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One motivation: evaluation of Coleman-Weinberg effective potential

• In the Standard Model, Veff relates the Higgs VEV to the Lagrangian MS

parameters. Known at:

– 2-loop order (Ford, Jack, Jones, hep-ph/0111190)

– 3-loop order only at leading order in αS and yt. (SPM 1310.7553)

• In SUSY, Veff enables approximate calculation of lightest Higgs mass. Again,

only known fully at 2-loop order. 3-loop contributions are numerically

important, especially if SUSY is heavy.

Need to be able to systematically compute hundreds of integrals, for example:
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In SUSY cases, mass hierarchies not known in advance.
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All 1-scale vacuum integrals at 3-loop order are known analytically.

Broadhurst 1992, 1999; Avdeev+Fleischer+Mikhailov+Tarasov, 1994; Fleischer+Tarasov,

1994; Avdeev 1995; Fleischer+Kalmykov 1999; Schröder+Vuorinen 2005.

Available in a computer program: MATAD (Steinhauser hep-ph/0009092)

Can also get 3-loop vacuum integrals with multiple scales, by expansions in

masses starting from the 1-scale integrals, for a given hierarchy.

A few examples of 2-scale integrals are also known analytically:

Davydychev+Kalmykov 2003, Kalmykov 2005, Bytev+Kalmykov+Kniehl 2009,

a few more will appear in our own paper.

Our aim is for a fast, accurate, and flexible (valid for all masses, doesn’t rely on

predetermined hierarchical expansions) numerical computation method.
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Outline

• Basis (“master”) integrals

• Renormalized basis integrals

• Analytic cases

• Evaluation of basis integrals using differential

equations in squared mass arguments

• Public code: 3-loop Vacuum Integral Library = 3VIL
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Using partial fractions, any 3-loop vacuum integral can be reduced to this

topology of scalar integral in d = 4− 2ǫ Euclidean dimensions with
∫

p
= µ4−d

∫

ddp/(2π)d, where the MS renormalization scale is defined by

Q2 = 4πe−γEµ2:

1 2

3

4

56

T
(n1,n2,n3,n4,n5,n6)

(x1, x2, x3, x4, x5, x6) = (16π
2
)
3
∫

p

∫

q

∫

k

1

[p2 + x1]n1 [q2 + x2]n2 [k2 + x3]n3 [(p − q)2 + x4]n4 [(q − k)2 + x5]n5 [(k − p)2 + x6]n6

The propagator powers ni can be positive, negative, or zero. Using integration by

parts, can always reduce all integrals of this type to a few basis integrals. . .
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Basis integrals:

H(u, v, w, x, y, z) = T
(1,1,1,1,1,1)(u, v, w, x, y, z),

G(w, u, z, v, y) = T
(1,1,1,0,1,1)(u, v, w, x, y, z),

F(u, v, y, z) = T
(2,1,0,0,1,1)(u, v, w, x, y, z),

A(u)I(v, w, y) = T
(1,1,1,0,1,0)(u, v, w, x, y, z),

A(u)A(v)A(w) = T
(1,1,1,0,0,0)(u, v, w, x, y, z),

The last two are just products of 1-loop and 2-loop basis integrals:

A(x)

x

I(x, y, z)

z

y

x

These are known analytically, and present no problems.
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The genuinely 3-loop integrals in the basis are H, G, and F:

H(u, v, w, x, y, z)

z y

xu v

w

G(w, u, z, v, y)

z y

u v

w

F(u, v, y, z)

u z y v

E(u, v, y, z)

u z y v

The dot on the F integral denotes a doubled propagator for the first squared mass

argument; all other propagators are single.

The 4-propagator integral E is not part of the basis. By dimensional analysis:

E(u, v, y, z) = [uF(u, v, y, z) + vF(v, u, y, z) + yF(y, u, v, z) + zF(z, u, v, y)] /(−2 + 3ǫ),

so it is redundant. However, it is still useful. Note:

F(u, v, y, z) = −

∂

∂u
E(u, v, y, z).
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Renormalized quantities are much more succinctly written in terms of modified

basis integrals in which UV sub-divergences have been subtracted.

