d-Dimensional Generalised Unitarity and Colour-Kinematics duality

William Javier Torres Bobadilla
 Università degli studi di Padova
 INFN Sezione di Padova

Based on the collaborations with P. Mastrolia and A. Primo

LoopFest XV
15-17 August 2016 University at Buffalo, North Campus, Amherst, NY

Introduction

- Scattering amplitudes are necessary to test our theoretical models by comparing their predictions against the experiments.
[Anastasiou, Duhr, Dulat, Herzog, Mistlberger (2015)]

Motivation

- Tree-level (LO) predictions are qualitative due to the poor convergence of the truncated expansion at strong coupling.

$$
\alpha_{S}(100 \mathrm{GeV}) \sim 0.12
$$

- K factors

$$
K=\frac{\mathrm{NLO}}{\mathrm{LO}} \sim 30 \% \div 80 \%
$$

- Feynman diagrams, based on the Lagrangian, are not optimised for these processes.
- On-shell methods are based on amplitudes and take full advantage of the analyticity of the Smatrix.
- Simplify the calculations in High-Energy Physics.
- Discover hidden properties of Quantum Field Theories
- Towards NNLO is the Present Frontier.

Outline

- Analytic one-loop amplitudes
- d dimensional generalised unitarity
- Four dimensional formulation of dimensional regularisation
— Results
- Further simplifications from colour/kinematics duality - C/K relations @ tree-level in dimensional regularisation
— C/K relations @ one-loop
— Unitarity + C/K-relations @ work
- Summary and Outlook

Analytic one-loop scattering amplitudes

Standard Unitarity in 4D

Glue together the two amplitudes and uplift the integral with

$$
2 \pi \delta^{(+)}\left(p^{2}-m^{2}\right) \rightarrow \frac{i}{p^{2}-m^{2}-i \epsilon}
$$

[Bern, Dixon, Dunbar, Kosower (1994)]

Generalised Unitarity in 4D

Isolate the leading discontinuity
[Bern, Dixon, Kosower (1998)] [Britto, Cachazo, Feng (2004)]

$$
\mathcal{A}^{(L)}=\sum_{i} c_{i} \Psi_{\tau_{i}^{(L)}} \longrightarrow \text { Known basis of L-loop scalar integrals }
$$

For L=1, [Passarino - Veltman (1979)]

$$
A_{n}^{(1), D=4}\left(\left\{p_{i}\right\}\right)=\sum_{K_{4}} C_{4 ; K 4}^{[0]} \downarrow+\sum_{K_{3}} C_{3 ; K 3}^{[0]} \npreceq+\sum_{K_{2}} C_{2 ; K 2}^{[0]} \longrightarrow+\sum_{K_{1}} C_{1 ; K 1}^{[0]}
$$

Scalar Master Integrals: Made of polylogarithmic functions

- If an amplitude is determined by its branch cuts, it is said to be cut-constructible.
- All one-loop amplitudes are cut-constructible in dimensional regularisation.

Analytic one-loop scattering amplitudes

In $D=4-2 \varepsilon$ we can do the decomposition

The on-shell condition

$$
\bar{\ell}^{2}=\ell^{2}-\mu^{2}=0 \longrightarrow \ell^{2}=\mu^{2}
$$

Any massless one-loop becomes
Mass term

$$
\begin{aligned}
A_{n}^{(1), D=4-2 \epsilon}\left(\left\{p_{i}\right\}\right)= & \sum_{K_{4}} C_{4 ; K 4}^{[0]} \longmapsto+\sum_{K_{4}} C_{4 ; K 4}^{[4]} \mu^{4} \\
& +\sum_{K_{3}} C_{3 ; K 3}^{[0]} \longrightarrow+\sum_{K_{3}} C_{3 ; K 3}^{[2]} \\
& +\sum_{K_{2}} C_{2 ; K 2}^{[0]} \longrightarrow+\sum_{K_{2}} C_{2 ; K 2}^{[2]}
\end{aligned}
$$

$$
+\sum_{K_{1}} C_{1 ; K 1}^{[0]} \bigcirc
$$

[Ossola,Papadopoulos,Pittau (2006)]
[Giele,Kunszt,Melnikov (2008)]
[Badger (2008)]
[Mastrolia, Mirabella, Peraro (2012)]

How to compute those coefficients?

D-dimensional unitarity offers the determination of all pieces together

Four Dimensional Formulation of Dimensional Regularisation [FDF]

Live in 4 dimensions! [Fazio, Mastrolia, Mirabella, W.J.T (2014)]

- Explicit 4D representation of polarisation and. spinors
- 4D representation of D-reg loop propagators
- 4D Feynman rules $+(-2 \varepsilon)$-Selection Rules
- Easy to implement in existing generators

FDH: 4D helicity scheme

The d-dimensional metric tensor can be split as
where

$$
\tilde{g}^{\mu \nu} g_{\mu \nu}=0, \quad \tilde{g}_{\mu}^{\mu}=-2 \epsilon \underset{d \rightarrow 4}{\longrightarrow} 0, \quad g_{\mu}^{\mu}=4 \quad \tilde{q}^{2}=\tilde{g}^{\mu \nu} \bar{q}_{\mu} \bar{q}_{\nu}=-\mu^{2}
$$

and the Clifford Algebra

$$
\left[\tilde{\gamma}^{\alpha}, \gamma^{5}\right]=0, \quad\left\{\tilde{\gamma}^{\alpha}, \tilde{\gamma}^{\beta}\right\}=2 \tilde{g}^{\alpha \beta}, \quad\left\{\tilde{\gamma}^{\alpha}, \gamma^{\mu}\right\}=0
$$

Extend FDH by using 4D-objects only

In 4-dimensions, one can infer: $\quad \tilde{\gamma} \sim \gamma^{5}$
And the Clifford algebra $\quad \tilde{\gamma}^{\mu} \tilde{\gamma}_{\mu} \underset{d \rightarrow 4}{\longrightarrow} 0 \quad$ while $\quad \gamma^{5} \gamma^{5}=1$
Excludes any four-dimensional representation of the -2ε-subspace
-2ε-subspace -2ε-Selection Rules (-2ε)-SRs

