Two-loop Master Integrals for the mixed QCD \times EW corrections to Drell-Yan processes

Stefano Di Vita

based on work with Roberto Bonciani, Pierpaolo Mastrolia and Ulrich Schubert, submitted to JHEP [arXiv:1604.08581]

DESY (Hamburg)
LoopFest XV, University at Buffalo 15-17 Aug 2016

I barely have 1 "phenomenological" slide ... hold on, dinner is close!

Outline

(1) Drell-Yan processes: a very (very!) compact introduction
(2) Two-loop mixed QCD \times EW corrections: what to compute
(3) Two-loop mixed QCD \times EW corrections: how we computed

Outline

(1) Drell-Yan processes: a very (very!) compact introduction (2) Two-loop mixed QCD \times EW corrections: what to compute (3) Two-loop mixed QCD \times EW corrections: how we computed

What this is about [Drell, Yan 70; ...: Alioliet. al. 16]

"my most phenomenological slide" ${ }^{(2)}$

- dilepton production at hadron colliders
- proceeds at LO via vector boson exchange in the s-channel
- useful:
(1) constrain PDFs

(2) direct determination of m_{W}
template fit of $\ell \nu_{\ell}$ transverse mass distribution
(3) background to BSM
- recall: SM relates m_{W} to m_{Z} and EW fit is a factor 2 more precise than direct determination (PDG $80.385 \pm 0.015 \mathrm{GeV}$)
- direct measurement limited by stat. (PDFs uncert. $\sim 10 \mathrm{MeV}$)

History of QCD corrections I apologize for any omission

- W,Z total production rate NLO [Altarelli, Ellis, Martinelli 79; + Greco 84]
- W,Z total production rate NNLO
[Matsuura, van der Marckm van Neerven 89;
Hamberg, van Neerven, Matsuura 91]
- Prod. © $p^{W}, Z \neq 0$ [Ellis, Martinelli, Petronzio 83; Arnold, Reno 89; Gonsalves, Pawlowski, Wai 89; Brandt, Kramer, Nyeo 91; Giele, Glover, Kosower 93; Dixon, Kunszt, Signer 98]
- Fully differential NLO to $\ell \bar{\ell}^{\prime}$ (MCFM) [Campbell, Ellis 90]
- W,Z rapidity distrib NNLO [Ansastasiou, Dixon, Meniniov, Petriello o4]
- Fully differential NNLO to $\bar{\ell} \bar{\ell}^{\prime}$ (FEWZ) [Menikov, Petriello of]
- Soft g resummation LL, . . . , ${ }^{3} \mathrm{LLL}$ [sterman 87; Catani; Trentadue 89; 91; Moch, Vogt 05]
- Resummation LL/NLL in p_{T}^{W} / M_{W} (RESBOS) [Baazs, Yan 97]
- NLO+NLL p_{T}^{W} / M_{W} resummation ${ }_{[B o z z i}$ Catani, De Florian, Fererea, Grazzin op]
- NLO+PS (MC@NLO, POWHEG) [Frixione, Webber 2z; Frixione, Nason, Oleari 07; Aliol it. al. os]
- NNLO+PS [Karlberg, Re, Zanderighi 14; Hoeche, Li, Prestel 14; Alioli, Bauer, Berggren, Tackmann, Walsh 15]
- NNLO QCD implemented in DYNNLO [Catani, Gazazini 07 ; + Cierif, Fererar, de Florian op]

History of EW corrections I apologize for any omisision

- W,Z production at non-zero p_{T} [Kühn, Kulesza, Pozzorini, Schulze 04]
- W production at NLO
- NWA [Wackeroth, Hollik 97; Baur, Keller, Wackeroth 99]
- Exact corrections [Zykunov et. al. 01; Dittmaier, Krämer 02; Baur, Wackeroth 04 (wgeradz); Arbuzov et. al. 06 (SANC); Carloni Calame et. al. 06 (HORACE); Hollik, Kasprzik, Kniehl 08; Bardin et. al. 08 WINHAC]
- γ induced processes [Baur, Wackeroth 04; Dittmaier, Krämer 05; Carloni Calame et. al. 06; Arbuzov et. al. 07]
- Z production at NLO
- Only QED [Barberio et. al. 91; Baur, Keller, Sakumoto 98; Golonka, Was 06 (PHOTOS); Placzek, Jadach 03+13]
- Exact corrections [Baur et. al. 02+04; Zykunov et. al. 07; Carloni Calame et. al. 07 (HORACE); Dittmaier, Huber 12; Arbuzov et. al. 07 (SANC)]
- γ induced processes [Carloni Calame et. al. 07 (Horace)]
- $\mathrm{V}+\mathrm{j}$ [Denner, Dittmaier, Kasprzik, Muck 09+11; Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr 14+15]
- 2-loop $\mathrm{V}+\gamma$ [Gehrmann, Tancredi 11]
- NNLO QCD + NLO EW in FEWZ [Melnikov, Petriello o6; Li, Petriello 12; + Li, Quackenbush 12]
- NLO QCD/EW POWHEG [Barze, Montagna, Nason, Nicrosini, Picicinini, Vicini 12+13; Bermacia,