For example, at 2-loop order, define:

I(x, y, z) = lim
ǫ→0

[

I(x, y, z)− I
(1)
div(x, y, z)− I

(2)
div(x, y, z)

]

,

where

I
(1)
div(x, y, z) =

1

ǫ
[A(x) +A(y) +A(z)],

I
(2)
div(x, y, z) =

1

2
(x+ y + z)

(

1

ǫ2
− 1

ǫ

)

.

The modified basis integral I(x, y, z) is finite, by construction. It is known in

terms of dilogarithms. Note it is not just the same thing as the ǫ0 term in the

ǫ expansion!
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For the 3-loop, 4-propagator integrals, define:

E(u, v, y, z) = lim
ǫ→0

[

E(u, z, y, v) − E
(1)
div(u, v, y, z) − E

(2)
div(u, v, y, z) − E

(3)
div(u, v, y, z)

]

,

where the 1-loop, 2-loop, and 3-loop UV sub-divergences are, respectively,

E
(1)
div(u, v, y, z) =

1

ǫ
A(u)A(v) + (5 permutations),

E
(2)
div(u, v, y, z) =

[

1

2ǫ2
(v + y + z) +

1

2ǫ

(u

2
− v − y − z

)

]

A(u) + (3 permutations),

E
(3)
div(u, v, y, z) =

[

1

3ǫ3
−

2

3ǫ2
+

1

3ǫ

]

(uv + uy + uz + vy + vz + yz)

+

[

1

6ǫ2
−

3

8ǫ

]

(u
2
+ v

2
+ y

2
+ z

2
).

Renormalized quantities are written in terms of the ǫ-independent modified basis

functions:

F (u, v, y, z) = −

∂

∂u
E(u, v, y, z).
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Similarly, define the modified basis function:

G(w, u, z, v, y) = lim
ǫ→0

[

G(w, u, z, v, y) − G
(1)
div(w, u, z, v, y) − G

(2)
div(w, u, z, v, y)

−G
(3)
div(w, u, z, v, y)

]

,

where the 1-loop, 2-loop, and 3-loop UV sub-divergences are:

G
(1)
div(w, u, z, v, y) =

1

ǫ
[I(w, u, z) + I(w, v, y)] ,

G
(2)
div(w, u, z, v, y) =

(

−
1

2ǫ2
+

1

2ǫ

)

[A(u) + A(v) + A(y) + A(z)] −
1

ǫ2
A(w),

G
(3)
div(w, u, z, v, y) =

(

−
1

6ǫ3
+

1

2ǫ2
−

2

3ǫ

)

(u + v + y + z) +

(

−
1

3ǫ3
+

1

3ǫ2
+

1

3ǫ

)

w.

H has no 1-loop and 2-loop sub-divergences, but does have a 3-loop UV
divergence. So, define:

H(u, v, w, x, y, z) = lim
ǫ→0

[

H(u, v, w, x, y, z) − H
(3)
div(u, v, w, x, y, z)

]

where

H
(3)
div(u, v, w, x, y, z) = 2ζ(3)/ǫ.
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The function F (u, v, y, z) has an IR log divergence as u → 0. Therefore,

further define:

F (u, v, y, z) ≡ F (u, v, y, z) + ln(u)I(v, y, z)

where

ln(u) = ln(u/Q2)

with Q = MS renormalization scale. The function F is well-defined for all values

of its squared mass arguments, including u = 0.

For convenience, our program 3VIL outputs all E, F , and F functions, for given

input arguments.

(Also can output the ǫ expansions of the original bold-faced integrals I, F, G, H.)
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It remains to be able to evaluate the (modified) basis integrals.

Introducing: 3VIL = 3-loop Vacuum Integral Library

• Written in C, can be called from C, C++, Fortran

• Uses analytic results where available, otherwise differential equations method

• Evaluation for generic mass inputs:

– Time < 1 second on reasonably modern hardware

– Relative accuracy <∼ 10−10

• For certain rare difficult cases, time ∼ 5 seconds, accuracy ∼ 10−4

• Not quite ready for public release, but very soon. . .
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The following are known analytically:

• All 1-scale integrals E, F , F , G, H , with squared masses all equal to 0 or a

single non-zero value x. Broadhurst 1992, 1999;

Avdeev+Fleischer+Mikhailov+Tarasov, 1994; Fleischer+Tarasov, 1994;

Avdeev 1995; Fleischer+Kalmykov 1999; Schröder+Vuorinen 2005.