FDH: 4D helicity scheme

The d-dimensional metric tensor can be split as
where

$$
\tilde{g}^{\mu \nu} g_{\mu \nu}=0, \quad \tilde{g}_{\mu}^{\mu}=-2 \epsilon \underset{d \rightarrow 4}{\longrightarrow} 0, \quad g_{\mu}^{\mu}=4 \quad \tilde{q}^{2}=\tilde{g}^{\mu \nu} \bar{q}_{\mu} \bar{q}_{\nu}=-\mu^{2}
$$

and the Clifford Algebra

$$
\left[\tilde{\gamma}^{\alpha}, \gamma^{5}\right]=0, \quad\left\{\tilde{\gamma}^{\alpha}, \tilde{\gamma}^{\beta}\right\}=2 \tilde{g}^{\alpha \beta}, \quad\left\{\tilde{\gamma}^{\alpha}, \gamma^{\mu}\right\}=0
$$

-2ع-Selection Rules

The Clifford algebra conditions are satisfied by imposing

$$
\tilde{g}^{\alpha \beta} \rightarrow G^{A B}, \quad \tilde{\ell}^{\alpha} \rightarrow i \mu Q^{A}, \quad \tilde{\gamma}^{\alpha} \rightarrow \gamma^{5} \Gamma^{A}
$$

$A, B:=-2 \varepsilon$-dimensional vectorial indices traded for (-2ε)-SRs

$$
\begin{aligned}
& G^{A B} G^{B C}=G^{A C}, \\
& G^{A A}=0, \\
& G^{A B}=G^{B A}, \\
& \Gamma^{A} G^{A B}=\Gamma^{B}, \\
& \Gamma^{A} \Gamma^{A}=0, \\
& Q^{A} G^{A}=1, \\
& Q^{A} G^{A B}=Q^{B}, \\
& Q^{A} Q^{A}=1 \text {. }
\end{aligned}
$$

Completeness relations within FDF

Gluon propagator

The helicity sum of the transverse polarisation vector is

$$
\sum_{i=1}^{d-2} \varepsilon_{i(d)}^{\mu}(\bar{\ell}, \bar{\eta}) \varepsilon_{i(d)}^{* \nu}(\bar{\ell}, \bar{\eta})=\frac{\left(-g^{\mu \nu}+\frac{\ell^{\mu} \ell^{\nu}}{\mu^{2}}\right)-\left(\tilde{g}^{\mu \nu}+\frac{\tilde{\ell}^{\mu} \tilde{\ell}^{\nu}}{\mu^{2}}\right)}{\mathbf{d}=\mathbf{4} \quad \mathbf{d}=-\mathbf{2 \varepsilon}} .
$$

massive gluon

$$
\left(-g^{\mu \nu}+\frac{l^{\mu} l^{\nu}}{\mu^{2}}\right)=\sum_{\lambda= \pm, 0} \varepsilon_{\lambda}^{\mu}(l) \varepsilon_{\lambda}^{* \nu}(l)
$$

$$
\left(\tilde{g}^{\mu \nu}+\frac{\tilde{l} \mu \tilde{l}}{\mu^{2}}\right) \rightarrow \hat{G}^{A B}=G^{A B}-Q^{A} Q^{B}
$$

Fermion propagator

$$
\begin{aligned}
& \sum_{\lambda= \pm} u_{\lambda}(l) \bar{u}_{\lambda}(l)=l+i \mu \gamma^{5}+m \\
& \sum_{\lambda= \pm} v_{\lambda}(l) \bar{v}_{\lambda}(l)=l+i \mu \gamma^{5}-m
\end{aligned}
$$

Allows to generalise the Dirac Equation

$$
\left(\ell+i \mu \gamma^{5}+m\right) u_{\lambda}(\ell)=0, \quad \ell^{2}=m^{2}+\mu^{2}, \quad \ell=\ell^{b}+\frac{m^{2}+\mu^{2}}{2 \ell \cdot q_{\ell}} q_{\ell}, \quad\left(\ell^{b}\right)^{2}=\left(q_{\ell}\right)^{2}=0
$$

Feynman Rules in FDF

[Fazio, Mastrolia, Mirabella, W.J.T. (2014)]

$$
\begin{aligned}
& \underset{a, A}{a}{ }_{b, B}^{k}=-i \delta^{a b} \frac{G^{A B}}{k^{2}-\mu^{2}+i 0}, \quad \text { (scalar), } \\
& \stackrel{{ }_{i}}{\stackrel{k}{j}}=i \delta^{i j} \frac{k+i \mu \gamma^{5}+m}{k^{2}-m^{2}-\mu^{2}+i 0}, \quad \text { (fermion), } \\
& \underbrace{2, b, \beta}_{1,0, \infty}=-g f^{a b c}\left[\left(k_{1}-k_{2}\right)^{\gamma} g^{\alpha \beta}\right. \\
& \left.+\left(k_{2}-k_{3}\right)^{\alpha} g^{\beta \gamma}+\left(k_{3}-k_{1}\right)^{\beta} g^{\gamma \alpha}\right], \\
& \text { 2, b, B , } \\
& =-g f^{a b c}\left(k_{2}-k_{3}\right)^{\alpha} G^{B C}, \\
& 3, c, C
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2, }, \text {, } B \text {, } \\
& \underset{1, a, \alpha}{\text { enee. }}=\mp g f^{a b c}(i \mu) g^{\gamma \alpha} Q^{B} \\
& \left(\tilde{k}_{1}=0, \quad \tilde{k}_{3}= \pm \tilde{\ell}\right),
\end{aligned}
$$

$$
\begin{aligned}
& =-i g^{2}\left[f^{x a d} f^{x b c}\left(g^{\alpha \beta} g^{\delta \gamma}-g^{\alpha \gamma} g^{\beta \delta}\right)\right. \\
& +f^{x a c} f^{x b d}\left(g^{\alpha \beta} g^{\delta \gamma}-g^{\alpha \delta} g^{\beta \gamma}\right) \\
& \left.+f^{x a b} f^{x d c}\left(g^{\alpha \delta} g^{\beta \gamma}-g^{\alpha \gamma} g^{\beta \delta}\right)\right],
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow[1, i]{2, b, \beta} \overbrace{3, j}^{6 \sigma^{6}}=-i g\left(t^{b}\right)_{j i} \gamma^{\beta}, \\
& \text { 2, } b, B \text {, } \\
& =-i g\left(t^{b}\right)_{j i} \gamma^{5} \Gamma^{B} .
\end{aligned}
$$

Results

- 4-gluons amplitudes [Bern and Kosower (1992)]
- Annihilation of quark \& antiquark in two gluons [Kunszt, Signer and Trocsanyi (1993)]
- Higgs + 3-gluon amplitudes [Schmidt (1997)]
- 5-gluon amplitudes [Njet]
- 6-gluon amplitudes [Njet]
- Higgs + 4-gluon amplitudes [Badger, Glover, Mastrolia, Williams (2009)]
- Higgs + 5-gluon amplitudes (preliminary results) [GoSam]

What about multi-loop level?

