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Motivation
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▪ The long way towards multi-loop multi-
scale processes

▪ In the last decade automation boosted 
NLO calculations

▪ Computation of  virtual amplitudes 
allowed by new techniques :
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Mastrolia, Ossola (11), Badger, Frellesvig, Zhang (12), 
Zhang (12), Mastrolia, Mirabella, Ossola, Peraro (12), 
Kleiss Malamos, Papadopoulos, Verheyen (12), Feng, Huang (13),
 Sogaard, Zhang (13), Feng, Zhen, Huang, Zhou (14),
Badger Mogull, Ochirov, O'Connell (16),  Badger, Mogull, Peraro (16), …

▪ Extension to NNLO and beyond has been under intense investigation

- Generalised unitarity (see W. Torres’ talk )

- Integrand decomposition method Ossola, Papadopoulos, Pittau (07), Ellis, Giele Kunszt (08), 
Giele, Kunszt, Melnikov (08), Mastrolia Ossola, Papadopoulos, 
Pittau (08), Pittau, del Aguila (04), Mastrolia, Ossola, Reiter, 
Tramontano (10), Mastrolia, Mirabella, Peraro (12), …



Outline

▪ Integrand Decomposition in 

▪ Summary and Conclusions

 - Feynman integrals in 
 - Multivariate Polynomial Division and Maximum-cut Theorem

▪ Adaptive Integrand Decomposition in 

 - Feynman integrals in 
 - Transverse space and spurious directions
 - Divide and Integrate and Divide algorithm
 - 1-Loop decomposition revisited
 - 2-Loop decomposition
 - Examples

d = 4� 2✏
d = 4� 2✏

d = dk + d?
d = dk + d?



Integrand decomposition

▪ Monomials in             which do not vanish upon integration, give a representation of the amplitude 
in terms of a (non-minimal) set of integrals

▪ Idea : find a decomposition of the integrand first

The residues             are 
polynomials in 

Ossola, Papadopoulos, Pittau(2007) 

▪ If the parametric expression of the residue is known, coefficients can be fixed by sampling the 
numerator on cuts 

▪ Is there a general way to obtain the residues? Does this hold in    dimensions?

Ellis, Giele, Kunszt, Melnikov (08)
Mastrolia,Ossola, 
Papadopoulos,Pittau (08)

q
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▪ Goal : decompose Feynman amplitudes in a minimal set of integrals
    e.g. Passarino-Veltman decomposition of one-loop amplitudes 



Feynman Integrals in 
▪ Arbitrary    -loop integral with     external legs

▪ If external states are in four dimensions, split   -dimensional loop momenta as

▪ Parametrise the integral  as                                 Gram determinants

d = 4� 2✏

▪ Introduce a four-dimensional basis                           



Multivariate Polynomial Division

▪ Choose a monomial order and build a Gröbner basis 

▪ Perform the multivariate polynomial division of                modulo   

Quotient Remainder ResidueSubtopology

Mastrolia, Ossola (11)
Zhang (12) 
Badger, Frellesvig, Zhang (12), 
Mastrolia, Mirabella,
Ossola, Peraro (12)

▪ Given an integrand, consider the ideal generated by the set of denominators

▪ Iterate and read off the decomposition

)

)



Maximum-cut Theorem

▪ Maximum-cut theorem: if the cut-conditions have      solutions, the residue is 
parametrised by      coefficients and admits a univariate representation of degree   

Mirabella, Ossola, Peraro, Mastrolia (12)

Britto, Cachazo, Feng (05) Mirabella, Ossola, Peraro, Mastrolia (12)

four-dim :

       -dim :



Integrand decomposition @1Loop

▪ Integrands with           are reducible. For          the universal residues are
Ossola, Papadopoulos, Pittau (07) 
Ellis, Giele, Kunszt, Melnikov(08), 
Mirabella, Ossola, Peraro, Mastrolia (12)



Integrand decomposition @1Loop

▪ The set of integrals in the decomposition is not minimal due to integral relations

▪ Pentagon residue fixed by the maximum-cut theorem. What about lower-point residues? 
▪ Is there any symmetry? How to find spurious terms at higher loops?
     