NNLO mixed QCD \times EW corrections: not yet fully available

- $\mathcal{O}\left(\alpha_{s}^{2}\right) \sim \mathcal{O}(\alpha)$, i.e. when QCD NNNLO is considered , also $\mathcal{O}\left(\alpha_{s} \alpha\right)$ becomes relevant
- Two-loop $2 \rightarrow 2$ with exchange of gluons and $\gamma / Z / W$
- One-loop $2 \rightarrow 3$, with 1 unresolved gluon or γ
- Tree-level $2 \rightarrow 4$, with 1 unresolved gluon and 1 unresolved γ
- Brief history
- Two-loop form factors for Z production [Kotikov, Kühn, Veretin 08]
- QCD \times QED [Kilgore, Sturm 11]
- Expansion around pole in the resonance region [Dittmaier, Huss, Schwinn 14+16]
- Bulk of corrections to inclusive observables comes from resonant region ...
- ... but for accurate differential distributions in regions different from resonance (and to check the pole expansion), the full calculation is needed

Outline

(1) Drell-Yan processes: a very (very!) compact introduction

(2) Two-loop mixed QCD \times EW corrections: what to compute

Drell-Yan dilepton production: virtual corrections

Propagator NNLO QCD \times EW corrections: e.g.

Vertex NNLO QCD \times EW corrections: e.g.

NLO QCD

NNLO QCD \times EW, factorizable, (1-loop) ${ }^{2}$

- quarks in the initial state
- leptons in the final state
- no QCD corrections there at 1 - and 2-loops
- no gluon exchange with initial state at 1- and 2-loops

NNLO QCD \times EW, factorizable, 1PI

Vertex NNLO QCD \times EW corrections: e.g.

NLO QCD

NNLO QCD \times EW, factorizable, $(1 \text {-loop) })^{2}$

NNLO QCD \times EW, factorizable, 1 PI

Box NNLO QCD \times EW corrections: e.g.

NLO EW, non-factorizable
leptons in the final state

- no QCD corrections at 1-loop
- no gluon exchange with initial state

- can get boxes only by dressing the non-factorizable NLO EW

NNLO QCD \times EW, non-factorizable

Two-loop mixed QCD \times EW corrections: $q \bar{q} \rightarrow \ell^{+} \ell^{-}$

- Do it carefully (FeynArts [Hahn 01])
- One can map all the Feynman diagrams onto 3 families
- The corrections to the neutral current DY process never involve W and Z at the same time

$\left(a_{1}\right)$

$\left(a_{2}\right)$

$\left(b_{1}\right)$

1)

$\left(b_{2}\right)$

$\left(b_{3}\right)$

- Topology A well known
[Smirnov 99; Gehrmann, Remiddi 99]
- Topologies B-C unknown so far

$\left(c_{1}\right)$

$\left(c_{2}\right)$

Two-loop mixed QCD \times EW corrections: $q \bar{q}^{\prime} \rightarrow \ell^{-} \bar{\nu}_{\ell}$

- Do it carefully (FeynArts [Hahn 01])
- One can map all the

Feynman diagrams onto 4 families

- The corrections to the charged current DY process also involve W and Z at the same time
- Topology A well known

[Smirnov 99; Gehrmann, Remiddi 99]
- Topologies B-C-D unknown so far

$\left(d_{1}\right)$

$\left(d_{2}\right)$

$\left(d_{3}\right)$

Outline

(1) Drell-Yan processes: a very (very!) compact introduction

(2) Two-loop mixed QCD \times EW corrections: what to compute

(3) Two-loop mixed QCD \times EW corrections: how we computed

Let's make life a bit simpler

- Families with 1 or 2 degenerate massive propagators $\Rightarrow\left(s, t, m_{W, Z}^{2}\right)$
- Family with 2 different massive propagators $\Rightarrow\left(s, t, m_{W}^{2}, m_{Z}^{2}\right)$
- We exploit $\Delta m^{2} \equiv m_{Z}^{2}-m_{W}^{2} \ll m_{Z}^{2}$
- Expanding for instance the Z propagators around m_{W}

$$
\frac{1}{p^{2}-m_{Z}^{2}}=\frac{1}{p^{2}-m_{W}^{2}-\Delta m^{2}} \approx \frac{1}{p^{2}-m_{W}^{2}}+\frac{m_{Z}^{2}}{\left(p^{2}-m_{W}^{2}\right)^{2}} \xi+\ldots
$$

where

$$
\xi=\frac{\Delta m^{2}}{m_{Z}^{2}}=\frac{m_{Z}^{2}-m_{W}^{2}}{m_{Z}^{2}} \sim \frac{1}{4}
$$