$k_{i} \cdot p_{j}, k_{i} \cdot \varepsilon_{j}, k_{i} \cdot k_{j}, \mu_{i j}=-\tilde{k}_{i} \cdot \tilde{k}_{j}$

$$
A_{n}^{(2),[D]}(\{p\})=\int \frac{d^{D} k_{1}}{(2 \pi)^{D}} \frac{d^{D} k_{2}}{(2 \pi)^{D}} \frac{N(\{k\},\{p\})}{\prod_{l=1}^{7} D_{l}\left(\left\{k_{i}\right\},\{p\}\right)}
$$

Write everything in terms of Irreducible Scalar Products

Diagrammatic approach

[Mastrolia, Peraro, Primo (2016)] [Mastrolia, Peraro, Primo, W.J.T. (2016)]

More details in A. Primo's Talk

[Bern, Dixon, Kosower (2000)]

[Badger, Frellesvig, Zhang (2013)]

Further simplifications from colour/kinematics duality

At integrand level,

Generalised Unitarity and C/K duality dance together.

Which "gauge" theories obey C-K duality

- Pure $\mathcal{N}=0,1,2,4$ super-Yang-Mills (any dimension)
- Self-dual Yang-Mills theory 0'Connell, Monteiro ('11)
- Heterotic string theory Stieberger, Taylor ('14)
- Yang-Mills + $F^{\mathbf{3}}$ theory Broedel, Dixon ('12)
- QCD, super-QCD, higher-dim QCD HJ, Ochirov ('15)
- Generic matter coupled to $\mathcal{N}=\mathbf{0 , 1 , 2 , 4}$ super-Yang-Mills $\left\{\begin{array}{l}\text { Chiodaroli, Gunaydin, } \\ \text { Roiban; } \mathrm{H}, \text {, Ochirov ('14) }\end{array}\right.$
- Spontaneously broken $\mathcal{N}=\mathbf{0 , 2 , 4} \mathbf{S Y M}$ Chiodaroli, Gunaydin, HJ, Roiban ('15)
- Yang-Mills + scalar ϕ^{3} theory Chiodaroli, Gunaydin, HJ, Roiban ('14)
- Bi-adjoint scalar ϕ^{3} theory\{Bern, de Freitas, Wong ('99), Bern, Dennen, Huang; Du, Feng, Fu; Bjerrum-Bohr, Damgaard, Monteiro, O'Connell
- NLSM/Chiral Lagrangian Chen, Du ('13)
- $D=3$ Bagger-Lambert-Gustavsson theory (Chern-Simons-matter)

Bargheer, He, McLoughlin; Huang, HJ, Lee ('12-'13)

Colour-kinematics duality

- Colour-kinematics duality strong relation gravity amplitudes and Yang-Mills amplitudes
[Bern, Carrasco, Johansson (2008),(2010)]
- Write QCD amplitudes in terms of cubic graphs

$$
\mathcal{A}_{n}=g^{n-2} \sum \frac{n_{i} c_{i}}{D_{i}}
$$

- Colour factors

$$
c_{i} \sim f^{a b c} f^{c e d}
$$

- Kinematic factors $n_{i} \sim\left(\varepsilon_{1} \cdot k_{2}\right)\left(\varepsilon_{2} \cdot k_{3}\right)\left(\varepsilon_{3} \cdot \varepsilon_{4}\right)+\ldots$

Jacobi Relation (colour)

- Satisfied automatically for 4-point tree amplitudes $\quad n_{s}=n_{t}-n_{u}$

Off-shell Colour-kinematics duality

Consider a tensor as the Jacobi identity of numerators

Four-gluon identity

$$
N_{g}^{\text {tree }}=J^{\mu_{1} \ldots \mu_{4}} \varepsilon_{\mu_{1}}\left(p_{1}\right) \varepsilon_{\mu_{2}}\left(p_{2}\right) \varepsilon_{\mu_{3}}\left(p_{3}\right) \varepsilon_{\mu_{4}}\left(p_{4}\right),
$$

$$
\begin{gathered}
N_{g}^{\text {tree }}=\varepsilon\left(p_{1}\right) \cdot p_{1}\left[\left(\varepsilon\left(p_{2}\right) \cdot p_{1}+2 \varepsilon\left(p_{2}\right) \cdot p_{4}\right) \varepsilon\left(p_{3}\right) \cdot \varepsilon\left(p_{4}\right)\right. \\
\quad-\varepsilon\left(p_{2}\right) \cdot \varepsilon\left(p_{4}\right)\left(\varepsilon\left(p_{3}\right) \cdot p_{1}+2 \varepsilon\left(p_{3}\right) \cdot p_{4}\right) \\
\left.+\varepsilon\left(p_{2}\right) \cdot \varepsilon\left(p_{3}\right)\left(\varepsilon\left(p_{4}\right) \cdot p_{1}+2 \varepsilon\left(p_{4}\right) \cdot p_{3}\right)\right] \\
\\
\quad+\text { cyclic permutations. }
\end{gathered}
$$

[Zhu (1980)]
$N_{g}^{\mathrm{tree}}=0$
by imposing Momentum Conservation and Transversality condition.

