_{4}\right)^{\alpha}\left(q_{2} \cdot p_{1}\right)^{\beta}\right]\right)
$$

$$
\begin{aligned}
& c_{4,0}=-\frac{\left(d_{s}-2\right)(2 t+1)^{2}}{2 t(t+1)^{4}}-\frac{\left(d_{s}-2\right)\left(2 t^{2}-2 t-1\right)}{(d-3) t(t+1)^{4}}-\frac{3\left(d_{s}-2\right)}{2(d-1)(d-3) t(t+1)^{4}}, \\
& c_{3,1}=-\frac{3\left(d_{s}-2\right)(2 t+1)}{(d-1)(d-3) t(t+1)^{4}}-\frac{\left(d_{s}-2\right)(2 t+1)}{t(t+1)^{4}}+\frac{2\left(d_{s}-2\right)\left(4 t^{2}+2 t+1\right)}{(d-3) t(t+1)^{4}}, \\
& c_{3,0}=-\frac{(2 t+1)\left(d_{s}-2\right)}{(t+1)^{3}}+\frac{2\left(d_{s}-2\right)}{(d-3)(t+1)^{2}}-\frac{3\left(d_{s}-2\right)}{(d-1)(d-3)(t+1)^{3}}, \\
& c_{2,2}=-\frac{3\left(d_{s}-2\right)\left(8 t^{2}+8 t+3\right)}{2(d-1)(d-3) t(t+1)^{4}}-\frac{32 t^{2}+32 t+3\left(d_{s}-2\right)}{2 t(t+1)^{4}} \\
& +\frac{32 t^{3}+16 t^{2}+12\left(d_{s}-2\right) t-16 t+3\left(d_{s}-2\right)}{(d-3) t(t+1)^{4}}, \\
& c_{2,1}=-\frac{3\left(d_{s}-2\right)(4 t+3)}{(d-1)(d-3)(t+1)^{3}}-\frac{\left(d_{s}-2\right)+8 t+4}{(t+1)^{3}} \\
& +\frac{4\left(8 t^{2}+2\left(d_{s}-2\right) t+2 t+2\left(d_{s}-2\right)-3\right)}{(d-3)(t+1)^{3}}, \\
& c_{2,0}=-\frac{3\left(d_{s}-2\right) t(2 t+3)}{2(d-1)(d-3)(t+1)^{3}}-\frac{\left(d_{s}-2\right) t+8 t+4}{2(t+1)^{2}} \\
& +\frac{16 t^{3}+7\left(d_{s}-2\right) t^{2}+16 t^{2}+4\left(d_{s}-2\right) t+4 t+4}{2(d-3)(t+1)^{3}}, \\
& c_{1,3}=-\frac{3\left(d_{s}-2\right)(2 t+1)}{(d-1)(d-3) t(t+1)^{4}}-\frac{\left(d_{s}-2\right)(2 t+1)}{t(t+1)^{4}}+\frac{2\left(d_{s}-2\right)\left(4 t^{2}+2 t+1\right)}{(d-3) t(t+1)^{4}}, \\
& c_{1,2}=-\frac{3\left(d_{s}-2\right)(4 t+3)}{(d-1)(d-3)(t+1)^{3}}-\frac{\left(d_{s}-2\right)+8 t+4}{(t+1)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1,1}=-\frac{2(2 t+1)}{(t+1)^{2}}-\frac{3\left(d_{s}-2\right) t(4 t+3)}{(d-1)(d-3)(t+1)^{3}}, \\
& +\frac{32 t^{3}+4\left(d_{s}-2\right) t^{2}+32 t^{2}+7\left(d_{s}-2\right) t+2 t+2}{(d-3)(t+1)^{3}}, \\
& c_{1,0}=-\frac{3\left(d_{s}-2\right) t^{2}}{(d-1)(d-3)(t+1)^{2}}+\frac{\left(8 t^{2}+\left(d_{s}-2\right) t+6 t+2\right) t}{(d-3)(t+1)^{2}}-\frac{2 t}{t+1}, \\
& c_{0,4}=-\frac{\left(d_{s}-2\right)(2 t+1)^{2}}{2 t(t+1)^{4}}-\frac{\left(d_{s}-2\right)\left(2 t^{2}-2 t-1\right)}{(d-3) t(t+1)^{4}}-\frac{3\left(d_{s}-2\right)}{2(d-1)(d-3) t(t+1)^{4}} \\
& c_{0,3}=-\frac{(2 t+1)\left(d_{s}-2\right)}{(t+1)^{3}}+\frac{2\left(d_{s}-2\right)}{(d-3)(t+1)^{2}}-\frac{3\left(d_{s}-2\right)}{(d-1)(d-3)(t+1)^{3}}, \\
& c_{0,2}=-\frac{3\left(d_{s}-2\right) t(2 t+3)}{2(d-1)(d-3)(t+1)^{3}}-\frac{\left(d_{s}-2\right) t+8 t+4}{2(t+1)^{2}} \\
& +\frac{16 t^{3}+7\left(d_{s}-2\right) t^{2}+16 t^{2}+4\left(d_{s}-2\right) t+4 t+4}{2(d-3)(t+1)^{3}}, \\
& c_{0,1}=-\frac{3\left(d_{s}-2\right) t^{2}}{(d-1)(d-3)(t+1)^{2}}+\frac{\left(8 t^{2}+\left(d_{s}-2\right) t+6 t+2\right) t}{(d-3)(t+1)^{2}}-\frac{2 t}{t+1}, \\
& c_{0,0}=-\frac{3\left(d_{s}-2\right) t^{3}}{4(d-1)(d-3)(t+1)^{2}}+\frac{(2 t+1) t^{2}}{(d-3)(t+1)}-\frac{t}{2},
\end{aligned}
$$