Bern, Morgan (95) Tarasov (96), Lee (10) 

Ossola, Papadopoulos, Pittau (07) 
Ellis, Giele, Kunszt, Melnikov(08), 
Mirabella, Ossola, Peraro, Mastrolia (12)

see M. Jaquier’s talk

▪ Integrands with           are reducible. For          the universal residues are



Feynman Integrals in 
▪ In an arbitrary    -loop integral with             legs external momenta span a reduced space

▪  Split space-time in parallel                    and orthogonal                              space

▪ The numerator and the denominators depend on different variables 

Collins(84), van Neerven and 
Vermaseren (84), Kreimer (92) 

d = dk + d?



▪ Any   -loop  integral with           can be parametrised as Mastrolia, Peraro, A.P. (16)

Feynman Integrals in d = dk + d?

{edk+1, . . . , e4, µ̂i}
{e0dk+1, . . . , e

0
4, µ̂

0
i}

{e00dk+1, . . . , e
00
4 , µ̂

00
i }

{edk+1, . . . , e4, µ̂i}

▪ Recursively define orthonormal basis for the transverse space of each loop momentum

)
Gram-Schmidt



▪ Any   -loop  integral with           can be parametrised as
-space -space

▪ Transverse space parametrised in terms of radial variables and transverse angles

Mastrolia, Peraro, A.P. (16)

Feynman Integrals in d = dk + d?

▪ All        integrals reduced to orthogonality relations for Gegenbauer polynomials⇥?

{edk+1, . . . , e4, µ̂i}
{e0dk+1, . . . , e

0
4, µ̂

0
i}

{e00dk+1, . . . , e
00
4 , µ̂

00
i }

{edk+1, . . . , e4, µ̂i}

▪ Recursively define orthonormal bases for the transverse space of each loop momentum

)
Gram-Schmidt



Examples
▪  Four-point integrals :

Tensor integrals :Transverse variable :

scalar integral



Examples
▪  Four-point integrals :

Tensor integrals :Transverse variables :

I

d (3)
4 [x↵4

41x
�4
42x

�4
43] = 0, ↵4 + �4 + �4 = 2n+ 1



▪ Any   -loop  integral with            can be parametrised as

-space

▪ Integration over transverse directions through Gegenbauer polynomials

-space

▪ Polynomial dependence on transverse directions is exposed

- Holds for all variables not appearing in the

▪ What happens if combined with integrand decomposition?

Feynman Integrals in d = dk + d?

- All spurious contributions detected
- Alternative to Passarino-Veltman reduction

denominators  (e.g. in factorised and ladder 
integrals)



Adaptive Integrand Decomposition

▪ In                       denominators depend on a reduced set of variables

▪  Cuts are adaptive,  the dimension of the cut-solution space depends on 

▪ In                       on-shell conditions       linear equations for the (reducible) variables

▪ Polynomial division reduced to a substitution rule (of reducible variables in terms of 
denominators and physical ISP)

E.g. 1-loop :



Monomial order

▪ Residues are determined in three steps:

Divide and Integrate and Divide

  are reducible  

Integrate over 

Subtopology #1

Mastrolia, Peraro, A.P. (2016)

⇥?

Subtopology #2

▪ The final residue is free from spurious terms and suitable for integral reduction

physical ISP 
monomials only

3) Divide

2) Integrate

1) Divide



All residues fixed by the 
Maximum-cut theorem

▪ @1Loop :                                                                 all cuts are zero-dimensional (No ISP)

Adaptive Integrand Decomposition  @1Loop

1) Divide

Mastrolia, Peraro, A.P. (16)



All residues fixed by the 
Maximum-cut theorem

▪ @1Loop :                                                                 all cuts are zero-dimensional (No ISP)

    Spurious terms drop out
Dim-shifted integrals (but     reducible)

Adaptive Integrand Decomposition  @1Loop
Mastrolia, Peraro, A.P. (16)

1) Divide

2) Integrate



All residues fixed by the 
Maximum-cut theorem

▪ @1Loop :                                                                 all cuts are zero-dimensional (No ISP)

3) Divide

Dim-recurrence 
@integrand level

    Spurious terms drop out
Dim-shifted integrals (but     reducible)

Adaptive Integrand Decomposition  @1Loop

1) Divide

2) Integrate

Mastrolia, Peraro, A.P. (16)



All residues fixed by the 
Maximum-cut theorem

Adaptive Integrand Decomposition  @1Loop
▪ @1Loop :                                                                 all cuts are zero-dimensional (No ISP)

Dim-recurrence 
@integrand level

    Spurious terms drop out
Dim-shifted integrals (but     reducible)

1) Divide

2) Integrate
+
X

i⌧j

cij(d)

Mastrolia, Peraro, A.P. (16)