Off-shell Colour-kinematics duality

[Mastrolia, Primo, Schubert, W.J.T. (2015)]
O At multi-loop level or higher-points

External particles become internal

$$
\begin{aligned}
u\left(p_{i}\right), v\left(p_{i}\right) & \rightarrow \not p_{i} \\
\varepsilon^{\mu_{i}}\left(p_{i} ; q_{i}\right) & \rightarrow \Pi^{\mu_{i} \nu_{i}}\left(p_{i} ; q_{i}\right)
\end{aligned}
$$

Propagator in axial gauge

- Numerator built from the J-block is decomposed in terms of squared momenta $\left(N_{\mathrm{g}}^{\text {loop }}\right)_{\alpha_{1} \ldots \alpha_{4}}=J^{\mu_{1} . . \mu_{4}} \Pi_{\mu_{1} \alpha_{1}}\left(p_{1}, q_{1}\right) \Pi_{\mu_{2} \alpha_{2}}\left(p_{2}, q_{2}\right) \Pi_{\mu_{3} \alpha_{3}}\left(p_{3}, q_{3}\right) \Pi_{\mu_{4} \alpha_{4}}\left(p_{4}, q_{4}\right)$,
$\left(N_{\mathrm{g}}^{\text {loop }}\right)_{\alpha_{1} \ldots \alpha_{4}}=\sum_{i=1}^{4} p_{i}^{2}\left(A_{g}^{i}\right)_{\alpha_{1} \ldots \alpha_{4}}+\sum_{\substack{i, j=1 \\ i \neq j}}^{4} p_{i}^{2} p_{j}^{2}\left(C_{g}^{i j}\right)_{\alpha_{1} \ldots \alpha_{4}}$.

$$
\begin{aligned}
& A_{g}=A_{g}\left(\left\{p_{i}\right\}\right) \\
& C_{g}=C_{g}\left(\left\{p_{i}\right\}\right)
\end{aligned}
$$

Off-shell Colour-kinematics duality

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

- At multi-loop level or higher-points

External particles become internal

$$
\begin{aligned}
u\left(p_{i}\right), v\left(p_{i}\right) & \rightarrow \not p_{i} \\
\varepsilon^{\mu_{i}}\left(p_{i} ; q_{i}\right) & \rightarrow \Pi^{\mu_{i} \nu_{i}}\left(p_{i} ; q_{i}\right)
\end{aligned}
$$

Propagator in axial gauge

- Numerator built from the J-block is decomposed in terms of squared momenta

* Any loop diagram built from the J-block can be written as the sum of diagrams with one or two propagators less.

Off-shell Colour-kinematics duality

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

- At multi-loop level or higher-points

External particles become internal

$$
\begin{aligned}
u\left(p_{i}\right), v\left(p_{i}\right) & \rightarrow \not p_{i} \\
\varepsilon^{\mu_{i}}\left(p_{i} ; q_{i}\right) & \rightarrow \Pi^{\mu_{i} \nu_{i}}\left(p_{i} ; q_{i}\right)
\end{aligned}
$$

Propagator in axial gauge

O Numerator built from the J-block is decomposed in terms of squared momenta

* Any loop diagram built from the J-block can be written as the sum of diagrams with one or two propagators less.

O By imposing on-shellness of the four particles

Off-shell Colour-kinematics duality

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

- At multi-loop level or higher-points

External particles become internal

$$
\begin{aligned}
u\left(p_{i}\right), v\left(p_{i}\right) & \rightarrow \not p_{i} \\
\varepsilon^{\mu_{i}}\left(p_{i} ; q_{i}\right) & \rightarrow \Pi^{\mu_{i} \nu_{i}}\left(p_{i} ; q_{i}\right)
\end{aligned}
$$

Propagator in axial gauge

O Numerator built from the J-block is decomposed in terms of squared momenta

* Any loop diagram built from the J-block can be written as the sum of diagrams with one or two propagators less.

O By imposing on-shellness of the four particles

- Colour-kinematics duality is also manifest for d-dimensional regulated amplitudes \rightarrow Novel approach w/in FDF

C/K relations @ tree-level in DimReg w/in FDF

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

Consider the 4-point amplitude

C/K relations @ tree-level in DimReg w/in FDF

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

Consider the 4-point amplitude

Solving for c_{2}

$$
\mathcal{A}_{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=c_{1} K_{1}+c_{3} K_{3}
$$

being

$$
K_{1}=A(1,2,3,4) \quad K_{3}=A(2,1,3,4)
$$

Kinematic numerators obey Jacobi identity

$$
-n_{1}+n_{2}+n_{3}=0
$$

C/K relations @ tree-level in DimReg w/in FDF

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

Consider the 4-point amplitude

Solving for c_{2}

$$
\mathcal{A}_{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=c_{1} K_{1}+c_{3} K_{3}
$$

being

$$
K_{1}=\frac{n_{1}}{P_{23}^{2}-\mu^{2}}+\frac{n_{2}}{P_{12}^{2}}, \quad K_{3}=\frac{n_{3}}{P_{24}^{2}-\mu^{2}}-\frac{n_{2}}{P_{12}^{2}}
$$

Colour-ordered amplitudes

$$
K_{1}=A(1,2,3,4)
$$

$$
K_{3}=A(2,1,3,4)
$$

Kinematic numerators obey Jacobi identity
and the Jacobi identity

$$
-c_{1}+c_{2}+c_{3}=0
$$

$$
-n_{1}+n_{2}+n_{3}=0
$$

$$
\left(\begin{array}{ccc}
\frac{1}{P_{23}^{2}-\mu^{2}} & \frac{1}{P_{12}^{2}} & 0 \\
0 & -\frac{1}{P_{12}^{2}} & \frac{1}{P_{24}^{2}-\mu^{2}} \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)=\left(\begin{array}{c}
K_{1} \\
K_{3} \\
0
\end{array}\right)
$$

C/K relations @ tree-level in DimReg w/in FDF

[Mastrolia, Primo, Schubert, W.J.T. (2015)]

Consider the 4-point amplitude

$$
\mathcal{A}_{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=c_{1} \frac{n_{1}}{P_{23}^{2}-\mu^{2}}+c_{2} \frac{n_{2}}{P_{12}^{2}}+c_{3} \frac{n_{3}}{P_{24}^{2}-\mu^{2}}
$$

Solving for c_{2}

$$
\mathcal{A}_{4}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=c_{1} K_{1}+c_{3} K_{3}
$$

being

$$
K_{1}=\frac{n_{1}}{P_{23}^{2}-\mu^{2}}+\frac{n_{2}}{P_{12}^{2}}, \quad K_{3}=\frac{n_{3}}{P_{24}^{2}-\mu^{2}}-\frac{n_{2}}{P_{12}^{2}}
$$

Colour-ordered amplitudes

$$
K_{1}=A(1,2,3,4)
$$

$$
K_{3}=A(2,1,3,4)
$$

$$
\left(\begin{array}{ccc}
\frac{1}{P_{23}^{2}-\mu^{2}} & \frac{1}{P_{11}^{2}} & 0 \\
0 & -\frac{1}{P_{12}^{2}} & \frac{1}{P_{24}^{2}-\mu^{2}} \\
-1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)=\left(\begin{array}{c}
K_{1} \\
K_{3} \\
0
\end{array}\right)
$$