- The coefficients of the series in ξ are Feynman diagrams with 3 scales
- The expanded denominators will appear raised to powers $>1 \Rightarrow$ IBP

So this is what we computed Borcian, Mastrofia, Scrubert, ov 16

(b_{1})

$\left(b_{2}\right)$

(b3)

$\left(c_{2}\right)$

Differential equations for Master Integrals

Integration by parts identities

Loop integrals in d dimensions satisfy linear identities (IBPs + other)

$$
\begin{aligned}
\int \frac{d^{d} k}{\left(k^{2}-m^{2}\right)^{2}\left[(k-p)^{2}-m^{2}\right]} & \equiv \int \frac{d^{d} k}{D_{1}^{2} D_{2}} \\
& =\frac{d-3}{\left(p^{2}-4 m^{2}\right)} \int \frac{d^{d} k}{D_{1} D_{2}}-\frac{d-2}{2 m^{2}\left(p^{2}-4 m^{2}\right)} \int \frac{d^{d} k}{D_{1}}
\end{aligned}
$$

Only a finite number of them are independent (MIs)!

- AIR [Anastasiou, Lazopoulos 04], FIRE [Smirnov 08], REDUZE [Studerus 10; + von Manteuffel 12], LiteRed [Lee 12]
- Take derivatives wrt external $p_{i j}^{2}$'s and m_{i}^{2} 's \rightarrow use IBPs \rightarrow obtain system of linear differential equations for the MIs (ODEs or PDEs)

$$
\begin{aligned}
& \mathbf{F} \equiv \text { vector of Mls } \\
& \mathbb{K} \equiv \text { coeff. matrix }
\end{aligned}
$$

$$
d \mathbf{F}(\vec{x}, \epsilon)=d \mathbb{K}(\vec{x}, \epsilon) \mathbf{F}(\vec{x}, \epsilon) \quad \epsilon=(4-d) / 2
$$

Canonical DEs systems and iterated integrals

A smart change of basis can bring to big simplifications [Henn 13]

$$
\mathbf{F}(\vec{x}, \epsilon)=\mathbb{B}(\vec{x}, \epsilon) \mathbf{I}(\vec{x}, \epsilon)
$$

bad basis ${ }^{(2)}$

$$
d \mathbf{F}(\vec{x}, \epsilon)=\mathbb{K}(\vec{x}, \epsilon) \mathbf{F}(\vec{x}, \epsilon)
$$

$$
\mathbf{I}(\epsilon, \vec{x})=\mathcal{P} \exp \left\{\epsilon \int_{\gamma} d \mathbb{A}\right\} \mathbf{I}\left(\epsilon, \vec{x}_{0}\right) \quad \mathbf{I}\left(\epsilon, \vec{x}_{0}\right) \equiv \text { boundary constants }
$$

$$
\mathcal{P} \exp \left\{\epsilon \int_{\gamma} d \mathbb{A}\right\}=\mathbb{1}+\epsilon \int_{\gamma} d \mathbb{A}+\epsilon^{2} \int_{\gamma} d \mathbb{A} d \mathbb{A}+\epsilon^{3} \int_{\gamma} d \mathbb{A} d \mathbb{A} d \mathbb{A}+\ldots
$$

Canonical DEs systems and iterated integrals

A smart change of basis can bring to big simplifications [Henn 13]

$$
\mathbf{F}(\vec{x}, \epsilon)=\mathbb{B}(\vec{x}, \epsilon) \mathbf{I}(\vec{x}, \epsilon)
$$

```
bad basis (*)
dF}(\vec{x},\epsilon)=\mathbb{K}(\vec{x},\epsilon)\mathbf{F}(\vec{x},\epsilon
```

$$
d \mathbf{l}(\vec{x}, \epsilon)=\epsilon d \mathbb{A}(\vec{x}) \mathbf{I}(\vec{x}, \epsilon)
$$

$$
\mathbf{I}(\epsilon, \vec{x})=\mathcal{P} \exp \left\{\epsilon \int_{\gamma} d \mathbb{A}\right\} \mathbf{I}\left(\epsilon, \vec{x}_{0}\right) \quad \mathbf{I}\left(\epsilon, \vec{x}_{0}\right) \equiv \text { boundary constants }
$$

γ is a path from \vec{x}_{0} to \vec{x} (that does not cross branch cuts and singularities of the integrand)

Canonical DEs systems and iterated integrals

A smart change of basis can bring to big simplifications [Henn 13]

$$
\mathbf{F}(\vec{x}, \epsilon)=\mathbb{B}(\vec{x}, \epsilon) \mathbf{I}(\vec{x}, \epsilon)
$$