Divide : $A^{2-\mathrm{loop}}\left(p_{1}^{+}, p_{2}^{+}, p_{3}^{+}, p_{4}^{+}, p_{5}^{+}\right)$

Mastrolia, Peraro, A.P, Torres-Bobadilla (16)

- Recent developments in the computation of higher multiplicity processes ad NNLO

Badger, Frellesvig, Zhang (13)
Badger, Mogull, Ochirov et al (15),
Papadopoulos, Tommasini, Wever (16)
Gehrmann, Henn Lo Presti (16)
Dunbar, Perkins (16)
Dunbar, Jehu, Perkins (16)
Badger, Mogull, Perabo (16)

- Integrand built from diagrams in Feynman gauge

- Leading-colour contribution recovered through AID

Badger, Frellesvig, Zhang (13)

$$
\begin{aligned}
& A^{(2)}\left(1^{+}, 2^{+}, 3^{+}, 4^{+}, 5^{+}\right)=\int \frac{d^{d} q_{1}}{\pi^{d / 2}} \frac{d^{d} q_{2}}{\pi^{d / 2}}\left\{\frac{\Delta\left(<_{2}^{1}\right)}{D_{1} D_{2} D_{3} D_{4} D_{5} D_{6} D_{7} D_{8}}+\frac{\Delta\left(<_{2}^{1}\right)}{D_{1} D_{2} D_{3} D_{4} D_{5} D_{6} D_{7}}+\frac{\Delta\binom{a}{D_{1} D_{2} D_{3} D_{5} D_{6} D_{7} D_{8}}}{2}\right.
\end{aligned}
$$

Summary and Outlook

- Algebraic analysis of integrands is an efficient tool for the computation of multi-leg/ scale amplitudes
- Integrand decomposition fully automated @1-Loop (Cutools, Samurai, Ninja ...)
- We proposed an adaptive version of the algorithm, based on the splitting of the space-time dimensions according to the kinematics of each integrand
- Polynomial division modulo Gröbner basis trivialised @all-Loops
- Detection of spurious terms via Gegenbauer polynomials @all-Loops
- Transverse space symmetries of the residues exposed (e.g. maximum-cut @1-Loop)
- Integral basis still non-minimal (IBP, LI identities) but in a suitable form for further integral reduction
- On the way to the translate integral properties at the integrand level (e.g. dimrecurrence @1-Loop)