Kinematic numerators obey Jacobi identity
and the Jacobi identity

$$
-c_{1}+c_{2}+c_{3}=0
$$

$$
-n_{1}+n_{2}+n_{3}=0
$$

4-pt C/K-relations

$$
A(2,1,3,4)=\frac{P_{23}^{2}-\mu^{2}}{P_{24}^{2}-\mu^{2}} A(1,2,3,4) .
$$

C/K relations @ tree-level in DimReg w/in FDF

[Mastrolia, Primo, Schubert, W.J.T. (2015)]
As well, for the 5-point

$$
\begin{aligned}
& A_{5}(1,3,4,2,5)=\frac{-P_{12}^{2} P_{45}^{2} A_{5}(1,2,3,4,5)+\left(P_{14}^{2}-\mu^{2}\right)\left(P_{24}^{2}+P_{25}^{2}-2 \mu^{2}\right) A_{5}(1,4,3,2,5)}{\left(P_{13}^{2}-\mu^{2}\right)\left(P_{24}^{2}-\mu^{2}\right)} \\
& A_{5}(1,2,4,3,5)=\frac{-\left(P_{14}^{2}-\mu^{2}\right)\left(P_{25}^{2}-\mu^{2}\right) A_{5}(1,4,3,2,5)+P_{45}^{2}\left(P_{12}^{2}+P_{24}^{2}-\mu^{2}\right) A_{5}(1,2,3,4,5)}{P_{35}^{2}\left(P_{24}^{2}-\mu^{2}\right)} \\
& A_{5}(1,4,2,3,5)=\frac{-P_{12}^{2} P_{45}^{2} A_{5}(1,2,3,4,5)+\left(P_{25}^{2}-\mu^{2}\right)\left(P_{14}^{2}+P_{25}^{2}-2 \mu^{2}\right) A_{5}(1,4,3,2,5)}{P_{35}^{2}\left(P_{24}^{2}-\mu^{2}\right)} \\
& A_{5}(1,3,2,4,5)=\frac{-\left(P_{14}^{2}-\mu^{2}\right)\left(P_{25}^{2}-\mu^{2}\right) A_{5}(1,4,3,2,5)+P_{12}^{2}\left(P_{24}^{2}+P_{45}^{2}-\mu^{2}\right) A_{5}(1,2,3,4,5)}{\left(P_{13}^{2}-\mu^{2}\right)\left(P_{24}^{2}-\mu^{2}\right)}
\end{aligned}
$$

Making use of the photon decoupling identity

$$
A_{5}(1,2,4,3,5)=\frac{\left(P_{14}^{2}+P_{45}^{2}-\mu^{2}\right) A_{5}(1,2,3,4,5)+\left(P_{14}^{2}-\mu^{2}\right) A_{5}(1,2,3,5,4)}{\left(P_{24}^{2}-\mu^{2}\right)}
$$

C/K relations @ 1-loop

[Primo, W.J.T. (2016)]
Inspired by the generalised unitarity

$$
\begin{aligned}
C_{12|3 \ldots k|(k+1) \ldots l \mid(l+1) \ldots n}^{ \pm}= & A_{4}^{\text {tree }}\left(-l_{1}^{ \pm}, 1,2, l_{3}^{ \pm}\right) A_{k}^{\text {tree }}\left(-l_{3}^{ \pm}, P_{3 \ldots k}, l_{k+1}^{ \pm}\right) \\
& \times A_{l-k+2}^{\text {tre }}\left(-l_{k+1}^{ \pm}, P_{k+1 \ldots, \ldots,}, l_{l+1}^{ \pm}\right) A_{n-l+2}^{\text {tree }}\left(-l_{l+1}^{ \pm}, P_{l+1 \ldots, n}, l_{1}^{ \pm}\right)
\end{aligned}
$$

$$
C_{21|3 \ldots k|(k+1) \ldots l \mid(l+1) \ldots n}^{ \pm}=\frac{P_{l_{3}^{ \pm} 2}^{2}-\mu^{2}}{P_{-l_{1}^{2} 2}^{2}-\mu^{2}} C_{12|3 \ldots k|(k+1) \ldots l \mid(l+1) \ldots n}^{ \pm}
$$

C/K relations @ 1-loop

Inspired by the generalised unitarity

$$
\begin{aligned}
C_{12|3 \ldots k|(k+1) \ldots l \mid(l+1) \ldots n}^{ \pm}= & A_{4}^{\text {tree }}\left(-l_{1}^{ \pm}, 1,2, l_{3}^{ \pm}\right) A_{k}^{\text {tree }}\left(-l_{3}^{ \pm}, P_{3 \ldots k}, l_{k+1}^{ \pm}\right) \\
& \times A_{l-k+2}^{\text {tree }}\left(-l_{k+1}^{ \pm}, P_{k+1 \ldots, \ldots,}, l_{l+1}^{ \pm}\right) A_{n-l+2}^{\text {tree }}\left(-l_{l+1}^{ \pm}, P_{l+1 \ldots, n}, l_{1}^{ \pm}\right)
\end{aligned}
$$

$$
C_{21|3 \ldots k|(k+1) \ldots l \mid(l+1) \ldots}^{ \pm}=\frac{P_{l_{3}^{ \pm} 2}^{2}-\mu^{2}}{P_{-l_{1}^{ \pm} 2}^{2}-\mu^{2}} C_{11}^{\frac{1}{2}|3 \ldots k|(k+1) \ldots l(l+1) \ldots n} .
$$

C/K relation

$$
A(2,1,3,4)=\frac{P_{23}^{2}-\mu^{2}}{P_{24}^{2}-\mu^{2}} A(1,2,3,4)
$$

- One-loop amplitudes in $\mathrm{N}=4 \mathrm{sYM}$
[Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove (2010)]
- Cut constructible part of One-loop QCD amplitudes
[Chester (2016)]
- One-loop QCD amplitudes

