CP-even scalar boson production via gluon fusion at the LHC

Elisabetta Furlan

ETH Zurich

In collaboration with Babis Anastasiou, Claude Duhr, Falko Dulat, Thomas Gehrmann, Franz Herzog, Achilleas Lazopoulos, Bernhard Mistlberger

- Many BSM scenarios introduce an extended Higgs sector with new scalars
- Undeniably, it has recently been a field of great attention
- Interesting playground to study effects from new high-energy physics (in an effective theory approach) and possibly their interplay with those of "light" Standard Model particles
- Great expertise from our previous, very precise studies of Higgs boson production

- We focus on the gluon fusion channel
- No further assumption on the UV theory beyond the production of the new scalar S
- Effective theory: S couples to the gluons through a dimension 5 effective operator

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4v} C_S S G^a_{\mu\nu} G^{\mu\nu}_a$$

⇒ same low-energy theory as the one describing the Higgs dimension-five couplings after decoupling the top quark

Can write the production cross section as

$$\sigma_S(m_S, \Lambda_{\mathrm{UV}}) = |C_S(\mu, \Lambda_{\mathrm{UV}})|^2 \eta(\mu, m_S)$$

Wilson coefficient

matrix element in the effective theory

Can write the production cross section as

$$\sigma_S(m_S, \Lambda_{\mathrm{UV}}) = \left| C_S(\mu, \Lambda_{\mathrm{UV}}) \right|^2 \eta(\mu, m_S)$$

mass scale from dim. reg.

Can write the production cross section as

$$\sigma_S(m_S, \Lambda_{\mathrm{UV}}) = \left| C_S(\mu, \Lambda_{\mathrm{UV}}) \right|^2 \eta(\mu, m_S)$$

scale of new physics / cutoff scale of the effective theory description

typical mass scale of the heavy particles that have been integrated out

example: for gluon-fusion Higgs production in the light-flavour SM, $\Lambda_{UV} \sim m_t$

Can write the production cross section as

$$\sigma_S(m_S, \Lambda_{\mathrm{UV}}) = |C_S(\mu, \Lambda_{\mathrm{UV}})|^2 \eta(\mu, m_S)$$

- matrix element in the effective theory
- for a CP-even, colourless scalar produced in gluon fusion, it is the same matrix element as the one for $gg \to H$
- ▶ known through N³LO, with the N³LO term computed as an expansion around the Higgs threshold

Can write the production cross section as

$$\sigma_S(m_S, \Lambda_{\mathrm{UV}}) = \left| C_S(\mu, \Lambda_{\mathrm{UV}}) \right|^2 \eta(\mu, m_S)$$

• derive the production cross section of S from the one for H as

$$\sigma_S(m_S, \Lambda_{ ext{UV}}) = \left| rac{C_S(\mu, \Lambda_{ ext{UV}})}{C_H(\mu, m_t)}
ight|^2 \, \sigma_H(m_S, m_t)$$

• for all the range of scalar masses from 10 GeV to 3 TeV (HXSWG recommendations), good convergence of the perturbative expansion at N³LO

The theory error

- As in the SM calculation, the theory error includes
 - scale variation $\mu \in \left[\frac{m_S}{4}, m_S\right]$
 - truncation error from the threshold expansion

$$\delta(\text{trunc}) = 10 \times \frac{\sigma_{EFT}^{(3)}(37) - \sigma_{EFT}^{(3)}(27)}{\sigma_{EFT}^{\text{N}^{3}\text{LO}}}$$

missing N³LO parton distributions

$$\delta(\text{PDF} - \text{TH}) = \frac{1}{2} \left| \frac{\sigma_{EFT}^{(2),NNLO} - \sigma_{EFT}^{(2),NLO}}{\sigma_{EFT}^{(2),NNLO}} \right|$$

The theory error

- caveat: we use the PDF set PDF4LHC15 in all the calculations but in the estimate of the PDF-TH error
 - → accidental cancellation for scalar masses around 770 GeV!
 - → for the PDF-TH error, take the envelope of the PDF-TH error given by CT14, NNPDF3.0 and PDF4LHC15
 - ightharpoonup error typically of a few % (cfr. SM, 1.1%), but rapid increase to $\mathcal{O}(10\%)$ for scalar masses below 20 GeV

- How good is the EFT if the scalar couples to some new "light" particle?
- Example: 750 GeV scalar coupling to a new quark of mass m_T
- Can compute the cross section exactly through NLO and compare it with the prediction from the effective theory,

$$\delta_{\rm EFT} = \frac{\sigma_{\rm exact}^{\rm NLO}(m_T) - \sigma_{\rm EFT}^{\rm NLO}}{\sigma_{\rm exact}^{\rm NLO}} \times 100$$

• The EFT is typically "improved" by rescaling with the exact LO cross section,

$$\sigma_{ ext{rEFT}}^{ ext{NLO}} = rac{\sigma_{ ext{exact}}^{ ext{LO}}}{\sigma_{ ext{EFT}}^{ ext{LO}}} \, \sigma_{ ext{EFT}}^{ ext{NLO}}$$

Much better agreement with the exact NLO result!

