Finite fields and progress ON FOUR LOOP FORM FACTORS

Andreas v. Manteuffel

LoopFest 2016
Buffalo, 15-17 August 2016

Form factors for quarks and gluons

- massless quark and gluon form factors

- purely virtual corrections to
- Drell-Yan production
- Higgs production in gluon-fusion
- form factors allow to study IR properties of QCD
- cusp anomalous dimensions $1 / \epsilon^{2}$
- collinear anomalous dimensions $1 / \epsilon$

Form factors @ 3-LOOps

- master integrals:
- [Gehrmann, Heinrich, Huber, Studerus '06]
- [Heinrich, Huber, Maître '07]
- [Heinrich, Huber, Kosower, V. Smirnov '09]
- [Lee, A. Smirnov, V. Smirnov '10]
- [Baikov, Chetyrkin, A. Smirnov, V. Smirnov, Steinhauser '09]
- [Lee, V. Smirnov '10] \Leftarrow the only complete weight 8
- [Henn, A. Smirnov, V. Smirnov '14] (diff. eqns.)
- form factors © 3-loops:
- [Baikov, Chetyrkin, A. Smirnov, V. Smirnov, Steinhauser '09]
- [Gehrmann, Glover, Huber, Ikizlerli, Studerus '10, '10]
- recalculation of 3-loop results via finite integrals:
- [AvM, Panzer, Schabinger '15]
- automated setup, fully analytical
- Qgraf [Nogueira]:
* Feynman diagrams
- Reduze 2 [AvM, Studerus]:
\star interferences
\star IBP reductions
\star finite integral finder
\star basis change with dimensional recurrences
- HyperInt [Panzer]:
\star integration of ϵ expanded master integrals

QUARK FORM FACTOR @ 3-LOOPS [AvM, Panzer, Schabinger '15]

Towards the cusp anomalous dimension @ 4-LOOPS

Cusp anomalous dimension @ 4-loops:

- required for $N^{3} L L$ resummation, see talk by [H.X. Zhu]
- Casimir scaling for quark and gluon cusp anomalous dimension:

$$
\Gamma_{4}^{q} \stackrel{?}{=} \frac{C_{F}}{C_{A}} \Gamma_{4}^{g}
$$

towards 4-loop form factors:

- reduced integrand for $\mathcal{N}=4$: [Boels, Kniehl, Tarasov, Yang '12, '15]
- leading N_{c} fermionic F_{4}^{q} : [Henn, Smirnov, Smirnov, Steinhauser '16]
- particularly challenging: gluon form factor in QCD

Analytical integration @ 4-LOops

[AvM, Panzer, Schabinger '15]
a non-planar 12-line topology @ 4-loops:

$$
=\frac{18}{5} \zeta_{2}^{2} \zeta_{3}-5 \zeta_{2} \zeta_{5}+\left(24 \zeta_{2} \zeta_{3}+20 \zeta_{5}-\frac{188}{105} \zeta_{2}^{3}-17 \zeta_{3}^{2}+9 \zeta_{2}^{2} \zeta_{3}\right.
$$

- only shallow ϵ expansion needed
- numerical result with Fiesta [A. Smirnov]: straight-forward confirmation
- starts at weight 7, not expected to contribute to cusp anomalous dimension
- more: see talk by [R. Schabinger]

Feynman integrals form a linear vector space

$$
I=\int \mathrm{d}^{d} k_{1} \cdots \mathrm{~d}^{d} k_{L} \frac{1}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}} \quad a_{i} \in \mathbb{Z}, \quad D_{1}=k_{1}^{2}-m_{1}^{2} \text { etc. }
$$

family of loop integrals:

- fulfill linear relations: integration-by-parts (IBP) identities
- systematic reduction to master integrals possible
- think of it as linear vector space with some finite basis
- specific basis choices:
- canonical basis for method of differential equations [Henn]
- basis of finite integrals for direct integration (analyt., numeric.) [Panzer; Panzer, AvM, Schabinger]
reductions are technical challenge:
(1) often a bottleneck of the computation
(2) this talk: improve reductions via finite field sampling