• The following 2-scale integral cases, and integrals E, F related to them, and

permutations implied by symmetries of the graphs:

F (x, 0, 0, y), F (0, 0, x, y), F (x, x, y, y), F (x, 0, y, y), F (y, 0, y, x),

G(0, 0, 0, x, y), G(0, 0, x, 0, y), G(x, 0, 0, 0, y), G(x, 0, x, 0, y),

G(0, x, x, y, y), G(x, 0, 0, y, y), G(y, x, x, x, x), H(0, 0, x, y, x, x).

Davydychev+Kalmykov 2003, Kalmykov 2005, Bytev+Kalmykov+Kniehl 2009,

our paper.

Our program 3VIL knows about these cases and uses them whenever possible.

Computation time ≈ 0.
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The generic case: consider the master tetrahedral topology, and all corresponding

basis integrals obtained by removing propagator lines:

H(u, v, w, x, y, z),

G(w, u, z, v, y), G(x, u, v, y, z), G(u, v, x, w, z),

G(y, v, w, x, z), G(v, u, x, w, y), G(z, u,w, x, y),

F (w, u, x, y), F (w, v, x, z), F (x, u, w, y), F (x, v, w, z),

F (u, v, y, z), F (u,w, x, y), F (y, u, v, z), F (y, u, w, x),

F (v, u, y, z), F (v, w, x, z), F (z, u, v, y), F (z, v, w, x),

products of I and A functions

The derivatives of all of these with respect to any squared mass argument u, v, w, x, y, z

are also 3-loop integrals, and so are linear combinations of the basis.

Solve differential equations in the masses to compute these, starting from known analytical

values at a fixed but arbitrary reference squared mass a as initial conditions:

H(a, a, a, a, a, a), G(a, a, a, a, a), F (a, a, a, a), I(a, a, a), A(a).
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Define an integration variable t, and:

U = a+ t(u− a), V = a+ t(v − a), W = a+ t(w − a),

X = a+ t(x− a), Y = a+ t(y − a), Z = a+ t(z − a).

and consider basis integrals as functions of U, V,W,X, Y, Z .

• At t = 0, have U = V = W = X = Y = Z = a, so all integrals are known.

• At t = 1, have desired values of squared mass arguments:

(U, V,W,X, Y, Z) = (u, v, w, x, y, z).

Denoting the basis integrals generically by Φi, have first-order coupled linear

differential equations in t:

d

dt
Φj =

∑

k

cjkΦk + cj

where the coefficients cjk and cj are ratios of polynomials in t and fixed values

a, u, v, w, x, y, z.

Integrate differential equations numerically from t = 0 to t = 1.
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Differential equations method for evaluation of loop integrals

Kotikov 1991, Remiddi 1997, Caffo+Czyz+Laporta+Remiddi 1998,

Caffo+Czyz+Remiddi 2002, SPM 2003, SPM+Robertson 2005, . . .

Allows analytic evaluation in favorable cases; otherwise

Runge-Kutta numerical integration.

When computing tetrahedral integral H(u, v, w, x, y, z), we

simultaneously get all subordinate basis integrals G, F , F , E.

However, there are complications. . .
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d

dt
Φj =

∑

k

cjkΦk + cj

A complication: the coefficients cjk and cj have poles in t.

• All poles can be made simple by use of partial fractions on the coefficients.

• There are always poles at t = 0.

Use a power series expansion around t = 0, up to order t8.

Start integration at t = 0.01

• All poles are on the real t axis. Sometimes poles exist for 0 < t < 1.

In that case, integrate on a contour in the complex plane to avoid them:

Re[t]

Im[t]

1

Otherwise, integrate straight along Re[t] axis.
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Recall U = a+ t(u− a), etc.

