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OUTLINE I"lin

e Motivation: for precision/loop
calculations for dark matter

e Setup: the DM model and EFT
framework

e Selected Highlights: of the calculation

e Results
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WE KNOW A LOT ABOUT DARK MATTER I I"
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WE KNOW A LOT ABOUT DARK MATTER I I"
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WE KNOW A LOT ABOUT DARK MATTER

Wimp Miracle
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Experiments probing TeV scale
DM with weak scale cross

WE KNOW A LOT ABOUT DARK MATTER

sections are running right now

i . ,“ =5 ey . " , e, é' o i
Order of magnitude High Energy Stereoscopic

calculations for the cross  System (H.E.S.S.) Telescope
sections no longer Taking data since 2012

suffice - need precision ~ Located in Namibia g



WE KNOW A LOT ABOUT DARK MATTER
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... YET WE KNOW ALMOST
NOTHING ABOUT DARK MATTER

What is the DM mass scale?

MpMm
1010 oV 10= eV
I():ardehoton Wimpzilla
ondensate hep—ph /9810361
1105.2812

e Even so, many of the lessons we learn from the TeV scale
could apply to other models

e [ots of space to explore!
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A SIMPLE MODEL gl

Model: pure wino dark matter

e A simple model where loop effects are known to be
important

Add SU(2) triplet Majorana fermion
o ( g )
L ey

with Lagrangian (mass is the only new parameter):

1 |
L= Lom+ 5Ty (i — My) X
Study annihilation into X vy 4
photons within the model
X Vs 4




SOMMERFELD ENHANCEMENT

Fundamentally: an attractive
potential can enhance the cross
section by orders of magnitude
(scalesas 1/v)

Determine numerically by solving
the Schrodinger equation

Even if start with neutral particles,
the charged ones can initiate the
hard annihilation - and dominate
due to tree-level photon coupling

0 +
X

W, Z,~

0 e

See e.g 0810.0713, 0910.5713, 1307.4082, 1603.01383

i
SUDAKOV DOUBLE LOGS

o

A SIMPLE MODEL WHERE LOOPS MATTER

Multi TeV

EW Scale

W, Z
Am?

1 TeVDM: agln® —% ~ 1.3
L

e Need to resum the large logs - use

EFT techniques

e Also important for transverse WW

production at the LHC (0909.0012)
See e.g 1409.8294, 1409.7392, 1409.4415 e



A SIMPLE MODEL MAPPED TO AN EFT

e We follow 1409.8294, who did the NLL calculation, and map
to NRDM-5CET

Non-Relativistic Dark Matter Soft-Collinear Effective Theory
e DM %s .he.avy and non- X v, Z e DM is much heavier than
relativistic EW scale
¢ Treatlike an HQET Field e Qutgoing bosons are highly
e Influenced by potential X v, 7 boosted/ collinear
sourced by EW bosons e Naturally described by

SCET - specifically SCETy
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A SIMPLE MODEL MAPPED TO AN EFT

X il

X o

e Power of the EFT: at leading power, NRDM has no
dependence on soft/ collinear gauge bosons, whilst SCET has
no dependence on the DM

¢ Thus Sommerfeld and Sudakov factorise to the order we are
working(X can be vy, YZ or ZZ):

M,p0,0_x = 4V2m, Px {Soo (2 \/580::&}

Y

Sudakov Contribution
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A SIMPLE MODEL: SUDAKOV LOGS TO NLL
Sudakov suppression for Y™y~ — ZZ,7y,yy
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e Sudakov correction is clearly important

e Hryczuk & Iengo (1111.2916) did a one-loop fixed order
numerical calculation of this process

e Seems inconsistent with NLL calculation - might be an error

e Warranted rethinking about this in an EFT setup 13



ONE-LOOP MATCHING: GOING BEYOND NLL

Bl Theory High Scale M.atching
e At the high scale match the NRDM-SCET onto the full theory
um v e  Wilson coefficients only. sensitive to UV physics: calculate in the
X unbroken full theory without gauge bosons masses
e NLL only needed tree level matching, we extend this to one loop
Running by Anomalous Dimension
: e  Run from the natural scale of the hard annihilation (~2my), to the
NRDM-SCETgw scale of the Sommerfeld annihilation (~my)
e Resums Sudakov double logs
e  We will take the NLL result
Low Scale Matching
//L 7 v e  Match from a theory with EW degrees of freedom onto one without
e  Accounts for gauge boson mass effects
: e  Use SCETgw formalism (e.g. 0709.2377) and extend for NR particles
NRDM-S CETY V e  We do this matching fully at one loop
e At this stage combine results with Sommerfeld calculation i