▪ Three maximum-cut  topologies                                   , in arbitrary kinematics

▪ Universal parametrisation of the residues in renormalisable theories 

Adaptive Integrand Decomposition @2Loops
Mastrolia, Peraro, A.P. (16)



Adaptive Integrand Decomposition @2Loops
Mastrolia, Peraro, A.P. (16)



Adaptive Integrand Decomposition @2Loops
Mastrolia, Peraro, A.P. (16)



Adaptive Integrand Decomposition @2Loops
Mastrolia, Peraro, A.P. (16)



▪ Four-point kinematics :  

 contains  70 terms

D&I&D : A2�loop(p+
1

, p�
2

, p+
3

, p�
4

)

▪ Rank-six numerator with 2025 terms in

1) Divide :

contains 39 terms
2) Integrate :

3) Divide :

contains 15 terms�
0

1···7(x31, x32)

Mastrolia, Peraro, A.P. (16)



D&I&D: A2�loop(p+
1

, p�
2

, p+
3

, p�
4

)
Mastrolia, Peraro, A.P. (16)



▪ Leading-colour contribution recovered through AID

Divide : 
Mastrolia, Peraro, A.P, Torres-Bobadilla (16)

A2�loop(p+
1

, p+
2

, p+
3

, p+
4

, p+
5

)

Badger, Frellesvig, Zhang (13)

Adaptive Integrand Decomposition Pierpaolo Mastrolia

Ii1 ··· in t Di1 ··· in Dint
i1 ··· in D0

i1 ··· in

Ii1i2i3i4i5
1 � �

{x1,x2,x3,x4,µ2} {1} � �

Ii1i2i3i4
5 3 1

{x1,x2,x3,l 2} {1,x4,x2
4,x

3
4,x

4
4} {1,l 2,l 4} {1}

Ii1i2i3
10 2 1
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3,x3x4,x2

4,x
3
3,x

2
3x4,x3x2

4,x
3
4} {1,l 2} {1}

Ii1i2
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10 4 3
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3,x3x4,x2
4} {1,x1,x2

1,l 2} {1,x1,x2
1}

Ii1
5 1 �

{l 2} {1,x1,x2,x3,x4} {1} �

Table 1: Residue parametrisation for irreducible one-loop topologies.

polynomial division after angular integration over the transverse space, provides an implementation
of the dimensional recurrence relations at the integrand level.

Beside revisiting the one-loop, we applied the AID in order to determine the universal parametri-
sation of the residues appearing in the integrand decomposition (3.2) of the three eight-point topolo-
gies shown in fig. 1a-1c. The results obtained are valid for arbitrary (internal and external) kine-
matic configuration. For the complete results of the two-loop decomposition, we refer the reader
to the ref. [22].
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Figure 1: Maximum-cut topologies

Furthermore, we applied the AID to the leading color contribution to the two-loop all-plus five-
gluon amplitude [32, 33, 34, 35, 36, 37, 38], which, after the first step of the division algorithm,
admits a decomposition of the form

A(2)(1+,2+,3+,4+,5+) =
Z ddq1

pd/2
ddq2

pd/2
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Table 1: Residue parametrisation for irreducible one-loop topologies.

polynomial division after angular integration over the transverse space, provides an implementation
of the dimensional recurrence relations at the integrand level.

Beside revisiting the one-loop, we applied the AID in order to determine the universal parametri-
sation of the residues appearing in the integrand decomposition (3.2) of the three eight-point topolo-
gies shown in fig. 1a-1c. The results obtained are valid for arbitrary (internal and external) kine-
matic configuration. For the complete results of the two-loop decomposition, we refer the reader
to the ref. [22].
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Furthermore, we applied the AID to the leading color contribution to the two-loop all-plus five-
gluon amplitude [32, 33, 34, 35, 36, 37, 38], which, after the first step of the division algorithm,
admits a decomposition of the form
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polynomial division after angular integration over the transverse space, provides an implementation
of the dimensional recurrence relations at the integrand level.