The fixed reference squared mass a is arbitrary. In principle, results should not

depend on it. Can be changed as a check. By default 3VIL uses:

a = 2Max(u, v, w, x, y, z).

Avoids numerical problems that can arise in certain special cases.

Other checks:

• analytical special cases compared to Runge-Kutta evaluation

• vanishing of imaginary parts of basis integrals when squared mass inputs are

positive

• change shape of contour in complex plane, including height in the Im[t]

direction
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Initialization at t = 0.01:

H(U, V,W,X, Y, Z) = H(a, a, a, a, a, a) +
∑

n≥1

t
n
H

(n)
(u, v, w, x, y, z; a),

G(W,U,Z, V, Y ) = G(a, a, a, a, a) +
∑

n≥1

t
n
G

(n)
(w, u, z, v, y; a),

F (U, V, Y, Z) = F (a, a, a, a) +
∑

n≥1

t
n
F

(n)
(u, v, y, z; a),

with:

F (a, a, a, a) = a

[

53/12 + (3
√
3Ls2 − 3/2)ln(a) +

3

2
ln

2
(a) −

1

2
ln

3
(a)

]

G(a, a, a, a, a) = a
[

−97/3 + 12
√
3Ls2 + 6ζ3 + (26 − 6

√
3Ls2)ln(a) − 8ln

2
(a) + ln

3
(a)

]

H(a, a, a, a, a, a) = 16Li4(1/2) −
17π4

90
+

2

3
ln2(2)[ln2(2) − π2] − 9(Ls2

2) + 6ζ3[1 − ln(a)]

and

H(1)(u, v, w, x, y, z; a) = ζ3(6a − u − v − w − x − y − z)/a,

etc. All expansion coefficients through n = 7 included, so that at t = 0.01 the

relative error from truncation is same order as that of long double arithmetic, 10−16.
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For most of the integration, 3VIL uses a 6-stage, 5th order Runge-Kutta

algorithm with automatic step-size adjustment.

However, can have poles in the coefficients at the integration endpoint t = 1.

Usual Runge-Kutta routines fail!

Key property needed: no evaluations of derivatives at the endpoint of the

integration step.

No 4-stage Runge-Kutta algorithms with this property exist, but we found a

5-stage, 4th order algorithm. (Invented for a very similar situation for our program

TSIL = Two-loop Self-energy Integration Library, hep-ph/0501132.)

Note: although the coefficients in the differential equations have poles, the basis

functions themselves are completely finite and smooth! Only pseudo-thresholds,

no thresholds.
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Some examples of the basis integral H , as a function

of a squared mass argument x, with other squared

mass arguments fixed to 0 or 1.

1 2

3

4

56

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

-10

-5

0

5

10

H H(x,x,1,1,x,x)

H(x,1,1,1,1,1)

H(x,1,1,1,x,1)

H(x,x,x,x,x,1)

H(x,x,1,x,1,1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

-10

-5

0

5

10

H

H(0,0,0,0,x,1)

H(0,1,1,1,x,1)

H(0,x,x,x,1,x)

H(0,0,0,x,x,1)

H(0,x,1,1,x,1)

H(0,0,x,x,x,1)

H(0,1,x,x,x,1)

The endpoints at x = 0 and x = 1 are known analytically in terms of logs.

For all other 0 < x < 1, computed analytically with 3VIL.
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Outlook

• Identified a basis for 3-loop vacuum integrals with arbitrary

masses; convenient modified basis for renormalized quantities

• Evaluation using differential equations method

– fast, accurate, flexible

– get all subordinate integrals simultaneously

• Public code 3VIL coming very soon

• Applications

– 3-loop effective potential for Standard Model, SUSY, general

theory

– Higher point functions when external momenta are small, or

are suitable for expansions
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Pseudo-thresholds = numerically difficult cases:

v

(
√
v ±√

y)2

y

with v 6= 0 and y 6= 0.

Note that these cases are “unnatural”; not consequences of any possible

symmetry in a quantum field theory. Don’t arise in Standard Model, but may occur

in parameter scans in Beyond Standard Model theories.
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