> bad basis ©
> $d \mathbf{F}(\vec{x}, \epsilon)=\mathbb{K}(\vec{x}, \epsilon) \mathbf{F}(\vec{x}, \epsilon)$

It follows from Chen's theorem

...that the matrices

$$
\int_{\gamma} \underbrace{d \mathbb{A} \ldots d \mathbb{A}}_{k \text { times }}
$$

are invariant under smooth deformations of the path γ (provided branch cuts and singularities are avoided)! A lot of freedom $)^{-}$

Canonical DEs systems and iterated integrals

A smart change of basis can bring to big simplifications [Henn 13]

$$
\mathbf{F}(\vec{x}, \epsilon)=\mathbb{B}(\vec{x}, \epsilon) \mathbf{I}(\vec{x}, \epsilon)
$$

$$
\begin{gathered}
\text { good basis }() \\
d \mathbf{l}(\vec{x}, \epsilon)=\epsilon d \mathbb{A}(\vec{x}) \mathbf{l}(\vec{x}, \epsilon)
\end{gathered}
$$

Achieving a "canonical" basis

No general algorithm devised yet, mathematical status of a "conjecture". Some ideas and special cases (constant leading singularity, ϵ-linear DEs, triangular DEs for $\epsilon \rightarrow 0$, Moser algorithm, ...) [Henn 13; Argeri et. al. 14; Bern et. al. 14;

Lee 14; Höschele et. al. 14; Gehrmann et. al. 14; Tancredi 15]

Chen's iterated integrals [Cher 7]

In our case the "canonical" coefficient matrix is a dlog form
$d \mathbb{A}=\sum_{i=1}^{n} \mathbb{M}_{i} d \log \eta_{i}(\vec{x})$

$$
\text { where }\left\{\begin{array}{l}
\text { the } \mathbb{M}_{i} \text { are } \mathbb{Q} \text {-valued matrices } \\
\text { the "letters" } \eta_{i} \text { are functions of } \vec{x}
\end{array}\right.
$$

Therefore the entries of

$$
\int_{\gamma} \underbrace{d \mathbb{A} \ldots d \mathbb{A}}_{k \text { times }}
$$

are linear combinations of Chen's iterated integrals of the form

$$
\underset{\equiv \mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\gamma]}}{\int_{\gamma} d \log \eta_{i_{k}} \ldots d \log \eta_{i_{1}}} \equiv \int_{0 \leq t_{1} \leq \ldots \leq t_{k} \leq 1} g_{i_{k}}^{\gamma}\left(t_{k}\right) \ldots g_{i_{1}}^{\gamma}\left(t_{1}\right) d t_{1} \ldots d t_{k}
$$

where, given a parametrization $\gamma(t), t \in[0,1], g_{i}^{\gamma}(t)=\frac{d}{d t} \log \eta_{i}(\gamma(t))$

Chen's iterated integrals [Cher 7]

In our case the "canonical" coefficient matrix is a dlog form
$d \mathbb{A}=\sum_{i=1}^{n} \mathbb{M}_{i} d \log \eta_{i}(\vec{x})$

$$
\text { where }\left\{\begin{array}{l}
\text { the } \mathbb{M}_{i} \text { are } \mathbb{Q} \text {-valued matrices } \\
\text { the "letters" } \eta_{i} \text { are functions of } \vec{x}
\end{array}\right.
$$

Therefore the entries of

$$
\int_{\gamma} \underbrace{d \mathbb{A} \ldots d \mathbb{A}}_{k \text { times }}
$$

are linear combinations of Chen's iterated integrals of the form

Recall GPLs

$$
G_{i_{k}, \ldots, i_{1}}(1) \equiv \int_{0 \leq t_{1} \leq \ldots \leq t_{k} \leq 1} \frac{1}{t_{k}-i_{k}} \cdots \frac{1}{t_{1}-i_{1}} d t_{1} \ldots d t_{k}
$$

where, given a parametrization $\gamma(t), t \in[0,1], g_{i}^{\gamma}(t)=\frac{d}{d t} \log \eta_{i}(\gamma(t))$

Chen's iterated integrals: properties

- Invariance under path reparametrization
- Reverse path formula: $\mathcal{C}_{i_{k}, \ldots, i_{1}}^{\left[\gamma^{-1}\right]}=(-1)^{k} \mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\gamma]}$
- Recursive structure: $\left(\gamma^{s}(t) \equiv \gamma(s t)\right.$, with $\left.s \in[0,1]\right)$

$$
\mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\gamma]}=\int_{0}^{1} g_{i_{k}}^{\gamma}(s) \mathcal{C}_{i_{k-1}, \ldots, i_{1}}^{\left[\gamma_{s}\right]} d s \quad \frac{d}{d s} \mathcal{C}_{i_{k}, \ldots, i_{1}}^{\left[\gamma_{s}\right]}=g_{i_{k}}^{\gamma}(s) \mathcal{C}_{i_{k-1}, \ldots, i_{1}}^{\left[\gamma_{s}\right]}
$$