INTEGRATION-BY-PARTS (IBP) IDENTITIES

in dimensional regularisation, integral over total derivative vanishes:

$$
\begin{aligned}
& 0=\int \mathrm{d}^{d} k_{1} \cdots \mathrm{~d}^{d} k_{L} \frac{\partial}{\partial k_{i}^{\mu}}\left(k_{j}^{\mu} \frac{1}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}}\right) \\
& 0=\int \mathrm{d}^{d} k_{1} \cdots \mathrm{~d}^{d} k_{L} \frac{\partial}{\partial k_{i}^{\mu}}\left(p_{j}^{\mu} \frac{1}{D_{1}^{a_{1}} \cdots D_{N}^{a_{N}}}\right)
\end{aligned}
$$

where p_{j} are external momenta, $a_{i} \in \mathbb{Z}, \quad D_{1}=k_{1}^{2}-m_{1}^{2}$ etc.
integral reduction:

- express arbitrary integral for given problem via few basis integrals
- integration-by-parts (IBP) reductions [Chetyrkin, Tkachov '81]
- public codes: Air [Anastasiou], Fire [Smirnov], Reduze 1 [Studerus], Reduze 2 [AvM, Studerus], LiteRed [Lee]
- possible: exploit structure at algebra level
- here: Laporta's approach

Laporta's algorithm:
(1) index integrals by propagator exponents: $I\left(a_{1}, \ldots, a_{N}\right)$
(2) define ordering (e.g. fewer denominators means simpler)
(3) generate IBPs for explicit values a_{1}, \ldots, a_{N}
(1) results in linear system of equations
(0) solve linear system of equations
major shortcomings of traditional Gauss solvers:

- suffers from intermediate expression swell
- requires large number of auxiliary integrals and equations
- limited possbilities for parallelisation

IBP REDUCTIONS FROM FINITE FIELD SAMPLES

A novel approach to IBPS [AvM, Schabinger '14]
(1) finite field sampling

- set variables to integer numbers
- consider coefficients modulo a prime field \mathbb{Z}_{p}
(2) solve finite field system
(3) reconstruct rational solution from many such samples

IBP REDUCTIONS FROM FINITE FIELD SAMPLES

A NOVEL APPROACH TO IBPS [AvM, Schabinger '14]
(1) finite field sampling

- set variables to integer numbers
- consider coefficients modulo a prime field \mathbb{Z}_{p}
(2) solve finite field system
(3) reconstruct rational solution from many such samples
finite field techniques:
- no intermediate expression swell by construction
- early discard of redundant and auxiliary quantities
- big potential for parallelisation
established in math literature, becomes popular in physics:
- dense solver: [Kauers]
- filtering: Ice [Kant '13]
- supersymmetric integrand construction: [Bern et al]
- tensor reduction: [Heller]
- QCD integrand construction: [Peraro '16]

Extended Euclidean Algorithm (EEA)

(1) begin with $\left(g_{0}, s_{0}, t_{0}\right)=(a, 1,0)$ and $\left(g_{1}, s_{1}, t_{1}\right)=(b, 0,1)$,
(2) then repeat

$$
\begin{aligned}
q_{i} & =g_{i-1} \text { quotient } g_{i} \\
g_{i+1} & =g_{i-1}-q_{i} g_{i} \\
s_{i+1} & =s_{i-1}-q_{i} s_{i} \\
t_{i+1} & =t_{i-1}-q_{i} t_{i}
\end{aligned}
$$

(3) until $g_{k+1}=0$ for some k. at that point:

$$
s_{k} a+t_{k} b=g_{k}=\operatorname{GCD}(a, b)
$$

restrict first to linear systems with rational numbers coefficients

- use EEA to define inverse of integer b modulo m with $\operatorname{GCD}(m, b)=1$:

$$
\begin{aligned}
1 & =s m+t b \\
\Rightarrow 1 / b & :=t \bmod m
\end{aligned}
$$

this gives us a canonical homomorphism ϕ_{m} of \mathbb{Q} onto \mathbb{Z}_{m} with

$$
\phi_{m}(a / b)=\phi_{m}(a) \phi_{m}(1 / b)
$$

- for large enough m, the map ϕ_{m} can be inverted!
given a finite field image of a / b modulo m for $m>2 \max \left(a^{2}, b^{2}\right)$,
a unique rational reconstruction is possible:

Rational Reconstruction [Wang '81; Wang, Guy, Davenport '82]

to reconstruct a / b from its finite field image $u=a / b \bmod m$:

- run EEA for u and m
- stop at first g_{j} with $\left|g_{j}\right| \leq\lfloor\sqrt{m / 2}\rfloor$
- the unique solution is $a / b=g_{j} / t_{j}$
important details:
- since we don't know bound on m :
veto $\left|t_{j}\right|>\lfloor\sqrt{m / 2}\rfloor$ and $\operatorname{GCD}\left(t_{j}, g_{j}\right) \neq 1$ reconstructions, see e.g. [Monagan '04]
- construct large m with Chinese Remaindering:
construct solution modulo $m=p_{1} \cdots p_{N}$ from solutions modulo machine-sized primes p_{i}

A fast rational solver

INPUT: $\boldsymbol{I}_{\mathbb{Q}}$ unreduced rational matrix output: $O_{\mathbb{Q}}$ row reduced rational matrix

Function reconstruction

univariate rational function $\mathbb{Q}[d]$ reconstruction:

- works similar to the case \mathbb{Q}
- Chinese remaindering becomes Lagrange polynomial interpolation:

$$
p_{1} \cdots p_{N} \rightarrow\left(d-p_{1}\right) \cdots\left(d-p_{N}\right)
$$

- rational reconstruction becomes Pade approximation:
interpolating polynomial \rightarrow rational function
multivariate rational function $\mathbb{Q}[d, s, t, \ldots]$ reconstruction:
- by iteration

A fast univariate solver

A fast univariate solver

rational solver: reduce matrix $I_{\mathbb{Q}}$ of rational numbers

A fast univariate solver

rational solver: reduce matrix $I_{\mathbb{Q}}$ of rational numbers

univariate solver: reduce matrix $I_{\mathbb{Q}[x]}$ of rational functions in x

A fast univariate solver

rational solver: reduce matrix $I_{\mathbb{Q}}$ of rational numbers
univariate solver: reduce matrix $I_{\mathbb{Q}[x]}$ of rational functions in x

aux solver: reduce matrix $\mathbb{I}_{\mathbb{Z}_{p}[x]}$ of polynomials in x with finite field coefficients

$$
\begin{array}{ccccccc}
I_{\mathbb{Z}_{p}}[x] \\
& \begin{array}{ccc}
\text { by number } x_{i}
\end{array} & I_{\mathbb{Z}_{p}, x_{1}} & \xrightarrow[\text { reduction }]{\text { sample } x} & O_{\mathbb{Z}_{p}, x_{1}} & \underset{\text { interpolation }}{\text { polynomial }} & O_{\mathbb{Z}_{p}[x]}
\end{array} \begin{gathered}
\text { reconstruction }
\end{gathered} O_{\mathbb{Z}_{p}[x]}^{\text {rational function }}
$$

note: massively parallisable

Package: finred
Author: Andreas v. Manteuffel
features:

- C++11 implementation for univariate sparse matrices
- employs flint library
- parallelisation: SIMD, threads, MPI, batch
- equation filtering: eliminate redundant rows
- plus lots of IBP specific features
- much faster than Reduze 2

Results for massless QCD @ 4 Loops

[AvM, Schabinger]
completed:

- N_{f}^{3} for quarks and gluons (three massless quark loops)
- complexity: 12 denominators, 6 numerators, non-planar, $O\left(10^{8}\right)$ eqs. per sector
checks:
- reductions verified against at least 5 independent samples
- calculation performed in different gauges
- general R_{ξ} gauge, general external polarisation vectors
- background field gauge
result independent of these choices
- two independent diagram evaluations:
- Qgraf + Mathematica
- Qgraf + Form
- poles through to $1 / \epsilon^{3}$ [Moch, Vermaseren, Vogt '05] reproduced
remarks:
- general R_{ξ} gauge introduces many dots
- more details: see talk by [R. Schabinger]