• The EFT is typically "improved" by rescaling with the exact LO cross section,

$$\sigma_{ ext{rEFT}}^{ ext{NLO}} = rac{\sigma_{ ext{exact}}^{ ext{LO}}}{\sigma_{ ext{EFT}}^{ ext{LO}}} \, \sigma_{ ext{EFT}}^{ ext{NLO}}$$

- Much better agreement with the exact NLO result!
 - ⇒ even in the presence of light new particles,
 can use the effective theory to compute the
 K-factors w.r.t. the exact LO cross section

Top-quark contributions

- In many extensions of the SM, new scalars can couple to the heavier SM particles, as the top quark (for example, to explain its large mass)
- For a light new scalar, can use an effective ggS vertex analogous to the SM one also for the top...
- ... but if the scalar is heavy, we cannot integrate the top out → model the top-scalar interaction as

$$\mathcal{L}_{ ext{eff}} = -\frac{\lambda_{ ext{wc}}}{4v} C_H S G_{\mu\nu}^a G_a^{\mu\nu} - \frac{\lambda_t}{v} \frac{m_t}{v} S \bar{t}t$$
 $\lambda_{ ext{wc}} = \frac{C_S}{C_H}$
 $\lambda_t = \frac{Y_{ttS}}{Y_{ttH}}$

Top-quark contributions

The NLO cross section becomes

$$\sigma_{S}^{\text{NLO}}[\lambda_{\text{wc}}, \lambda_{t}] = |\lambda_{\text{wc}} \mathcal{A}_{\text{wc}} + \lambda_{t} \mathcal{A}_{t}|^{2}$$

$$= \lambda_{\text{wc}}(\lambda_{\text{wc}} - \lambda_{t}) \sigma_{S}^{\text{NLO}}[1, 0]$$

$$+ \lambda_{t}(\lambda_{t} - \lambda_{\text{wc}}) \sigma_{S}^{\text{NLO}}[0, 1]$$

$$+ \lambda_{\text{wc}} \lambda_{t} \sigma_{S}^{\text{NLO}}[1, 1]$$

$$\lambda_{\mathrm{wc}}^2 \sigma_S^{\mathrm{NLO}}[1,0] = \lambda_{\mathrm{wc}}^2 |\mathcal{A}_{\mathrm{wc}}|^2 \longrightarrow \text{cross section in the EFT}$$
 $\longrightarrow \text{can use the N}^3 \text{LO one}$

Top-quark contributions

• The NLO cross section becomes

$$\sigma_{S}^{\text{NLO}}[\lambda_{\text{wc}}, \lambda_{t}] = |\lambda_{\text{wc}} \mathcal{A}_{\text{wc}} + \lambda_{t} \mathcal{A}_{t}|^{2}$$

$$= \lambda_{\text{wc}}(\lambda_{\text{wc}} - \lambda_{t}) \sigma_{S}^{\text{NLO}}[1, 0]$$

$$+ \lambda_{t}(\lambda_{t} - \lambda_{\text{wc}}) \sigma_{S}^{\text{NLO}}[0, 1]$$

$$+ \lambda_{\text{wc}} \lambda_{t} \sigma_{S}^{\text{NLO}}[1, 1]$$

$$\lambda_{\mathrm{wc}}^2 \sigma_S^{\mathrm{NLO}}[1,0] = \lambda_{\mathrm{wc}}^2 |\mathcal{A}_{\mathrm{wc}}|^2 \longrightarrow \text{cross section in the EFT}$$

$$\sigma_S^{\mathrm{NLO}}[0,1] = |\mathcal{A}_{\mathrm{t}}|^2 \longrightarrow \text{full top-mass} \longrightarrow \text{NLO}$$

$$\sigma_S^{\mathrm{NLO}}[1,1] = |\mathcal{A}_{\mathrm{t}} + \mathcal{A}_{\mathrm{wc}}|^2 \longrightarrow \text{dependance}$$