- Shuffle algebra:

$$
\mathcal{C}_{\vec{m}}^{[\gamma]} \mathcal{C}_{\vec{n}}^{[\gamma]}=\sum_{\text {shuffles } \sigma} \mathcal{C}_{\sigma\left(m_{M}\right), \ldots, \sigma\left(m_{1}\right), \sigma\left(n_{N}\right), \ldots, \sigma\left(n_{1}\right)}^{[\gamma]}
$$

- Path composition formula: if $\gamma \equiv \alpha \beta$, i.e. first α, then β

$$
\mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\alpha \beta]}=\sum_{p=0}^{k} \mathcal{C}_{i_{k}, \ldots, i_{p+1}}^{[\beta]} \mathcal{C}_{i_{p}, \ldots, i_{1}}^{[\alpha]}
$$

- Integration-by-parts formula: get rid of outermost integration

$$
\mathcal{C}_{i_{k}, \ldots, i_{1}}^{[\gamma]}=\log \eta_{i_{k}}(\vec{x}) \mathcal{C}_{i_{k-1}, \ldots, i_{1}}^{[\gamma]}-\int_{0}^{1} \log \eta_{i_{k}}(\vec{x}(t)) g_{i_{k-1}}(t) \mathcal{C}_{i_{k-2}, \ldots, i_{1}}^{[\gamma t]} d t
$$

Connection with GPLs

A representation in terms of GPLs can be obtained if the η_{i} 's are multilinear in \vec{x}. E.g. single letter $\eta=1+x y$. Choose $\gamma=\alpha \beta$ with

$$
\begin{aligned}
& \alpha(t)=\left(x_{0}+t\left(x_{1}-x_{0}\right), y_{0}\right), \\
& \beta(t)=\left(x_{1}, y_{0}+t\left(y_{1}-y_{0}\right)\right),
\end{aligned}
$$

and $t \in[0,1]$. Then

$$
\begin{aligned}
\int_{\alpha \beta} d \log (1+x y)= & \int_{\alpha} d \log (1+x y)+\int_{\beta} d \log (1+x y) \\
= & G\left(\frac{1+x_{0} y_{0}}{y_{0}\left(x_{0}-x_{1}\right)} ; 1\right)+G\left(\frac{1+x_{0} y_{0}}{x_{0}\left(y_{0}-y_{1}\right)} ; 1\right) \\
\int_{\alpha \beta} d \log (1+x y) d \log (1+x y)= & \int_{\alpha} d \log (1+x y) d \log (1+x y)+\int_{\alpha} d \log (1+x y) \times \\
& \times \int_{\beta} d \log (1+x y)+\int_{\beta} d \log (1+x y) d \log (1+x y) \\
= & G\left(\frac{1+x_{0} y_{0}}{y_{0}\left(x_{0}-x_{1}\right)}, \frac{1+x_{0} y_{0}}{y_{0}\left(x_{0}-x_{1}\right)} ; 1\right)+G\left(\frac{1+x_{0} y_{0}}{x_{0}\left(y_{0}-y_{1}\right)}, \frac{1+x_{0} y_{0}}{y_{0}\left(x_{0}-x_{1}\right)} ; 1\right) \\
& +G\left(\frac{1+x_{0} y_{0}}{x_{0}\left(y_{0}-y_{1}\right)}, \frac{1+x_{0} y_{0}}{x_{0}\left(y_{0}-y_{1}\right)} ; 1\right)
\end{aligned}
$$

Mixed Chen-Goncharov representation

Exploiting the recursive structure, the weight k coefficient is

$$
\mathbf{I}^{(k)}(\vec{x})=\mathbf{l}^{(k)}\left(\vec{x}_{0}\right)+\int_{0}^{1}\left[\frac{d \mathbb{A}(t)}{d t} \mathbf{l}^{(k-1)}\left(\vec{x}_{t}\right)\right] d t
$$

where \vec{x}_{t} is the point $(x(t), y(t))$ along the curve identified by γ.