Beside revisiting the one-loop, we applied the AID in order to determine the universal parametri-
sation of the residues appearing in the integrand decomposition (3.2) of the three eight-point topolo-
gies shown in fig. 1a-1c. The results obtained are valid for arbitrary (internal and external) kine-
matic configuration. For the complete results of the two-loop decomposition, we refer the reader
to the ref. [22].
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Furthermore, we applied the AID to the leading color contribution to the two-loop all-plus five-
gluon amplitude [32, 33, 34, 35, 36, 37, 38], which, after the first step of the division algorithm,
admits a decomposition of the form

A(2)(1+,2+,3+,4+,5+) =
Z ddq1
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The residue have been obtained from numerators constructed through Feynman diagrams in Feyn-
man gauge, including both gluon and ghost loop contributions. The relevant Feynman graphs, a
selection of which is shown in fig. 2, have been generated by using FEYNARTS [39] and FEYN-
CALC [40, 41]. The expression of the residues have been numerically checked against the results
of [32]. The integration of the transverse directions of both four-point and factorised topologies and
the further division of the integrated residues may lead to a new representation of the amplitude,
whose discussion is, nevertheless, beyond the scope of this report.

Figure 2: Selection of Feynman diagrams contributing to the five-gluons amplitude. Curly lines
represent gluons and dashed ones indicate ghosts.

5. Conclusions

Owing to the representation of Feynman integrals in parallel and orthogonal space, numerators
and denominators of integrands appear to depend on different sets of integration variables. By
exploiting the different origin and role of these variables, we engineered a novel variant of the
integrand decomposition algorithm, defined as adaptive integrand decomposition (AID), where the
multivariate polynomial division is simplified and the integration over transverse space variables
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The residue have been obtained from numerators constructed through Feynman diagrams in Feyn-
man gauge, including both gluon and ghost loop contributions. The relevant Feynman graphs, a
selection of which is shown in fig. 2, have been generated by using FEYNARTS [39] and FEYN-
CALC [40, 41]. The expression of the residues have been numerically checked against the results
of [32]. The integration of the transverse directions of both four-point and factorised topologies and
the further division of the integrated residues may lead to a new representation of the amplitude,
whose discussion is, nevertheless, beyond the scope of this report.

Figure 2: Selection of Feynman diagrams contributing to the five-gluons amplitude. Curly lines
represent gluons and dashed ones indicate ghosts.

5. Conclusions

Owing to the representation of Feynman integrals in parallel and orthogonal space, numerators
and denominators of integrands appear to depend on different sets of integration variables. By
exploiting the different origin and role of these variables, we engineered a novel variant of the
integrand decomposition algorithm, defined as adaptive integrand decomposition (AID), where the
multivariate polynomial division is simplified and the integration over transverse space variables
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Badger, Frellesvig, Zhang (13)
Badger, Mogull, Ochirov et al (15),
Papadopoulos, Tommasini, Wever (16)
Gehrmann, Henn Lo Presti (16)
Dunbar, Perkins (16)
Dunbar, Jehu, Perkins (16)
Badger, Mogull, Perabo (16)▪ Integrand built from diagrams in Feynman gauge
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Table 1: Residue parametrisation for irreducible one-loop topologies.

polynomial division after angular integration over the transverse space, provides an implementation
of the dimensional recurrence relations at the integrand level.

Beside revisiting the one-loop, we applied the AID in order to determine the universal parametri-
sation of the residues appearing in the integrand decomposition (3.2) of the three eight-point topolo-
gies shown in fig. 1a-1c. The results obtained are valid for arbitrary (internal and external) kine-
matic configuration. For the complete results of the two-loop decomposition, we refer the reader
to the ref. [22].
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Furthermore, we applied the AID to the leading color contribution to the two-loop all-plus five-
gluon amplitude [32, 33, 34, 35, 36, 37, 38], which, after the first step of the division algorithm,
admits a decomposition of the form

A(2)(1+,2+,3+,4+,5+) =
Z ddq1

pd/2
ddq2

pd/2
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▪ Recent developments in the computation of higher 
multiplicity processes ad NNLO



▪ We proposed an adaptive version of the algorithm, based on the splitting of 
the space-time dimensions according to the kinematics of each integrand

Summary and Outlook
▪ Algebraic analysis of integrands is an efficient tool for the computation of 

multi-leg/scale amplitudes

- Polynomial division modulo Gröbner basis trivialised @all-Loops
- Detection of spurious terms via Gegenbauer polynomials @all-Loops
- Transverse space symmetries of the residues exposed (e.g. maximum-cut @1-Loop)

    ▪ Integral basis still non-minimal (IBP, LI identities) but in a suitable form for 
further integral reduction

- Integrand decomposition fully automated @1-Loop (                                      …)

- On the way to the translate integral properties at the integrand level (e.g. dim-
recurrence @1-Loop)

    

Thank you!