C/K relations @ 1-loop

Same behaviour for lower topologies

$$
\begin{aligned}
& C_{123|4 \ldots k|(k+1) \ldots n}^{ \pm} \\
& \quad=A_{5}^{\text {tree }}\left(-l_{1}^{ \pm}, 1,2,3, l_{4}^{ \pm}\right) A_{k-1}^{\text {tree }}\left(-l_{4}^{ \pm}, P_{4 \ldots k}, l_{k+1}^{ \pm}\right) A_{n-k+2}^{\text {tree }}\left(-l_{k+1}^{ \pm}, P_{k+1 \ldots, n}, l_{1}^{ \pm}\right)
\end{aligned}
$$

$$
C_{213|4 \ldots k|(k+1) \ldots n}^{ \pm}=\frac{\left(P_{l_{4}^{ \pm} 2}^{2}+P_{23}^{2}-\mu^{2}\right) C_{123|4 \ldots k|(k+1) \ldots n}^{ \pm}+\left(P_{l_{4}^{ \pm} 2}^{2}-\mu^{2}\right) C_{132|4 \ldots k|(k+1) \ldots n}^{ \pm}}{\left(P_{-l_{1}^{ \pm} 2}^{2}-\mu^{2}\right)}
$$

due to

$$
A_{5}(1,2,4,3,5)=\frac{\left(P_{14}^{2}+P_{45}^{2}-\mu^{2}\right) A_{5}(1,2,3,4,5)+\left(P_{14}^{2}-\mu^{2}\right) A_{5}(1,2,3,5,4)}{\left(P_{24}^{2}-\mu^{2}\right)}
$$

Unitarity + C/K-relations @ work

[Mastrolia, Primo, W.J.T. (in progress)]

- Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$
\begin{aligned}
& A_{n}^{1-1 \text { lop }}=\int d^{d \bar{l}} \frac{\mathcal{N}\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}, \\
& \frac{N\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}=\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k l m}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l} D_{m}}+\sum_{i \ll l}^{n-1} \frac{\Delta_{i j k l}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k}} \\
& D_{i}=\left(\bar{l}+p_{i}\right)^{2}-m_{i}^{2}=\left(l+p_{i}\right)^{2}-m_{i}^{2}-\mu^{2} . \\
& +\sum_{i<j}^{n-1} \frac{\Delta_{i j}\left(l, \mu^{2}\right)}{D_{i} D_{j}}+\sum_{i}^{n-1} \frac{\Delta_{i}\left(l, \mu^{2}\right)}{D_{i}},
\end{aligned}
$$

Unitarity + C/K-relations @ work

[Mastrolia, Primo, W.J.T. (in progress)]

- Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$
\begin{array}{ll}
A_{n}^{1-\text { loop }}=\int d^{d \bar{l}} \frac{\mathcal{l}\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}, & \frac{N\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}= \\
\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k l m}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l} D_{m}}+\sum_{i \ll l}^{n-1} \frac{\Delta_{i j k l}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k}} \\
D_{i}=\left(\bar{l}+p_{i}\right)^{2}-m_{i}^{2}=\left(l+p_{i}\right)^{2}-m_{i}^{2}-\mu^{2} . & +\sum_{i<j}^{n-1} \frac{\Delta_{i j}\left(l, \mu^{2}\right)}{D_{i} D_{j}}+\sum_{i}^{n-1} \frac{\Delta_{i}\left(l, \mu^{2}\right)}{D_{i}},
\end{array}
$$

- Ingredients :: Residues @cut —> Keep under control their polynomial structure

$$
\begin{aligned}
\Delta_{i j k l m}= & c \mu^{2}, \\
\Delta_{i j k l}= & c_{0}+c_{1} x_{4}+c_{2} \mu^{2}+c_{3} x_{4} \mu^{2}+c_{4} \mu^{4}, \\
\Delta_{i j k}= & c_{0,0}+c_{1,0}^{+} x_{4}+c_{2,0}^{+} x_{4}^{2}+c_{3,0}^{+} x_{4}^{3}+c_{1,0}^{-} x_{3}+c_{2,0}^{-} x_{3}^{2}+c_{3,0}^{-} x_{3}^{3}+c_{0,2} \mu^{2}+c_{1,2}^{+} x_{4} \mu^{2}+c_{1,2}^{-} x_{3} \mu^{2}, \\
\Delta_{i j}= & c_{0,0,0}+c_{0,1,0} x_{1}+c_{0,2,0} x_{1}^{2}+c_{1,0,0}^{+} x_{4}+c_{2,0,0}^{+} x_{4}^{2}+c_{1,0,0}^{-} x_{3}+c_{2,0,0}^{-} x_{3}^{2}+c_{1,1,0}^{+} x_{1} x_{4} \\
& +c_{1,1,0}^{-} x_{1} x_{3}+c_{0,0,2} \mu^{2}, \\
\Delta_{i}= & c_{0,0,0,0}+c_{0,1,0,0} x_{1}+c_{0,0,1,0} x_{2}+c_{1,0,0,0}^{-} x_{3}+c_{1,0,0,0}^{+} x_{4},
\end{aligned}
$$

Unitarity + C/K-relations @ work

[Mastrolia, Primo, W.J.T. (in progress)]

- Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$
\begin{array}{ll}
A_{n}^{1-1 \text { loop }}=\int d^{d} \bar{l} \frac{\mathcal{V}\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}, & \frac{N\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}= \\
\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k l m}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l} D_{m}}+\sum_{i \ll l}^{n-1} \frac{\Delta_{i j k l}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l}}+\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k}} \\
D_{i}=\left(\bar{l}+p_{i}\right)^{2}-m_{i}^{2}=\left(l+p_{i}\right)^{2}-m_{i}^{2}-\mu^{2} . & +\sum_{i<j}^{n-1} \frac{\Delta_{i j}\left(l, \mu^{2}\right)}{D_{i} D_{j}}+\sum_{i}^{n-1} \frac{\Delta_{i}\left(l, \mu^{2}\right)}{D_{i}}
\end{array}
$$