- Need weight- $(k-1)$ coefficient, which is independent of the path
- Rational alphabet \rightarrow factorize over $\mathbb{C} \rightarrow$ GPLs
- Square roots \rightarrow path integration over GPLs
- Exploit IBP to perform always only 1 path integration

$$
\begin{aligned}
\mathcal{C}_{a|\vec{m}| \vec{n}}^{[\gamma]} & \equiv \int_{0}^{1} g_{a}^{\gamma}(t) G_{\vec{m}}^{\gamma}(x) G_{\vec{n}}^{\gamma}(y) d t \\
\mathcal{C}_{a|\vec{m}| \varnothing}^{[\gamma]} & \equiv \int_{0}^{1} g_{a}^{\gamma}(t) G_{\vec{m}}^{\gamma}(x) d t \\
\mathcal{C}_{a|\varnothing| \vec{n}}^{[\gamma]} & \equiv \int_{0}^{1} g_{a}^{\gamma}(t) G_{\vec{n}}^{\gamma}(y) d t \\
\mathcal{C}_{a, \vec{b}|\vec{m}| \vec{n}}^{[\gamma]} & \equiv \int_{0}^{1} g_{a}^{\gamma}(t) \mathcal{C}_{\vec{b}|\vec{m}| \vec{n}}^{[\gamma t]} d t
\end{aligned}
$$

where $G_{\vec{m}}^{\gamma}(x)$ and $G_{\vec{n}}^{\gamma}(y)$ stand for the GPLs $G_{\vec{m}}(x)$ and $G_{\vec{n}}(y)$ evaluated at $(x, y)=\left(\gamma^{1}(t), \gamma^{2}(t)\right)$.

(1) start with DE linear in ϵ (may need a bit of trial and error + expertise)

$$
\partial_{x} \mathbf{F}(\epsilon, x)=A(\epsilon, x) \mathbf{F}(\epsilon, x), \quad A(\epsilon, x)=A_{0}(x)+\epsilon A_{1}(x)
$$

(2) basis change with Magnus's exponential: $\mathbf{F}(\epsilon, x)=B_{0}(x) \mathbf{I}(\epsilon, x)$

$$
B_{0}(x) \equiv e^{\Omega\left[A_{0}\right]\left(x, x_{0}\right)} \quad \leftrightarrow \quad \partial_{x} B_{0}(x)=A_{0}(x) B_{0}(x)
$$

(3) obtain a canonical system for the I's

$$
\partial_{x} \mathbf{I}(\epsilon, x)=\epsilon \hat{A}_{1}(x) \mathbf{l}(\epsilon, x), \quad \hat{A}_{1}(x)=B_{0}^{-1}(x) A_{1}(x) B_{0}(x)
$$

(1) obtain the solution with Magnus (or Dyson)

$$
\mathbf{I}(\epsilon, x)=B_{1}(\epsilon, x) g_{0}(\epsilon), \quad B_{1}(\epsilon, x)=e^{\Omega\left[\epsilon \hat{A}_{1}\right]\left(x, x_{0}\right)}
$$

(3) ϵ-expansion of g 's will have uniform weight ("transcendentality") (if $\mathbf{I}(0)$'s are chosen wisely)

In two-dimensions (Mastrolias schubert, Ynodidi, ov 19$]$

- the F's obey an ϵ-linear DE system $\left(x=\frac{s}{m^{2}}, y=\frac{t}{m^{2}}\right)$

$$
\begin{aligned}
& \partial_{x} \mathbf{F}(x, y, \epsilon)=\left(A_{1,0}(x, y)+\epsilon A_{1,1}(x, y)\right) \mathbf{F}(x, y, \epsilon) \\
& \partial_{y} \mathbf{F}(x, y, \epsilon)=\left(A_{2,0}(x, y)+\epsilon A_{2,1}(x, y)\right) \mathbf{F}(x, y, \epsilon)
\end{aligned}
$$

- After getting rid of $A_{i, 0}$'s with Magnus (one variable at the time), the g's obey a canonical DE

$$
\begin{aligned}
& \partial_{x} \mathbf{l}(x, y, \epsilon)=\epsilon \hat{A}_{x}(x, y) \mathbf{l}(x, y, \epsilon) \\
& \partial_{y} \mathbf{l}(x, y, \epsilon)=\epsilon \hat{A}_{y}(x, y) \mathbf{l}(x, y, \epsilon)
\end{aligned}
$$

- which can be cast in dlog form

$$
d \mathbf{l}(x, y, \epsilon)=\epsilon d \mathbb{A}(x, y) \mathbf{l}(x, y, \epsilon)
$$

- with some alphabet $\left\{\eta_{1}, \ldots, \eta_{n}\right\}$

One-mass MIs: 1-loop

$\left(\mathcal{T}_{1}\right)$

$\left(\mathcal{T}_{2}\right)$

$\left(\mathcal{T}_{3}\right)$

$\left(\mathcal{T}_{4}\right)$

$\left(\mathcal{T}_{5}\right)$

$$
\mathrm{F}_{3}=\epsilon \mathcal{T}_{3},
$$

$\mathrm{F}_{2}=\epsilon \mathcal{T}_{2}$,
$\mathrm{F}_{5}=\epsilon^{2} \mathcal{T}_{5}$