QCD RESULT @ 4-LOOPS FOR QUARkS

[AvM, Schabinger]

bare quark form factor

$$
\begin{aligned}
\left.\mathcal{F}_{4}^{q}\right|_{N_{f}^{3}}=C_{F}\left[\frac{1}{\epsilon^{5}}\right. & \left(\frac{1}{27}\right)+\frac{1}{\epsilon^{4}}\left(\frac{11}{27}\right)+\frac{1}{\epsilon^{3}}\left(\frac{4}{9} \zeta_{2}+\frac{254}{81}\right)+\frac{1}{\epsilon^{2}}\left(-\frac{26}{27} \zeta_{3}+\frac{44}{9} \zeta_{2}+\frac{29023}{1458}\right) \\
& +\frac{1}{\epsilon}\left(\frac{23}{3} \zeta_{4}-\frac{286}{27} \zeta_{3}+\frac{1016}{27} \zeta_{2}+\frac{331889}{2916}\right)-\frac{146}{9} \zeta_{5}-\frac{104}{9} \zeta_{2} \zeta_{3}+\frac{253}{3} \zeta_{4} \\
& \left.-\frac{6604}{81} \zeta_{3}+\frac{58046}{243} \zeta_{2}+\frac{10739263}{17496}+\mathcal{O}(\epsilon)\right]
\end{aligned}
$$

cusp anomalous dimension:

$$
\left.\Gamma_{4}^{q}\right|_{N_{f}^{3}}=C_{F}\left[\frac{64}{27} \zeta_{3}-\frac{32}{81}\right]
$$

agrees with [Grozin, Henn, Korchemsky, Marquard '15], [Henn, Smirnov, Smirnov, Steinhauser '16]

First QCD result @ 4-Loops For gluons

[AvM, Schabinger]

BARE GLUON FORM FACTOR

$$
\begin{aligned}
\left.\mathcal{F}_{4}^{\mathrm{g}}\right|_{N_{f}^{3}}=C_{F}[& -\frac{2}{3 \epsilon^{3}}+\frac{1}{\epsilon^{2}}\left(\frac{32}{3} \zeta_{3}-\frac{145}{9}\right)+\frac{1}{\epsilon}\left(\frac{352}{45} \zeta_{2}^{2}+\frac{1040}{9} \zeta_{3}+\frac{68}{9} \zeta_{2}-\frac{10003}{54}\right) \\
& \left.+\frac{4288}{27} \zeta_{5}-64 \zeta_{3} \zeta_{2}+\frac{2288}{27} \zeta_{2}^{2}+\frac{24812}{27} \zeta_{3}+\frac{3074}{27} \zeta_{2}-\frac{508069}{324}+\mathcal{O}(\epsilon)\right] \\
+C_{A}[& \frac{1}{27 \epsilon^{5}}+\frac{5}{27 \epsilon^{4}}+\frac{1}{\epsilon^{3}}\left(-\frac{14}{27} \zeta_{2}-\frac{55}{81}\right)+\frac{1}{\epsilon^{2}}\left(-\frac{586}{81} \zeta_{3}-\frac{70}{27} \zeta_{2}-\frac{24167}{1458}\right) \\
& +\frac{1}{\epsilon}\left(-\frac{802}{135} \zeta_{2}^{2}-\frac{5450}{81} \zeta_{3}-\frac{262}{81} \zeta_{2}-\frac{465631}{2916}\right)-\frac{14474}{135} \zeta_{5}+\frac{4556}{81} \zeta_{3} \zeta_{2} \\
& \left.-\frac{1418}{27} \zeta_{2}^{2}-\frac{99890}{243} \zeta_{3}+\frac{38489}{729} \zeta_{2}-\frac{20832641}{17496}+\mathcal{O}(\epsilon)\right]
\end{aligned}
$$

gluon cusp anomalous dimension:

$$
\left.\Gamma_{4}^{g}\right|_{N_{f}^{3}}=C_{A}\left[\frac{64}{27} \zeta_{3}-\frac{32}{81}\right]
$$

- respects Casimir scaling
- non-planar C_{F} pieces do not contribute to $\left.\Gamma_{4}^{g}\right|_{N_{f}^{3}}$

Conclusions

reductions via finite field sampling:

- fast \& well established techniques
- avoids intermediate expression swell
- implementation for sparse matrices: finred
- speeds up integration-by-parts reductions of Feynman integrals
- useful also for other problems
four loop form factors in massless QCD:
- first result for gluons: N_{f}^{3} contributions
- more to come