HIGH SCALE MATCHING: 28 GRAPHS AT 1-LOOP

i
Triang les

e Standard 1-loop matching
calculation >- >’* >{
e Use dim-reg so all EFT >{ % H
graphs are scaleless - we can -
B

get the matching just from Tw
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ONE-LOOP HIGHLIGHTS: MAINTAINING FACTORISATION

e Aim: extend calculation of Sudakov logs to higher order, keeping it
separate from Sommerfeld contribution to avoid double counting

e But the following box graph has contributions from both:
< <

>

ol W, Z,~

> >

e We exploit a central feature of the Sommerfeld enhancement to remove
it entirely: its scaling as 1/v

e Setting v=0 at the start of our calculation (justified as DM is non-
relativistic), means 1/v contributions now scale as power divergences

e Aswe calculate in dim-reg, power divergences are sent to 0!

e This rigorously ensures we are not double counting

16



ONE-LOOP HIGHLIGHTS: MAINTAINING FACTORISATION

e There is one catch to this solution though. Consider the following
diagram:

<

>

e When doing Passarino-Veltman reduction on the integrals that appear,
we find terms proportional to:

s —4m

e which diverge if we set v=0...

2

* Origin is actually very simple, related to a basic assumption of PVR
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ONE-LOOP HIGHLIGHTS: MAINTAINING FACTORISATION

 Basicidea of Passarino-Veltman reduction is to reduce tensor integrals
to scalar integrals, exploiting Lorentz invariance to see e.g.

/ d?k L1 e .
(2 )¢ [/CQ—m%][(k—l—pl)Q—m%][(k+p2)2_m§] Py o

e and then solve for C; and C

e But this assume p1 and p» are linearly independent. If v=0, then for us
pi=p2 and this assumption breaks down

e The result is exactly these additional spurious divergences

18



ONE-LOOP HIGHLIGHTS: MAINTAINING FACTORISATION

e Most straightforward regulator is to reintroduce a finite velocity, which
ensures p1 and p» are not identical, and then remove the regulator by
setting v=0 at the end of the calculation. We can only do this because
the problem appears in the left graph below but not the right

< < <

> > >

e [f this appeared on the right, we would need to also introduce a
velocity for the EFT graphs and they would no longer be scaleless

e Then we would need to account for the equivalent 1/v terms
appearing in the EFT graphs and subtract them off to maintain

factorisation
19



ONE-LOOP HIGHLIGHTS: LOW-SCALE ORGANISATION

COLLINEAR GRAPHS COLOR DIAGONAL

e Does not mix operators
e Process independent

e Depends on details of

\ external particle

COLOR DIPOLE

SUR b

e Use color operator
notation (hep-ph/
9602277) e Hardest parts can be

calculated in the

unbroken theory

e Mixes operators

e Allows color structure
to be greatly simplified

Use SCETEgw formalism (e.g. 0709.2377, 0909.0012, 0909.0947) extended for NR particles 20



RESULTS: NLL’=NLL+O(&)
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RESULTS: PURE ONE-LOOP CORRECTION

1. Sudakov contribution to -
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Turning off the running can take our pure loop results and
compare to HI - our result is in good agreement with NLL

Similar shape to HI, disagreement largely a constant offset

that could be due to a difference in finite terms

Regardless our full analytic result is in a form that can be

used to extend the calculation to NNLL
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RESULTS: FULL COMBINATION
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CONCLUSION I"lin

e Accurate calculations of the expected indirect detection signal
for TeV scale dark matter requires a caretul treatment of two
different loop effects:

e Sommerfeld Enhancement - order of magnitude corrections
e Sudakov Logarithms - order 50% corrections

® Qur NLL’ calculation brings total uncertainty to 1% level

10 e
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ORDER COUNTING FOR SUDAKOV DOUBLE LOGS

L L (0ol (al)P .
aL [1+al’+ (aLl?)?+ (aL?)’ +...] NLL

a|l+al®+ (al®)? + (aL?)’+...] NNLL

\ NLO contribution
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LARGE ELECTROWEAK SUDAKOVS AT THE LHC

e Although new in a DM setting - this is hardly
unprecedented, and well known in an LHC context

e E.g. Chiu, Golf, Kell

ey, Manohar (0909.0012) have shown the

electroweak Sudakov corrections to transverse WW
production can suppress cross section by 40% at 2 TeV

 Percent correction to transverse WW production in red:

20

-20 |

-40 |

0

——— — — —
C—_—
. — —
—
——
—
R —

27