Theory error

• Lead by the NLO terms → evaluate it as

$$\frac{\delta \sigma^{\text{NLO}}[n_1, n_2]}{\sigma^{\text{NLO}}[n_1, n_2]} = \pm \delta_{> \text{NLO}} \left(1 + \delta_{\text{scheme}}[n_1, n_2] \right), \quad n_i \in \{0, 1\}$$

with

$$\delta_{>\text{NLO}} = \left(\frac{\sigma^{\text{N}^{3}\text{LO}}[1,0] - \sigma^{\text{NLO}}[1,0]}{\sigma^{\text{NLO}}[1,0]}\right)_{\text{EFT}}$$

estimate of missing contributions beyond NLO in the effective theory

Theory error

Lead by the NLO terms → evaluate it as

$$\frac{\delta \sigma^{\text{NLO}}[n_1, n_2]}{\sigma^{\text{NLO}}[n_1, n_2]} = \pm \delta_{> \text{NLO}} \left(1 + \delta_{\text{scheme}}[n_1, n_2] \right), \quad n_i \in \{0, 1\}$$

with

$$\delta_{>\text{NLO}} = \left(\frac{\sigma^{\text{N}^{3}\text{LO}}[1,0] - \sigma^{\text{NLO}}[1,0]}{\sigma^{\text{NLO}}[1,0]}\right)_{\text{EFT}}$$

$$\delta_{ ext{scheme}}[n_1, n_2] = rac{\left|\sigma_{ ext{exact}}^{ ext{NLO}, \overline{ ext{MS}}}[n_1, n_2] - \sigma_{ ext{exact}}^{ ext{NLO,OS}}[n_1, n_2]
ight|}{\sigma_{ ext{exact}}^{ ext{NLO}, \overline{ ext{MS}}}[n_1, n_2]}$$

scheme-dependence of top-quark contributions at NLO

Cross section components

- provide the $\sigma_S^{\mathrm{N^{X}LO}}[n_1,n_2]$ for S production with SM-like Yukawa couplings at various collider energies and scalar masses
- they can be adapted to specific models by just rescaling the interactions

\sqrt{s}	Component	value[fb]	$\delta(\text{theory})$ [%]	$\delta(\operatorname{pdf}+\alpha_S)[\%]$
8 TeV	$\sigma_S^{ m N^3LO}[1,0]$	111.4	$+1.9 \\ -4.0$	6.1
	$\sigma_S^{ m NLO}[1,0]$	89.37	19.18	6.23
	$\sigma_S^{ ext{NLO}}[0,1]$	98.92	22.3	6.22
	$\sigma_S^{ m NLO}[1,1]$	245.3	21.71	6.2
13 TeV	$\sigma_S^{\mathrm{N}^3\mathrm{LO}}[1,0]$	496.9	$^{+2.0}_{-3.7}$	4.0
	$\sigma_S^{ m NLO}[1,0]$	404.6	18.3	4.5
	$\sigma_S^{ m NLO}[0,1]$	442.7	21.3	4.4
	$\sigma_S^{ m NLO}[1,1]$	1108	20.7	4.4
				$m_{\rm S} = 750$

Cross section components

 good convergence of the top component to the EFT for low values of the scalar mass

$m_S [{\rm GeV}]$	$\sigma_S^{NLO}[1,1][\mathrm{pb}]$	$\sigma_S^{NLO}[1,0][pb]$	$\sigma_S^{NLO}[0,1][pb]$
50	687.1	171.4	172.3
55	593.9	148.1	149.0
60	518.3	129.0	130.2
65	455.9	113.4	114.6
70	404.0	100.4	101.7

→ can use the N³LO EFT cross section

Production of a CP-even scalar S:

- gluon-fusion is one of the most favourable channels
- in an EFT, can compute the cross section through N³LO from the analogous result for Higgs production, choosing as central scale $\mu=m_S/2$
- in the theory error, account for scale variation, threshold truncation and missing N³LO PDFs

Validity of the EFT:

- x for a relatively light particle mediating the production of S (expect errors around 60% in the threshold region for the pair production of the mediator)
- can still be used to estimate the K-factors

Top-quark contributions:

- for an heavy scalar, need to retain the full top mass dependence
 - → can be computed only through NLO
 - \rightarrow large theory uncertainty ($\mathcal{O}(20\%)$)
- for a light scalar, can use an EFT Wilson coefficient also for the top \rightarrow N³LO accuracy

 We provided the ingredients to compute the cross section for the production of a CP-even scalar via gluon fusion using the most precise higher order QCD corrections available, once its Wilson coefficient and the top-Yukawa coupling are known