- Ingredients :: Residues @cut —> Keep under control their polynomial structure

$$
\begin{aligned}
\Delta_{i j k l m}= & c \mu^{2}, \\
\Delta_{i j k l}= & c_{0}+c_{1} x_{4}+c_{2} \mu^{2}+c_{3} x_{4} \mu^{2}+c_{4} \mu^{4}, \\
\Delta_{i j k}= & c_{0,0}+c_{1,0}^{+} x_{4}+c_{2,0}^{+} x_{4}^{2}+c_{3,0}^{+} x_{4}^{3}+c_{1,0}^{-} x_{3}+c_{2,0}^{-} x_{3}^{2}+c_{3,0}^{-} x_{3}^{3}+c_{0,2} \mu^{2}+c_{1,2}^{+} x_{4} \mu^{2}+c_{1,2}^{-} x_{3} \mu^{2}, \\
\Delta_{i j}= & c_{0,0,0}+c_{0,1,0} x_{1}+c_{0,2,0} x_{1}^{2}+c_{1,0,0}^{+} x_{4}+c_{2,0,0}^{+} x_{4}^{2}+c_{1,0,0}^{-} x_{3}+c_{2,0,0}^{-} x_{3}^{2}+c_{1,1,0}^{+} x_{1} x_{4} \\
& +c_{1,1,0}^{-} x_{1} x_{3}+c_{0,0,2} \mu^{2}, \\
\Delta_{i}= & c_{0,0,0,0}+c_{0,1,0,0} x_{1}+c_{0,0,1,0} x_{2}+c_{1,0,0,0}^{-} x_{3}+c_{1,0,0,0}^{+} x_{4},
\end{aligned}
$$

- Procedure :: C/K-relations @work —> Generate a system of equations that relates residues of different ordering through C / K-relations

Unitarity + C/K-relations @ work

[Mastrolia, Primo, W.J.T. (in progress)]

- Target :: Reduce the number of independent residues needed to compute any colour-dressed one-loop amplitude

$$
\begin{array}{ll}
A_{n}^{1-1 \mathrm{lopp}}=\int d^{d \bar{l}} \frac{\mathcal{V}\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}, & \frac{N\left(l, \mu^{2}\right)}{D_{0} D_{1} \ldots D_{n-1}}= \\
\sum_{i \ll m}^{n-1} \frac{\Delta_{i j k l m}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k} D_{l} D_{m}}+\sum_{i \ll l}^{n-1} \frac{{\frac{\Delta i j k l}{}\left(l, \mu^{2}\right)}_{D_{i} D_{j} D_{k} D_{l}}^{l}}{l}+\sum_{i \ll k}^{n-1} \frac{\Delta_{i j k}\left(l, \mu^{2}\right)}{D_{i} D_{j} D_{k}} \\
D_{i}=\left(\bar{l}+p_{i}\right)^{2}-m_{i}^{2}=\left(l+p_{i}\right)^{2}-m_{i}^{2}-\mu^{2} . & +\sum_{i<j}^{n-1} \frac{\Delta_{i j}\left(l, \mu^{2}\right)}{D_{i} D_{j}}+\sum_{i}^{n-1} \frac{\Delta_{i}\left(l, \mu^{2}\right)}{D_{i}},
\end{array}
$$

- Ingredients :: Residues @cut —> Keep under control their polynomial structure

$$
\begin{aligned}
\Delta_{i j k l m}= & c \mu^{2}, \\
\Delta_{i j k l}= & c_{0}+c_{1} x_{4}+c_{2} \mu^{2}+c_{3} x_{4} \mu^{2}+c_{4} \mu^{4}, \\
\Delta_{i j k}= & c_{0,0}+c_{1,0}^{+} x_{4}+c_{2,0}^{+} x_{4}^{2}+c_{3,0}^{+} x_{4}^{3}+c_{1,0}^{1} x_{3}+c_{2,0}^{-} x_{3}^{2}+c_{3,0}^{-} x_{3}^{3}+c_{0,2} \mu^{2}+c_{1,2}^{+} x_{4} \mu^{2}+c_{1,2}^{-} x_{3} \mu^{2}, \\
\Delta_{i j} & =c_{0,0,0}+c_{0,1,0} x_{1}+c_{0,2,0} x_{1}^{2}+c_{1,0,0}^{+} x_{4}+c_{2,0,0}^{+} x_{4}^{2}+c_{1,0,0}^{-} x_{3}+c_{2,0,0}^{-} x_{3}^{2}+c_{1,1,0}^{+} x_{1} x_{4} \\
& +c_{1,1,0}^{-} x_{1} x_{3}+c_{0,0,2} \mu^{2}, \\
\Delta_{i}= & c_{0,0,0,0}+c_{0,1,0,0} x_{1}+c_{0,0,1,0} x_{2}+c_{1,0,0,0}^{-} x_{3}+c_{1,0,0,0}^{+} x_{4},
\end{aligned}
$$

- Procedure :: $¢ / K$-relations @work —> Generate a system of equations that relates esidues of different ordering through C/K-relations

- Khe solution of the system gives us a reduce set of independent residues
— Unitarity @work —> Compute the independent residues through Unitarity Based Methods

$$
\Delta^{(13 \ldots)} \equiv \sum_{l_{i} \in \mathcal{S}} A_{4}\left(-l_{1}, 1,2, l_{2}\right) \times A(\ldots) \times \cdots \times A(\ldots)
$$

Unitarity + C/K-relations @ work

[Mastrolia, Primo, W.J.T. (in progress)]

5pt one-mass-boxes

Start with 120 residues

Unitarity + C/K-relations @ work

[Mastrolia, Primo, W.J.T. (in progress)]

5pt one-mass-boxes

Start with 120 residues

* -60 residues because of reflection. At the intengrand level this is equivalent to performing the shift $l_{i} \rightarrow-l_{i+1}$.

Unitarity + C/K-relations @ work

[Mastrolia, Primo, W.J.T. (in progress)]

5pt one-mass-boxes

Start with 120 residues

* -30 residues because of C / K-relations
$\Delta(\{2,1\}, 3,4,5)=\frac{\left(l_{1}-1\right)^{2}-\mu^{2}}{\left(l_{1}-2\right)^{2}-\mu^{2}} \Delta(\{1,2\}, 3,4,5)$,

Unitarity + C/K-relations @ work

[Mastrolia, Primo, W.J.T. (in progress)]

5pt one-mass-boxes

Start with 120 residues

* -60 residues because of reflection. At the intengrand level this is equivalent to performing the shift $l_{i} \rightarrow-l_{i+1}$.
* -30 residues because of C / K-relations
$\Delta(\{2,1\}, 3,4,5)=\frac{\left(l_{1}-1\right)^{2}-\mu^{2}}{\left(l_{1}-2\right)^{2}-\mu^{2}} \Delta(\{1,2\}, 3,4,5)$,

End up with $\mathbf{3 0}$ independent residues

Results

Inspired by Momentum Twistors
[Hodges (2009)]