The vector \mathbf{F} obeys an ϵ-linear DE: we obtain the canonical MIs with the Magnus procedure

$$
\begin{array}{lll}
\mathrm{I}_{1}=\mathrm{F}_{1}, & \mathrm{I}_{2}=-s \mathrm{~F}_{2}, & \mathrm{I}_{3}=-t \mathrm{~F}_{3}, \\
\mathrm{I}_{4}=-t \mathrm{~F}_{4}, & \mathrm{I}_{5}=\left(s-m^{2}\right) t \mathrm{~F}_{5} &
\end{array}
$$

The alphabet of the corresponding dlog-form is $\left(x \equiv-s / m^{2}, y \equiv-s / m^{2}\right)$

$$
\eta_{1}=x, \quad \eta_{2}=1+x, \quad \eta_{3}=y, \quad \eta_{4}=1-y, \quad \eta_{5}=x+y
$$

One-mass MIs: 2-loop

- 1 extra letter

$$
\eta_{6}=x+y+x y
$$

- alphabet multilinear in $x, y \Rightarrow$ GPLs
- boundary conditions
- regularity at pseudo-thresholds
- zero momentum limits
- direct integration
- analytic continuation straightforward \Rightarrow complex (s, t, m^{2})
- Checked against SecDec

${ }_{\left(\mathcal{T}_{13}\right)}$

${ }_{\left(\mathcal{T}_{19}\right)}$

${ }^{\left(\mathcal{T}_{14}\right)}$

${ }_{\left(\mathcal{T}_{20}\right)}$
(τ_{26})

(\mathcal{T}_{9})

$\left(\mathcal{T}_{15}\right)$
$\left(\tau_{21}\right)$

$\left(\mathcal{T}_{4}\right)$

$\left(\mathcal{T}_{22}\right)$

${ }^{\left(\mathcal{T}_{27}\right)}$

(\mathcal{T}_{11})

$\left(\mathcal{T}_{17}\right)$

($\left.\mathcal{T}_{23}\right)$

${ }^{\left(\mathcal{T}_{6}\right)}$

${ }^{\left(\mathcal{T}_{12}\right)}$

$\left(\mathcal{T}_{18}\right)$

$\left(\mathcal{T}_{24}\right)$ (Euclidean and in the physical regions)

Two-mass MIs: 1-loop

${ }^{\left(\mathcal{T}_{1}\right)}$

${ }^{\left(\mathcal{T}_{2}\right)}$

$\left(\mathcal{T}_{3}\right)$

${ }_{\left(\mathcal{T}_{4}\right)}$

(\mathcal{T}_{5})

${ }^{\left(\mathcal{T}_{6}\right)}$
$\mathrm{F}_{1}=\epsilon \mathcal{T}_{1}$,
$\mathrm{F}_{2}=\epsilon \mathcal{T}_{2}$,
$\mathrm{F}_{3}=\epsilon \mathcal{T}_{3}$,
$\mathrm{F}_{4}=\epsilon^{2} \mathcal{T}_{4}$,
$\mathrm{F}_{5}=\epsilon^{2} \mathcal{T}_{5}$,
$\mathrm{F}_{6}=\epsilon^{2} \mathcal{T}_{6}$

Canonical basis

$$
\begin{array}{lll}
\mathrm{I}_{1}=\mathrm{F}_{1}, & \mathrm{I}_{2}=-s \sqrt{1-\frac{4 m^{2}}{s}} \mathrm{~F}_{2}, & \mathrm{I}_{3}=-t \mathrm{~F}_{3}, \\
\mathrm{I}_{4}=-s \mathrm{~F}_{4}, & \mathrm{I}_{5}=-t \mathrm{~F}_{5}, & \mathrm{I}_{6}=s t \sqrt{1-4 \frac{m^{2}}{s}\left(1+\frac{m^{2}}{t}\right)} \mathrm{F}_{6}
\end{array}
$$

Two-mass MIs: 1-loop

${ }^{\left(\mathcal{T}_{1}\right)}$

$\left(\mathcal{T}_{2}\right)$

$\left(\mathcal{T}_{3}\right)$

${ }^{\left(\mathcal{T}_{4}\right)}$

$\left(\mathcal{T}_{5}\right)$

$\left(\mathcal{T}_{6}\right)$

Four square roots appear

$$
\sqrt{-s}, \sqrt{4 m^{2}-s}, \sqrt{-t}, \text { and } \sqrt{1-\frac{4 m^{2}}{s}\left(1+\frac{m^{2}}{t}\right)}
$$

A change of variables gets rid of them

$$
-\frac{s}{m^{2}}=\frac{(1-w)^{2}}{w}, \quad-\frac{t}{m^{2}}=\frac{w}{z} \frac{(1+z)^{2}}{(1+w)^{2}}
$$

$$
\begin{array}{lll}
\eta_{1}=z, & \eta_{2}=1+z, & \eta_{3}=1-z,
\end{array} \quad \eta_{4}=w,
$$