4pt single minus

$=-\frac{i}{48 \pi^{2}} x_{1}^{5} x_{2}^{2}\left(x_{2}+1\right)$

5pt single minus

$=-\frac{i}{48 \pi^{2}} x_{1}^{6} x_{2}^{2} x_{3}\left[\left(x_{2}+1\right) x_{4}+\left(x_{3}+1\right) x_{2}^{2} x_{3} x_{5}-\frac{\left(x_{2}-x_{4}\right)^{3} x_{3}}{x_{2}-x_{4}+x_{5}}\right]$

Write Lorentz invariant quantities in terms of $\mathbf{3 n - 1 0}$ variables

6pt single minus

William J. Torres Bobadilla
$-\frac{1}{48 \pi^{2}} i x_{1}^{7} x_{2}^{3} x_{3}^{2} x_{4}\left(\frac{x_{2} x_{3}^{2} x_{4}^{3} x_{5}\left(x_{2} x_{3} x_{6}+x_{5}\left(x_{3}\left(x_{2}\left(x_{7}-1\right)-1\right)-1\right)\right)^{2}\left(x_{6}-1\right)^{4}}{x_{6}^{2}\left(\left(\left(x_{2}+1\right) x_{3}+1\right) x_{4}\left(x_{6}-1\right)+x_{6}\right)\left(x_{5}\left(x_{6}+x_{4}\left(x_{6}+x_{3}\left(x_{6}+x_{2}\left(x_{7}-1\right)-1\right)-1\right)\right)+x_{2} x_{3} x_{4} x_{6} x_{8}\right)}-\right.$
$\left(x_{3} x_{4} x_{5}\left(\left(x_{2} x_{3}\left(\left(x_{3}+1\right) x_{4}\left(x_{6}-1\right)+x_{6}\right) x_{7}^{2}-2 x_{2} x_{3} x_{6} x_{7}+\left(\left(x_{2}+1\right) x_{3}+1\right) x_{6}\right) x_{5}^{2}-2 x_{2} x_{3} x_{6}\left(x_{6}+x_{2} x_{3} x_{4}\left(x_{6}-1\right) x_{7}\right) x_{5}+x_{2}^{2} x_{3} x_{6}^{2}\left(\left(x_{2} x_{3}+1\right) x_{4}\left(x_{6}-1\right)+x_{6}\right)\right)\right.$ $\left.\left(x_{6}-1\right)^{3}\right) /\left(x_{6}^{2}\left(\left(\left(x_{2}+1\right) x_{3}+1\right) x_{4}\left(x_{6}-1\right)+x_{6}\right)\left(x_{5}\left(x_{6}-x_{7}\right)-x_{6} x_{8}\right)\right)+$
$3 x_{2} x_{3}\left(\frac{x_{2} x_{5} x_{6}}{x_{2} x_{6}-x_{5} x_{7}}+\frac{x_{3} x_{4}\left(x_{2}^{2} x_{3}\left(x_{4}+1\right) x_{6}-x_{5}^{2}\right) x_{7}}{x_{6}}\right)-\frac{1}{x_{6}^{2}\left(x_{2} x_{6}-x_{5} x_{7}\right)}\left(x_{3}^{3} x_{4}\left(x_{4}+1\right) x_{6}^{3}\left(x_{6}+2\right) x_{2}^{4}-\right.$
$x_{3} x_{6}^{2}\left(x_{4}\left(x_{4}+1\right)\left(x_{6}^{2}+\left(-x_{7} x_{5}+x_{5}-1\right) x_{6}+x_{5} x_{7}\left(2 x_{7}+1\right)\right) x_{3}^{2}+x_{6}\left(-x_{7} x_{5}+x_{5}+x_{6}+x_{4}\left(x_{4}\left(x_{6}-1\right)+2 x_{6}-1\right)\right) x_{3}-x_{6}\left(x_{6}+x_{5}\left(x_{7}-1\right)\right)\right) x_{2}^{3}-$
$x_{5} x_{6}\left(x_{4}\left(x_{4}+1\right) x_{5} x_{6}\left(x_{7}-1\right) x_{7} x_{3}^{3}+x_{5}\left(x_{6}\left(x_{7}-1\right) x_{7}+x_{4}\left(3 x_{6}+x_{7}-1\right)\right) x_{3}^{2}+x_{5} x_{6}\left(x_{7}-1\right) x_{7} x_{3}+x_{6}^{2}\right) x_{2}^{2}+$
$\left.x_{5}\left(x_{3}^{2} x_{4} x_{7}\left(3 x_{6}+x_{7}-1\right) x_{5}^{2}+3 x_{3} x_{6}^{2} x_{5}+x_{6}^{2}\left(x_{5} x_{7}-x_{6}\right)\right) x_{2}+x_{5}^{2} x_{6}\left(x_{6} x_{7}-x_{3} x_{5}\right)\right)+$
$\left.\frac{x_{2} x_{3}^{2} x_{4}\left(-x_{5}^{2}-x_{2} x_{3}\left(x_{4}+1\right) x_{6} x_{5}+x_{2}^{2} x_{3}\left(x_{4}+1\right) x_{6}^{2}\right) x_{8}}{x_{5} x_{6}}+\frac{x_{2}^{3} x_{3}^{2}\left(x_{4}+1\right) x_{6}\left(x_{4}\left(-x_{6}+x_{3}\left(-x_{6}+x_{2}\left(x_{6}-2 x_{7}+1\right)+1\right)+1\right)-x_{6}\right)}{x_{2} x_{6}-x_{5} x_{7}}-\frac{x_{2} x_{3}^{2} x_{4} x_{5}^{3}\left(x_{7}-1\right)^{2}}{x_{8}}\right)$

Summary and Outlook

Unitarity, On-shellness \& Integrand Decomposition

- Dramatic developments for One-Loop Amplitudes
- NLO: automating analytic one-loop calculations
- NN...LO
- many legs
- massive particles in the loops

Formal Properties of Scattering Amplitudes

- Hidden properties can emerge only from direct calculations.
- An open problem: C/K duality of higher loop amplitudes.
- Scattering Amplitudes in Gauge theories still reserve a lot of surprises.

Summary and Outlook

Unitarity, On-shellness \& Integrand Decomposition

- Dramatic developments for One-Loop Amplitudes
- NLO: automating analytic one-loop calculations
- NN...LO
- many legs
- massive particles in the loops

Formal Properties of Scattering Amplitudes

- Hidden properties can emerge only from direct calculations.
- An open problem: C/K duality of higher loop amplitudes.
- Scattering Amplitudes in Gauge theories still reserve a lot of surprises.