Two-mass MIs: 2-loop

- one extra sqrt $\sqrt{1+\frac{m^{4}}{t^{2}}-\frac{2 m^{2}}{s}\left(1-\frac{u}{t}\right)}$
- in DE for I_{32} at weight 3,4
- in DEs for $\mathrm{I}_{33, \ldots, 36}$ at weight 4
- all the rest \rightarrow GPLs
- boundary conditions
- regularity at pseudo-thresholds
- zero momentum limits
- direct integration
- analytic continuation
- straightforward for $I_{1, \ldots, 31}$
- requires care for $I_{32, \ldots, 36}$
- checks against SecDec
- $I_{1, \ldots, 31}$ (Eucl./phys.)
- $I_{32, \ldots, 36}$ (Eucl.)

Summary and perspectives

- We computed the MIs for the virtual QCD \times EW two-loop corrections to the Drell-Yan scattering processes (for massless external particles)

$$
q+\bar{q} \rightarrow I^{-}+I^{+}, \quad q+\bar{q}^{\prime} \rightarrow I^{-}+\bar{\nu}
$$

- We exploited $\Delta m^{2} \equiv m_{Z}^{2}-m_{W}^{2} \ll m_{Z}^{2}$ to reduce the number of scales to 3
- We identified 49 canonical MIs (8 fully massless, 24 one-mass, 17 two-mass) with the help of the Magnus exponential
- The result is given as a Taylor series around $d=4$ space-time dimensions in terms of iterated integrals up to weight four
- We adopted a mixed representation in terms of Chen-Goncharov iterated integrals, suitable for numerical evaluation.
- Future work:
- Analytic continuation of Chen's iterated integrals
- Optimization of numerical evaluation
- Amplitudes and cross-section
(canonical)

Thanks for your attention!

A convenient tool: the Magnus series expansion [Magnus 54]

- a generic matrix linear system of 1st order ODE

$$
\partial_{x} Y(x)=A(x) Y(x), \quad Y\left(x_{0}\right)=Y_{0}
$$

- in the general non-commutative case, the Magnus theorem tells us that

$$
Y(x)=e^{\Omega\left(x, x_{0}\right)} Y\left(x_{0}\right) \equiv e^{\Omega(x)} Y_{0}
$$

- with $\Omega(x)=\sum_{n=1}^{\infty} \Omega_{n}(x)$ and

$$
\begin{aligned}
& \Omega_{1}(x)=\int_{x_{0}}^{x} d \tau_{1} A\left(\tau_{1}\right), \\
& \Omega_{2}(x)=\frac{1}{2} \int_{x_{0}}^{x} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2}\left[A\left(\tau_{1}\right), A\left(\tau_{2}\right)\right] \\
& \Omega_{3}(x)=\frac{1}{6} \int_{x_{0}}^{t} d \tau_{1} \int_{x_{0}}^{\tau_{1}} d \tau_{2} \int_{x_{0}}^{\tau_{2}} d \tau_{3}\left[A\left(\tau_{1}\right),\left[A\left(\tau_{2}\right), A\left(\tau_{3}\right)\right]\right]+\left[A\left(\tau_{3}\right),\left[A\left(\tau_{2}\right), A\left(\tau_{1}\right)\right]\right]
\end{aligned}
$$

Relation with Dyson series [Banes, cass. oreo and fos oof

Magnus \leftrightarrow Dyson series. Dyson expansion of the solution Y in terms of the time-ordered integrals Y_{n}

$$
\begin{aligned}
Y(x) & =Y_{0}+\sum_{n=1}^{\infty} Y_{n}(x) \\
Y_{n}(x) & \equiv \int_{x_{0}}^{x} d \tau_{1} \cdots \int_{x_{0}}^{\tau_{n-1}} d \tau_{n} A\left(\tau_{1}\right) A\left(\tau_{2}\right) \cdots A\left(\tau_{n}\right)
\end{aligned}
$$

Then

$$
Y(x)=e^{\Omega(x)} Y_{0} \Rightarrow \sum_{j=1}^{\infty} \Omega_{j}(x)=\log \left(Y_{0}+\sum_{n=1}^{\infty} Y_{n}(x)\right)
$$

and

$$
\begin{aligned}
& Y_{1}=\Omega_{1}, \\
& Y_{2}=\Omega_{2}+\frac{1}{2!} \Omega_{1}^{2}, \\
& Y_{3}=\Omega_{3}+\frac{1}{2!}\left(\Omega_{1} \Omega_{2}+\Omega_{2} \Omega_{1}\right)+\frac{1}{3!} \Omega_{1}^{3}
\end{aligned}
$$

